首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Attempts were made to immobilize digitoxin 12-hydroxylase, a membrane-bound, cytochrome P-450-dependent monooxygenase from cell cultures of Digitalis lanata. The optimum procedure was the entrapment of microsomes in 2% alginate by crosslinking the polysaccharide chains with CaCl2. After the immobilization of the enzyme about 70% of its activity was retained. The kinetic data such as the pH optimum and the optimum substrate concentrations were identical for the immobilized enzyme and freely suspended microsomes. Using -methyldigitoxin as a substrate enzyme activity could be observed for more than 20 h. A continuous flow system for immobilized digitoxin 12-hydroxylase is described.Abbreviations -mdg -methyldigoxin - -mdt -methyldigitoxin  相似文献   

2.
During adrenal steroidogenesis the competition between 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3βHSD) and cytochrome P450 17α-hydroxylase/17,20 lyase (CYP17A1) for Δ(5) steroid intermediates greatly influences steroidogenic output. Cytochrome-b(5) (Cyt-b(5)), a small electron transfer hemoprotein, known to augment the lyase activity of CYP17A1, has been shown to alter the steroidogenic outcome of this competition. In this study, the influence of Cyt-b(5) on 3βHSD activity was investigated. In COS-1 cells, Cyt-b(5) was shown to significantly increase the activity of both caprine and ovine 3βHSD towards pregnenolone, 17-OH pregnenolone and dehydroepiandrosterone in a substrate and species specific manner. Furthermore, kinetic studies revealed Cyt-b(5) to have no influence on the K(m) values while significantly increasing the V(max) values of ovine 3βHSD for all its respective substrates. In addition, the activity of ovine 3βHSD in microsomal preparations was significantly influenced by the addition of either purified Cyt-b(5) or anti-Cyt-b(5) IgG. The results presented in this study indicate that Cyt-b(5) augments 3βHSD activity and represents the first documentation of such augmentation in any species.  相似文献   

3.
Δ5-3β-Ηydroxysteroid dehydrogenase (Δ5-3β-HSD; EC 1.1.1.145), an enzyme converting pregn-5-ene-3β-ol-20-one (pregnenolone) to pregn-5-ene-3,20-dione (isoprogesterone), was isolated from the soluble fraction of suspension-cultured cells of Digitalis lanata L. strain VIII. Starting with acetone dry powder the enzyme was purified in three steps using column chromatography on Fractogel-TSK DEAE, hydroxyapatite and Sephacryl G-200. Fractions with highest Δ5-3β-HSD activity were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After in-situ digestion the resulting bands were sequenced N-terminally. The 29-kDa band yielded three fragments with high sequence homology to members of the superfamily of short-chain dehydrogenases/reductases. High similarity was found to microbial hydroxysteroid dehydrogenases. The band may therefore represent the Δ5-3β-HSD. The purified enzyme was characterized with respect to kinetic parameters, substrate specificity and localization. The function of the enzyme in steroid metabolism is discussed. Received: 20 January 1999 / Accepted: 5 May 1999  相似文献   

4.
A monoclinic crystal form (P21, a = 140.4 A?, b = 85.0 A?, c = 94.5 A?, β= 130.1 °) of Δ5-3-ketosteroid isomerase from Pseudomonas testosteroni (EC 5.3.3.1), grown at pH 7.0, has been characterized. Crystal-density measurements show that the asymmetric unit contains 12 protomers (Mr = 13,394).  相似文献   

5.
Pregnenolone (3β-hydroxy-5-pregnen-20-one) and DHA (3β-hydroxy-5-androsten-17-one), substrates for 3β-hy-droxysteroid dehydrogenase (3β-HSD), with KM values of 15–40 nM, were ineffective inhibitors of 5-ene-3-ketosteroid isomerase (isomerase), with KI values >40 μM in each case. Progesterone and androstenedione (4-androstene-3, 17-dione), 3β-HSD inhibitors with KI values of 5.0 μM and 0.8 μM respectively, were also relatively ineffective inhibitors of isomerase, with KI values of 30 μM and 16.5 μM respectively. Exposure of microsomes to hydrogen peroxide, which significantly increases the KM for pregnenolone as a 3β-HSD substrate, had no effect on the KM for the isomerase substrate 5-pregnene-3, 20-dione.It is concluded that the data do not support the common site concept with regard to the conversion of pregnenolone to progesterone by human placental microsomes.  相似文献   

