首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adrenomedullin (ADM) is a vasoactive peptide hormone of 52 amino acids and belongs to the calcitonin peptide superfamily. Its vasodilative effects are mediated by the interaction with the calcitonin receptor‐like receptor (CLR), a class B G protein‐coupled receptor (GPCR), associated with the receptor activity modifying protein 2 (RAMP2) and functionally described as AM‐1 receptor (AM1R). A disulfide‐bonded ring structure consisting of six amino acids between Cys16 and Cys21 has been shown to be a key motif for receptor activation. However, the specific structural requirements remain to be elucidated. To investigate the influence of ring size and position of additional functional groups that replace the native disulfide bond, we generated ADM analogs containing thioether, thioacetal, alkane, and lactam bonds between amino acids 16 and 21 by Fmoc/t‐Bu solid phase peptide synthesis. Activity studies of the ADM disulfide bond mimetics (DSBM) revealed a strong impact of structural parameters. Interestingly, an increased ring size was tolerated but the activity of lactam‐based mimetics depended on its position within the bridging structure. Furthermore, we found the thioacetal as well as the thioether‐based mimetics to be well accepted with full AM1R activity. While a reduced selectivity over the calcitonin gene‐related peptide receptor (CGRPR) was observed for the thioethers, the thioacetal was able to retain a wild–type‐like selectivity profile. The carbon analog in contrast displayed weak antagonistic properties. These results provide insight into the structural requirements for AM1R activation as well as new possibilities for the development of metabolically stabilized analogs for therapeutic applications of ADM.  相似文献   

2.
The differential effects of sulfhydryl (SH)-blocking agents on hormone and DNA binding by the chick oviduct progesterone receptor were investigated. Previous studies have demonstrated inhibition of steroid-receptor interaction by SH-blocking agents and protection against inhibition by bound hormone. The present results indicate that the SH group required for steroid binding is within or near the hormone-binding site itself, and that a second SH group (or groups) is involved in the binding of receptor to DNA. Three findings relate to the site of action of SH-blocking agents on hormone binding. First, glycerol decreased the rate of hormone dissociation and the rate of hormone displacement by mercurial reagents by 75 to 90%. Second, mercurial reagents displaced [3H]progesterone bound to the mero-receptor, a Mr 23,000 proteolytic fragment containing the hormone-binding site, but not the site of interaction with DNA. Third, hormone displacement was still present after a 10,000-fold purification of the progesterone receptor. Mercurial reagents also inhibited binding of progesterone receptor to DNA, whereas the SH-alkylating agents N-ethylmaleimide and iodoacetamide had no effect. It is likely that distinct sulfhydryl groups are required for steroid receptor interaction with hormone and with DNA, since brief treatment with mercurial reagents blocked DNA binding, but caused only a slight displacement of bound hormone. The SH group required for hormone binding probably lies within or near the hormone-binding site, is sensitive to mercurials, alkylating agents, and 5,5′-dithiobis(2-nitrobenzoate) (DTNB), and is protected by bound hormone. The SH group required for DNA binding, in contrast, is sensitive to mercurials but not to alkylating agents, is only partially sensitive to DTNB, and is not protected by bound hormone.  相似文献   

3.
Chemical oxidation or reduction of lymphocyte cell surface thiol or disulfide groups, respectively, has been shown to alter the proliferative activity of murine T cells. S-2-(3-aminopropylamino)ethylphosphothioic acid, a compound containing no free thiol group until it is intracellularly dephosphorylated, did not enhance Con A-induced proliferation which suggested that thiols did not mediate proliferative enhancement via an intracellular mechanism. Glutathione, an impermeant thiol, enhanced T-cell proliferation 68% as effectively as 2-mercaptoethanol (2-ME), which suggested that the thiol-sensitive site was at the cell surface. A battery of structural analogs to 2-ME was employed to elucidate the chemical requirements for the biological activity of the thiols. The necessity for a hydrogen-binding moiety on the thiol reagent was determined by the use of non-hydrogen-binding analogs and by competitive inhibition of the thiol-enhancing activity of 2-ME by non-thiol-containing hydrogen-binding analogs. Pretreatment of cells with the copper:phenanthroline complex (CuP), an impermeant oxidant of thiol groups, reduced the Con A-induced response >79%; however, the presence of 2-ME in culture completely reversed the inhibitory effect of CuP pretreatment. Oxidation of T cells by high oxygen tension (17% O2) also ablated the Con A response but did not alter the response to Con A + 2-ME. Protection from oxidative inhibition also was afforded T cells by sequential reduction and blockage of cell surface thiol groups. Finally, a model which correlates the chemical study of cell surface residues with T-lymphocyte responsiveness is presented.  相似文献   