6.
Summary In histochemical investigations with the ditetrazolium salt tetranitro blue tetrazolium as final hydrogen acceptor, 5-3-hydroxysteroid dehydrogenase activity was found in theca interna of sexually mature and even prepuberal sows. In the granulosa cells both 6-3-hydroxysteroid and 17-hydroxysteroid dehydrogenase reactions were negative except in specimens from some sows in puberty or oestrus. The corpora lutea showed a positive 5-3-hydroxysteroid dehydrogenase activity which was somewhat more pronounced during the first week of dioestrus than in other phases of the oestrous cycle.Abbrevations NAD nicotinamide-adenine dinucleotide - NADH2 reduced NAD - NADP nicotinamide-adenine dinucleotide phosphate - NADPH2 reduced NADP Read at the Meeting of Umeå Medical Society in Umeå, January 25, 1966 (Bjersing, 1967).This investigation was supported by grants from the Swedish Medical Research Council (Projects No. 13X-78-01, 12X-78-02, and 12X-78-03).  相似文献   

7.
A partial characterization of human term placental 3ß-HSDH in mitochondria is reported. Apparent KM of pregnenolone: 70 nM. A dose-dependent stimulation of 3ß-HSDH by NAD+ or NADP+ was observed in the range from 10−6 to 10−3 M (KM value of NAD+: 20 μM). At equimolar concentrations NAD+ is more than 10-fold as effective a cofactor of the 3ß-HSDH than NADP+. pH optimum: 9.5 (glycine-NaOH buffer). Temperature optimum 40–45°C. A rapid loss of 3ß-HSDH activity was found after preincubation of the enzyme at 37°C after 30 min: less than 50% of initial enzyme activity is present. No inhibition was obtained by Mg2+, Ca2+ Sr2+ and Ba2+ (1–100 mM). A strong inhibition was achieved with 1 mM Zn2+, Cd2+, Cu2+ and 10 mM and 100 mM Fe2+, Mn2+, Co2+ and Ni2+.  相似文献   

8.
Summary Analysis of amplified polymerase chain reaction products of 575 bp from the fourth exon of the human type I 3-hydroxysteroid dehydrogenase/5-4 isomerase gene at locus HSD3 1p11–p13, reveals a frequent two-allele polymorphism at codon Leu338 due to a silent substitution of T by C, thus creating a BglII site leading to 371- and 204-bp fragments. Southern blot analysis of BglII-digested DNA from 57 individuals using a genomic probe detects two allelic fragments of 5.3kb and 0.77 kb, respectively, while two allelic fragments of 3.7 kb and 3.4 kb are obtained in TaqI digests with multiple constant bands, as also observed with BglII digests.  相似文献   

9.
The membrane-bound enzyme 3β-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3β-HSD) catalyses an essential step in the transformation of all 5-pregnen-3β-ol and 5-androsten-3β-ol steroids into the corresponding 3-keto-4-ene-steroids, namely progesterone as well as all the precursors of androgens, estrogens, glucocorticoids and mineralocorticoids. We have recently characterized two types of human 3β-HSD cDNA clones and the corresponding genes which encode type I and II 3β-HSD isoenzymes of 372 and 371 amino acids, respectively, and share 93.5% homology. The human 3β-HSD genes containing 4 exons were assigned by in situ hybridization to the p11-p13 region of the short arm of chromosome 1. Human type I 3β-HSD is the almost exclusive mRNA species present in the placenta and skin while the human type II is the predominant mRNA species in the adrenals, ovaries and testes. The type I protein possesses higher 3β-HSD activity than type II. We elucidated the structures of three types of rat 3β-HSD cDNAs as well that of one type of 3β-HSD from bovine and macaque ovary λgt11 cDNA libraries, which all encode a 372 amino acid protein. The rat type I and II 3β-HSD proteins expressed in the adrenals, gonads and adipose tissue share 93.8% homology. Transient expression of human type I and II as well as rat type I and II 3β-HSD cDNAs in HeLa human cervical carcinoma cells reveals that 3β-ol dehydrogenase and 5-ene-4-ene isomerase activities reside within a single protein. These expressed 3β-HSD proteins convert 3β-hydroxy-5-ene-steroids into 3-keto-4-ene derivatives and catalyze the interconversion of 3β-hydroxy and 3-keto-5α-androstane steroids. By site-directed mutagenesis, we demonstrated that the lower activity of expressed rat type II compared to rat type I 3β-HSD is due to a change of four residues probably involved in a membrane-spanning domain. When homogenates from cells transfected with a plasmid vector containing rat type I 3β-HSD is incubated in the presence of dihydrotestosterone (DHT) using NAD? as co-factor, 5α-androstanedione was formed (A-dione), indicating an intrinsic androgenic 17β-hydroxysteroid dehydrogenase (17β-HSD) activity of this 3β-HSD. We cloned a third type of rat cDNA encoding a predicted type III 3β-HSD specifically expressed in the rat liver, which shares 80% similarity with the two other isoenzymes. Transient expression in human HeLa cells reveals that the type III isoenzyme does not display oxidative activity for the classical substrates of 3β-HSD. However, in common with the type I enzyme, it converts A-dione and DHT to the corresponding 3β-hydroxysteroids, thus showing an exclusive 3-ketosteroid reductase activity. When NADPH is used as co-factor, the affinity for DHT of the type III enzyme becomes 10-fold higher than that of the type I. Rat type III mRNA was below the detection limit in intact female liver. Following hypophysectomy, its concentration increased to 55% of the values measured in intact or hypophysectomized male rats, an increase which can be blocked by administration of ovine prolactin (oPRL). Treatment with oPRL for 10 days starting 15 days after hypophysectomy markedly decreased ovarian 3β-HSD mRNA accumulation accompanied by a similar decrease in 3β-HSD activity and protein levels. Treatment with the gonadotropin hCG reversed the potent inhibitory effect of oPRL on these parameters and stimulated 3β-HSD mRNA levels in ovarian interstitial cells. These data indicate that the presence of multiple 3β-HSD isoenzymes offers the possibility of tissue-specific expression and regulation of this enzymatic activity that plays an essential role in the biosynthesis of all hormonal steroids in classical as well as peripheral intracrine steroidogenic tissues.  相似文献   

10.
The effect of estradiol, hydrocortisone and progesterone on 3,20-and 3,17-hydroxysteroid dehydrogenase (HSD) in mutants of Streptomyces hydrogenans was compared to the steroid response of the wild type. Mutants were defective in arginine biosynthesis and/or aerial mycelial formation and lacked both enzymes or only 17-HSD. Some 17-HSD mutants had lost the ability to be induced by estradiol, by progesterone or by both. Some 20-HSD mutants had lost the ability to be induced by hydrocortisone, by progesterone or by both. Non-inducibility of 17-and 20-HSD by progesterone was not co-ordinate. An additional study of the growth phase-dependent enzyme activity of the wild type after induction with estradiol, hydrocortisone and progesterone was performed.Non-standard abbreviations 17-HSD 3,17-Hydroxysteroid dehydrogenase (EC 1.1.1.51) - 20-HSD 3,20-hydroxysteroid dehydrogenase (EC 1.1.1.53) - AO acridine orange - EBr ethidium bromide - EMS ethyl methanesulfonate - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