4.
Understanding structural determinants in enzyme active site integrity can provide a good knowledge to design efficient novel catalytic machineries. Fusarium solani pisi cutinase with classic triad Ser-His-Asp is a promising enzyme to scrutinize these structural determinants. We performed two MD simulations: one, with the native structure, and the other with the broken Cys171-Cys178 disulfide bond. This disulfide bond stabilizes a turn in active site on which catalytic Asp175 is located. Functionally important H-bonds and atomic fluctuations in catalytic pocket have been changed. We proposed that this disulfide bond within active site can be considered as an important determinant of cutinase active site structural integrity.  相似文献   

5.
Gene regulation by steroids is tightly coupled to hormone concentration and stereochemistry. A key step is binding of hormones to receptors which interact with consensus DNA sequences known as hormone response elements (HREs). The specificity and strength of hormone binding do not correlate well with hormonal activity suggesting an additional step involving recognition of ligand by the gene. Stereospecific fit of hormones between base pairs and correlation of fit with hormonal activity led to the proposal that such recognition involves insertion of hormone into DNA. Here, the feasibility of insertion was investigated using computer models of the glucocorticoid receptor DNA binding domain bound to its HRE. The site reported to accommodate glucocorticoids was found in the HRE and was exposed to permit unwinding at this locus. The resulting cavity in the unwound DNA/receptor interface fit cortisol remarkably well; cortisol formed hydrogen bonds to both the receptor and DNA. Current experimental evidence is generally consistent with ligand binding domains of receptors undergoing a conformational change which facilitates transfer of the ligand into the unwound DNA/receptor interface. We propose this step is rate limiting and alterations in receptor, DNA or hormone which attenuate insertion impair hormonal regulation of gene function.  相似文献   

6.
The binding of substrate and product analogs to phenylalanine ammonia-lyase (EC 4.3.1.5) from maize has been studied by a protection method. The ligand dissociation constants, KL, were estimated from the variation with [L] of the pseudo-first-order rate constants for enzyme inactivation by nitromethane. The phenylalanine analogs d- and l-2-aminooxy-3-phenylpropionic acid showed KL, values over 20,000-fold lower than the Km for l-phenylalanine. From these and other KL values it is deduced that when the enzyme binds l-phenylalanine the structural free energy stored in the protein is higher than when it binds the superinhibitors. Models for binding d- and l-phenylalanine and the superinhibitors are described. The enantiomeric pairs are considered to have similar KL values because they pack into the active site in a mirror-image relationship. If the elimination reaction approximates to the least-motion course deduced on stereoelectronic grounds, the mirror-image packing of the superinhibitors into the active site mimics the conformation inferred for a transition state in the elimination. It appears, therefore, that structural changes take place in the enzyme as the transition state conformation is approached causing stored free energy to be released. This lowers the activation free energy for the elimination reaction and accounts for the strong binding by the above analogs.  相似文献   

7.
The receptor for acetylcholine in the subsynaptic membrane of the electroplax of Electrophorus electricus is a protein with a disulfide bond in the vicinity of the active site. This disulfide can be reduced and reoxidized with concomitant inhibition and restoration of the response to acetylcholine and other monoquaternary ammonium-depolarizing agents. Conversely, the bisquaternary hexamethonium, normally a competitive inhibitor, causes depolarization, and the activity of decamethonium is increased following reduction of the disulfide. The reduced receptor can be alkylated by various maleimide derivatives and is then no longer reoxidizable. Some quaternary ammonium maleimide derivatives act as affinity labels of the reduced receptor, alkylating it at a rate three orders of magnitude faster then do uncharged maleimide derivatives. Other types of potential affinity labels also react only with the reduced receptor and the resulting covalently attached quaternary ammonium moieties interact with the active site, strongly activating the receptor. These results suggest a model for the active site and its transitions in which an activator such as acetylcholine bridges between a negative subsite and a hydrophobic subsite in the vicinity of the disulfide, causing an altered conformation around the negative subsite and a decrasee of a few angstroms in the distance between the two subsites.  相似文献   

8.
A series of sulfhydryl and novel sulfur-based substrate-analog inhibitors has been synthesized and tested against human fibroblast and neutrophil collagenases. Absolute stereospecific synthesis of several sulfhydryl inhibitors establishes that it is the diastereomers with the R-configuration of the P'1 residues, which correspond to the unnatural D-amino acid analogs, that are the most potent inhibitors. The corresponding disulfide, sulfonate, sulfinate, sulfide, sulfoxide and sulfone analogs exhibit widely variable levels of potency, but all less than the sulfhydryl compounds. No correlation between inhibitor potency and any single structural feature of these new compounds is apparent. However, differences in potency can be ascribed to the different affinities of these functional groups for zinc coordination and hydrogen bonding to nearby active site residues.  相似文献   

9.
The Effects of pH on the Labellar Sugar Receptor of the Fleshfly   总被引:2,自引:1,他引:1       下载免费PDF全文
Reproducible results describing the effects of pH on the response of the labellar sugar receptor of the fleshfly, Boettcherisca peregrina, were obtained. The response to sucrose was independent over a wide range of pH (3.0 to 10.0 for sucrose stimulation), but was inhibited fairly sharply on both sides of this range. Similar results were obtained for monosaccharide stimulation. The receptor was excited on stimulation by water above pH 12.0. The effects of high pH, both inhibitory and excitatory, were affected by the presence of salts. In the presence of 0.5 molar NaCl, for example, the pH-inhibition curve was shifted toward lower pH's by about one pH unit. The effects of low pH, on the other hand, were not affected by salts. Following Dixon's theory, it was concluded that at least five ionizable groups (loosing positive charges above pH 10.5) were located at the receptor site.  相似文献   

10.
Disulfide bonds play diverse structural and functional roles in proteins. In tear lipocalin (TL), the conserved sole disulfide bond regulates stability and ligand binding. Probing protein structure often involves thiol selective labeling for which removal of the disulfide bonds may be necessary. Loss of the disulfide bond may destabilize the protein so strategies to retain the native state are needed. Several approaches were tested to regain the native conformational state in the disulfide-less protein. These included the addition of trimethylamine N-oxide (TMAO) and the substitution of the Cys residues of disulfide bond with residues that can either form a potential salt bridge or others that can create a hydrophobic interaction. TMAO stabilized the protein relaxed by removal of the disulfide bond. In the disulfide-less mutants of TL, 1.0 M TMAO increased the free energy change (ΔG0) significantly from 2.1 to 3.8 kcal/mol. Moderate recovery was observed for the ligand binding tested with NBD-cholesterol. Because the disulfide bond of TL is solvent exposed, the substitution of the disulfide bond with a potential salt bridge or hydrophobic interaction did not stabilize the protein. This approach should work for buried disulfide bonds. However, for proteins with solvent exposed disulfide bonds, the use of TMAO may be an excellent strategy to restore the native conformational states in disulfide-less analogs of the proteins.  相似文献   