11.
Summary The present communication describes an investigation of stimulation and inhibition of 5-3-hydroxysteroid dehydrogenase in interrenal glands of tadpoles of Rana catesbeiana. Frozen sections of interrenal glands, together with kidneys, were prepared histochemically for assay of 5-3-HSD activity. Concentrations of 0.01, 0.1, 1, and 10 IU/ml of ACTH or of 0.01, 0.1, 1, and 10 g/ml of cyanoketone were added to the incubation media. The reaction products of the histochemically prepared slides, in terms of absorbance, were scanned at a defined area with a computerized microscope spectrophotometer. The results indicate that ACTH causes a significant dose-response stimulation of 5-3-HSD activity in tadpole interrenals; cyanoketone, on the other hand, causes significant dose-dependent inhibition.  相似文献   

12.
  • 1.1. Carbonyl reductase, which is distributed in both cytosolic and microsomal fractions in bovine liver, were purified to homogeneity on 12.5% sodium dodecylsulfate-polyacrylamide gel electrophoresis and shown to have molecular weights of 32 kDa and 68 kDa, respectively.
  • 2.2. Both carbonyl reductases can catalyze the reduction of many carbonyl compounds including ketone, quinones and aldehyde with relatively low Km values.
  • 3.3. From the absorption spectrum result, microsomal carbonyl reductase closely resembles cytochrome P-450 reductase.
  • 4.4. Cytosolic carbonyl reductase is a novel enzyme which can act on both testosterone and androsterone at low concentration.
  相似文献   

13.
14.
15.
Inhibitors of the aldo–keto reductase enzyme AKR1C3 are of interest as potential drugs for leukemia and hormone-related cancers. A series of non-carboxylate morpholino(phenylpiperazin-1-yl)methanones were prepared by palladium-catalysed coupling of substituted phenyl or pyridyl bromides with the known morpholino(piperazin-1-yl)methanone, and shown to be potent (IC50  100 nM) and very isoform-selective inhibitors of AKR1C3. Lipophilic electron-withdrawing substituents on the phenyl ring were positive for activity, as was an H-bond acceptor on the other terminal ring, and the ketone moiety (as a urea) was essential. These structure–activity relationships are consistent with an X-ray structure of a representative compound bound in the AKR1C3 active site, which showed H-bonding between the carbonyl oxygen of the drug and Tyr55 and His117 in the ‘oxyanion hole’ of the enzyme, with the piperazine bridging unit providing the correct twist to allow the terminal benzene ring to occupy the lipophilic pocket and align with Phe311.  相似文献   

16.
We studied the segregation of the genes for 3-hydroxy-C19/21-steroid dehydrogenase types I and II (3-HSD I and II) in a consanguineous family affected with 3-hydroxy-5-C27steroid dehydrogenase (3-OH-C27-SD) deficiency. The results show that the C27 and C19/21 steroid dehydrogenase activities are encoded by distinct genes that are not in genetic linkage. Further kindreds would assist in screening for linkage of 3-OH-C27-SD to other members of the 3-hydroxysteroid dehydrogenase gene family.  相似文献   

17.
The nature of the products formed during the photoinactivation of Δ5-3-ketosteroid isomerase in the presence of the solid-phase photoaffinity reagent Δ6-testosterone succinyl agarose has been investigated after ultraviolet irradiation. The polypeptide products eluted from the agarose phase by sodium cholate, sodium dodecyl sulfate, and pH 10.5 triethylamine buffer have been characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis, pH 4–6 gel isoelectric focusing, and amino acid analysis. The amino acid compositions of the cholate eluted and SDS eluted products are found to be similar to that of native isomerase, whereas the covalently bound polypeptide eluted by pH 10.5 triethylamine possesses a distinetly different composition. Digestion of the covalently bonded isomerase polypeptide with trypsin yields an agarose-bound peptide fraction that has been characterized by its amino acid composition. This composition is different from that of the undigested covalently bound polypeptide and suggests that the site of covalent attachment lies somewhere between residues 28 and 45 of the isomerase polypeptide.  相似文献   