11.
Recently our findings have shown that the integration of the gene coding for the rat gluco-corticoid receptor (GR receptor) in Nicotiana langsdorffii plants induced morphophysiological effects in transgenic plants through the modification of their hormonal pattern. Phytohormones play a key role in plant responses to many different biotic and abiotic stresses since a modified hormonal profile up-regulates the activation of secondary metabolites involved in the response to stress. In this work transgenic GR plants and isogenic wild type genotypes were exposed to metal stress by treating them with 30 ppm cadmium(II) or 50 ppm chromium(VI). Hormonal patterns along with changes in key response related metabolites were then monitored and compared. Heavy metal up-take was found to be lower in the GR plants. The transgenic plants exhibited higher values of S-abscisic acid (S-ABA) and 3-indole acetic acid (IAA), salicylic acid and total polyphenols, chlorogenic acid and antiradical activity, compared to the untransformed wild type plants. Both Cd and Cr treatments led to an increase in hormone concentrations and secondary metabolites only in wild type plants. Analysis of the results suggests that the stress responses due to changes in the plant's hormonal system may derive from the interaction between the GR receptor and phytosteroids, which are known to play a key role in plant physiology and development.  相似文献   

12.
Several properties of the enzyme acetylcholinesterase (AChE) isolated in vitro are compared with those of the membrane receptor(s) of acetylcholine expressed by the in vivo electrical response of the electroplax membrane. AChE strongly binds in vitro effectors of the electroplax: agonists e.g., decamethonium or antagonists, e.g., d-tubocurarine and flaxedil. It also reacts covalently with an affinity labeling reagent of the acetylcholine receptor site(s) in vivo (TDF). Two classes of sites on AChE molecule account for the binding of these quaternary nitrogen containing compounds: (1) the anionic site of the active center and (2) noncatalytic "peripheral anionic centers" located outside the active center. A disulfide bond breaking agent, dithiothreitol (DTT) alters in a parallel manner the reaction of AChE and the excitable membrane of the electroplax to TDF. The irreversibility of TDF action is lost in both cases, after exposure to DTT. Both AChE and the acetylcholine receptor thus contain disulfide bonds—they are closely related but not necessarily identical proteins.  相似文献   

13.
The reactions of rabbit muscle pyruvate kinase with 5′-p-fluorosulfonylbenzoyl adenosine (5′-FSBA) and 5′-p-fluorosulfonylbenzoyl guanosine (5′-FSBG) from pH 7.0 to 8.0 exhibit biphasic inactivation kinetics. These reactions are characterized by three events: a fast reaction yielding partially active enzyme (with 67% of its original activity for the 5′-FSBA reaction and 45% for the 5′-FSBG reaction) which is reactivated by dithiothreitol, and two slower reactions yielding fully inactive enzymes; the product of only one of the two slower reactions is reactivated by dithiothreitol. These reactions are termed fast dithiothreitol-sensitive, slow dithiothreitol-sensitive, and dithiothreitol-insensitive inactivations. The rates of all three phases of the reactions with 5′-FSBA and 5′-FSBG increase as the pH is raised. The 5′-FSBG reaction can be described in terms of initial reaction with a single ionizable group of pKa 7.80, 8.60, and 7.94 for the fast dithiothreitol-sensitive, slow dithiothreitol-sensitive, and dithiothreitol-insensitive reactions, respectively; pH-independent rate constants of 0.173, 0.133, and 0.0165 min?1 are calculated for these three phases of the overall reaction. The pH dependence of the dithiothreitol-insensitive inactivation by 5′-FSBA coincides with that for 5′-FSBG, but the data for the dithiothreitol-sensitive reactions with 5′-FSBA indicate that the reaction in each phase occurs at more than one site over the pH range tested. Differential protection by ligands against inactivation by 5′-FSBA and 5′-FSBG at pH 7.4 and 8.0 indicates that, for the fast dithiothreitol-sensitive reactions, the cysteine residues participating in the two reactions are not identical, although in both cases modification has been attributed to formation of a disulfide. For 5′-FSBA, the partial inactivation appears to result from modification of cysteine residues at the noncatalytic nucleotide site, whereas for 5′-FSBG the inactivation is due to modification within the catalytic metal-nucleotide site. Reaction with 5′-FSBG seems to occur at the same locus for both the fast and slow dithiothreitol-sensitive phases, with the rate difference being ascribable to negative cooperativity among subunits. For the slow dithiothreitol-sensitive inactivation by 5′-FSBA, protection by Mg2+ and by Mg2+ plus ADP suggests that the targets of modification include the active-site cysteine that is modified by 5′-FSBG. The dithiothreitol-insensitive inactivation, shown to be due to reaction of 5′-FSBA with a tyrosine, may result from reaction of both nucleotide analogs with the same residue, although differential protection by the natural ligands suggests that 5′-FSBA and 5′-FSBG bind to two subsites within the active site.  相似文献   

14.
Summary Cilia isolated fromParamecium tetraurelia possess a specific, high affinity L-[3H]glutamic acid binding site, defined by an ED50 of 3.0×10–8 M. The structural specificity of this site was probed by testing the competition between L-glutamate and various analogues for binding to cilia. The binding site is stereo-specific for L-glutamic acid, and requires the presence of all three ionizable groups on the glutamate molecule for optimal ligand: receptor interaction.Specific binding of L-[3H]glutamic acid to cilia is rapid in onset but transient, reaching peak values within 6 min, and then declining thereafter. This transience may represent a form of sensory adaptation during prolonged exposure to the ligand.  相似文献   

15.
Follicle-stimulating hormone (FSH) is a heterodimeric glycoprotein hormone secreted by the anterior pituitary. It plays a very important role in folliculogenesis in females and is responsible for spermatogenesis in males. The alpha-subunit which is common within a species and the beta-subunit which is hormone-specific are held together by noncovalent association. This association is very essential for the biological activity of the hormone. Each of these subunits are highly cross-linked by disulfide bonds which appear to stabilize the tertiary structures required for the noncovalent association of the subunits to generate hormonal activity. This study was initiated to delineate the role of the disulfide bonds of hFSH beta in receptor binding of the hormone. Five intermolecular and one intramolecular disulfide peptides corresponding to the disulfide bonds found in hFSH beta were synthesized and screened along with their linear counterparts, for their ability to competitively inhibit the radiolabelled [125I]hFSH from binding to the FSH receptor containing membranes from the testis of immature rats. The disulfide peptides Cys28-Cys82 and Cys32-Cys84 were found to be the most potent in inhibiting radiolabelled hFSH from binding to its receptor. The results suggest the involvement of the regions around disulfide bonds Cys28-Cys82 and Cys32-Cys84 in receptor binding of the hormone. The studies also suggest the involvement of beta L2 and beta L3 loop regions in receptor binding of the hormone. This study is the first of its kind to use disulfide peptides rather than linear peptides to map the receptor binding regions of hFSH.  相似文献   

16.
The sweet protein brazzein [recombinant protein with sequence identical with the native protein lacking the N-terminal pyroglutamate (the numbering system used has Asp2 as the N-terminal residue)] activates the human sweet receptor, a heterodimeric G-protein-coupled receptor composed of subunits Taste type 1 Receptor 2 (T1R2) and Taste type 1 Receptor 3 (T1R3). In order to elucidate the key amino acid(s) responsible for this interaction, we mutated residues in brazzein and each of the two subunits of the receptor. The effects of brazzein mutations were assayed by a human taste panel and by an in vitro assay involving receptor subunits expressed recombinantly in human embryonic kidney cells; the effects of the receptor mutations were assayed by in vitro assay. We mutated surface residues of brazzein at three putative interaction sites: site 1 (Loop43), site 2 (N- and C-termini and adjacent Glu36, Loop33), and site 3 (Loop9-19). Basic residues in site 1 and acidic residues in site 2 were essential for positive responses from each assay. Mutation of Y39A (site 1) greatly reduced positive responses. A bulky side chain at position 54 (site 2), rather than a side chain with hydrogen-bonding potential, was required for positive responses, as was the presence of the native disulfide bond in Loop9-19 (site 3). Results from mutagenesis and chimeras of the receptor indicated that brazzein interacts with both T1R2 and T1R3 and that the Venus flytrap module of T1R2 is important for brazzein agonism. With one exception, all mutations of receptor residues at putative interaction sites predicted by wedge models failed to yield the expected decrease in brazzein response. The exception, hT1R2 (human T1R2 subunit of the sweet receptor):R217A/hT1R3 (human T1R3 subunit of the sweet receptor), which contained a substitution in lobe 2 at the interface between the two subunits, exhibited a small selective decrease in brazzein activity. However, because the mutation was found to increase the positive cooperativity of binding by multiple ligands proposed to bind both T1R subunits (brazzein, monellin, and sucralose) but not those that bind to a single subunit (neotame and cyclamate), we suggest that this site is involved in subunit-subunit interaction rather than in direct brazzein binding. Results from this study support a multi-point interaction between brazzein and the sweet receptor by some mechanism other than the proposed wedge models.  相似文献   