18.
Ring A halogenated 13α-, 13β-, and 17-deoxy-13α-estrone derivatives were synthesised with N-halosuccinimides as electrophile triggers. Substitutions occurred at positions C-2 and/or C-4. The potential inhibitory action of the halogenated estrones on human aromatase, steroid sulfatase, or 17β-hydroxysteroid dehydrogenase 1 activity was investigated via in vitro radiosubstrate incubation. Potent submicromolar or low micromolar inhibitors were identified with occasional dual or multiple inhibitory properties. Valuable structure–activity relationships were established from the comparison of the inhibitory data obtained. Kinetic experiments performed with selected compounds revealed competitive reversible inhibition mechanisms against 17β-hydroxysteroid dehydrogenase 1 and competitive irreversible manner in the inhibition of the steroid sulfatase enzyme.  相似文献   

19.
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is an enzyme that catalyzes the conversion of inactive cortisone into physiologically active cortisol. Inhibiting the activity of this enzyme plays a key role in the treatment of Cushing's syndrome, metabolic syndrome and type 2 diabetes. Therefore, new compounds that are selective inhibitors of this enzyme are constantly being looked for.In this work we present the synthesis of 2-(allylamino)thiazol-4(5H)-one derivatives by the reaction of N-allylthiourea with appropriate α-bromoesters. In the case of using of aliphatic α-bromoesters and α-bromo-β-phenylesters, the reactions were carried out in a basic medium (sodium ethoxide) and the products were isolated with a yield of up to 68%. Derivatives containing spiro systems in which carbon C-5 of the thiazole ring is the linker atom were obtained in the presence of N,N-diisopropylethylamine.Some of the obtained compounds, at a concentration of 10 μM have activity in the inhibition of 11β-HSD1 up to 71%. IC50 value for the most active compound: 2-(allylamino)-1-thia-3-azaspiro[4.5]dec-2-en-4-one is 2.5 µM. With a high degree of 11β-HSD1 inhibition and a relatively large difference in the inhibition of 11β-HSD1 and 11β-HSD2 activity, this compound appears to be promising and should be subjected to further testing.  相似文献   

20.
Summary During the last four days of follicular development prior to ovulation, the activities of 5-3-hydroxysteroid dehydrogenase (3OHD) and glucose-6-phosphate dehydrogenase (G-6-PD) were quantified in cryostat sections of the rat ovary. The product of the enzyme reactions were measured using a scanning and integrating microdensitometer. The enzyme activity was measured in the peripheral region, the antral region and the cumulus of the membrana granulosa (MG) of these follicles on the morning of each of the four days of the estrous cycle. G-6-PD activity was measured in the presence and absence of an intermediate hydrogen acceptor, phenazine methosulphate, to provide a measure of the quantity of Type I and Type II Hydrogen (H) generated: Type I H is considered to be related to hydroxylating reactions such as those of steroids and Type II H to other general biosynthetic activities of cells.In all three regions of the MG of follicles of the ovulable type, 3OHD activity was lowest in estrus and diestrus-1, increased on diestrus-2 and peaked in proestrus. In estrus and diestrus-1, the level of 3OHD activity in the three regions was comparable. However, by diestrus-2, and even more conspicuously in proestrus, enzyme activity was significantly greater in the peripheral region than in the antral region or in the cumulus. During the same period, the level of enzyme activity remained comparable in the last two regions. Throughout the estrous cycle, both Type I and Type II H generation from G-6-PD was greatest in the peripheral region, less in the antral region and least in the cumulus. In the peripheral region, Type I H generation increased progressively after diestrus-1, to reach a maximum in proestrus. In the antral region, Type I H generation increased between diestrus-1 and diestrus-2 and then remained unchanged through proestrus. In the cumulus, Type I H generation remained at levels seen in estrus throughout the remainder of the cycle. Generation of Type II H, in the peripheral region was constant throughout the estrous cycle. In contrast, in the antral region and cumulus, Type II H generation was greater in diestrus-1 and diestrus-2 than on either proestrus or estrus.This work was supported by research grants from the National Institute of Child Health and Human Development (# HD-12684) and (# HD-09542) and from the Rockefeller Foundation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号