17.
Natural vasopressins have been used, with varying success, in attempts to stop bleeding from esophageal varices for over two decades. Reasons for lack of success include (a) failure to induce a sufficiently prolonged and constant vasoconstrictor effect at the bleeding site, (b) dangerous side-effects, and (c) release of plasminogen activator induced by the peptides which can lyse any clot as it forms.In the last decade analogs of vasopressin have been developed with a prolonged action, using two separate principles of chemical modification: (1) hormonogens, and (2) blockage of sites of inactivating enzymatic cleavage (in particular “carba” analogs without a disulfide bridge). These two categories of analog are compared here: the carba analogs have the advantages of high potency (higher than the parent hormone) with prolongation, but are also very active on the plasminogen activator release system. The hormonogens combine prolongation with low potency, but have lost not only a releasing action on plasminogen activator, but also, by virtue of altered release kinetics, have effectively lost cardiovascular toxicity.Mechanisms of analog action and receptor interaction are presented, along with initial clinical experiences.  相似文献   

18.
Human chorionic gonadotropin (hCG) is a heterodimeric glycoprotein hormone essential for the establishment and maintenance of pregnancy. The alpha- and beta-subunits of hCG are highly cross-linked internally by disulfide bonds which seem to stabilize the tertiary structures required for the noncovalent association of the subunits to generate hormonal activity. The purpose of this study was to delineate the role of the disulfide bonds of hCGbeta in receptor binding of the hormone. Six disulfide peptides incorporating each of the six disulfide bonds of hCGbeta were synthesized and screened, along with their linear counterparts, for their ability to competitively inhibit the binding of [125I] hCG to sheep ovarian corpora luteal LH/CG receptor. Disulfide peptide Cys (9-57) was found to be approximately 4-fold more potent than the most active of its linear counterparts in inhibiting radiolabeled hCG from binding to its receptor. Similarly, disulfide peptide Cys (23-72) exhibited receptor binding inhibition activity, whereas the constituent linear peptides were found to be inactive. The results suggest the involvement of the disulfide bonds Cys(9)-Cys(57) and Cys(23)-Cys(72) of the beta-subunit of hCG in receptor binding of the hormone. This study is the first of its kind to use disulfide peptides rather than linear peptides to map the receptor binding regions of hCG.  相似文献   

19.
20.
A series of xanomeline analogs were synthesized and evaluated for binding at the M(1) muscarinic acetylcholine receptor (M(1) receptor). Specifically, compounds that substitute the O-hexyl chain of xanomeline with polar, ionizable, or conformationally restricted moieties were assessed for their ability to bind to the M(1) receptor in a wash-resistant manner (persistent binding). From our screen, several novel ligands that persistently bind to the M(1) receptor with greater affinity than xanomeline were discovered. Results indicate that persistent binding may arise not only from hydrophobic interactions but also from ionic interactions with a secondary M(1) receptor binding site. Herein, a qualitative model that accounts for both binding scenarios is proposed and applied to understand the structural basis to wash-resistant binding and long-acting effects of xanomeline-based compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号