首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct observations of pollinator visits to orchids are often difficult and time consuming, especially in orchids with a deceptive pollination system where seed set is typically pollinator-limited. This lack of direct observations greatly inhibits our understanding of orchid-pollinator relationships and especially the degree of pollinator-specificity. Here we describe a molecular approach to the study of orchid-pollinator relationships based on the analysis of DNA recovered from pollinaria found on insects. The insects were collected from nectar-rich plants flowering near natural orchid populations, or taken from museum collections. Sequence analysis of the nuclear ribosomal ITS region allowed the identification of the orchid species or species-group from which the pollinaria originated. Four out of eight orchid-pollinator relationships established with this approach have not been reported previously, which highlights the value of molecular tools for the study of orchid pollination biology.  相似文献   

2.
3.
Tropical orchids constitute the greater part of orchid diversity, but little is known about their obligate mycorrhizal relationships. The specificity of these interactions and associated fungal distributions could influence orchid distributions and diversity. We investigated the mycorrhizal specificity of the tropical epiphytic orchid Ionopsis utricularioides across an extensive geographical range. DNA ITS sequence variation was surveyed in both plants and mycorrhizal fungi. Phylogeographic relationships were estimated for the mycorrhizal fungi. Orchid functional outcomes were determined through in vitro seed germination and seedling growth with a broad phylogenetic representation of fungi. Most fungal isolates derived from one clade of Ceratobasidium (anamorphs assignable to Ceratorhiza), with 78% within a narrower phylogenetic group, clade B. No correlation was found between the distributions of orchid and fungal genotypes. All fungal isolates significantly enhanced seed germination, while fungi in clade B significantly enhanced seedling growth. These results show that I. utricularioides associates with a phylogenetically narrow, effective fungal clade over a broad distribution. This preference for a widespread mycorrhizae may partly explain the ample distribution and abundance of I. utricularioides and contrasts with local mycorrhizal diversification seen in some nonphotosynthetic orchids. Enhanced orchid function with a particular fungal subclade suggests mycorrhizal specificity can increase orchid fitness.  相似文献   

4.
The orchid genus Maxillaria is one of the largest and most common of neotropical orchid genera, but its current generic boundaries and relationships have long been regarded as artificial. Phylogenetic relationships within subtribe Maxillariinae sensu Dressler (1993) with emphasis on Maxillaria s.l. were inferred using parsimony analyses of individual and combined DNA sequence data. We analyzed a combined matrix of nrITS DNA, the plastid matK gene and flanking trnK intron, and the plastid atpB-rbcL intergenic spacer for 619 individuals representing ca. 354 species. The plastid rpoC1 gene (ca. 2600 bp) was sequenced for 84 selected species and combined in a more limited analysis with the other data sets to provide greater resolution. In a well-resolved, supported consensus, most clades were present in more than one individual analysis. All the currently recognized minor genera of "core" Maxillariinae (Anthosiphon, Chrysocycnis, Cryptocentrum, Cyrtidiorchis, Mormolyca, Pityphyllum, and Trigonidium) are embedded within a polyphyletic Maxillaria s.l. Our results support the recognition of a more restricted Maxillaria, of some previously published segregate genera (Brasiliorchis, Camaridium, Christensonella, Heterotaxis, Ornithidium, Sauvetrea), and of several novel clades at the generic level. These revised monophyletic generic concepts should minimize further nomenclatural changes, encourage monographic studies, and facilitate more focused analyses of character evolution within Maxillariinae.  相似文献   

5.
6.
China has over 1,200 species of native orchids in nearly 173 genera. About one fourth of native species are of horticultural merit. Some species are of Chinese medicinal value. In fact, the demand on orchid species with high Chinese medicinal values such as Gastrodia elata, Dendrobium offcinale, along with demands on species of cultural importance, such as those in the genus of Cymbidium, is a major factor causing wild populations to diminish and in some cases, drive wild populations to the brink of extinction. These market demands have also driven studies on the role of mycorrhizal fungi in orchid seed germination, seedling and adult growth, and reproduction. Most of these mycorrhizal studies of Chinese orchids, however, are published in Chinese, some in medical journals, and thus overlooked by the mainstream orchid mycorrhizal publications. Yet some of these studies contained interesting discoveries on the nature of the mycorrhizal relationships between orchids and fungi. We present a review of some of these neglected publications. The most important discovery comes from the mycorrhizal studies on G. elata, in which the researchers concluded that those fungi species required to stimulate seed germination are different from those that facilitate the growth of G. elata beyond seedling stages. In addition, presence of the mycorrhizal fungi associated with vegetative growth of post-seedling G. elata hindered the germination of seeds. These phenomena were unreported prior to these studies. Furthermore, orchid mycorrhizal studies in China differ from the mainstream orchid studies in that many epiphytic species (in the genus of Dendrobium, as medicinal herbs) were investigated as well as terrestrial orchids (mostly in the genus Cymbidium, as traditional horticultural species). The different responses between epiphytic and terrestrial orchid seeds to fungi derived from roots suggest that epiphytic orchids may have a more general mycorrhizal relationship with fungi than do terrestrial orchid species during the seed germination stage. To date, orchid mycorrhizal research in China has had a strongly commercial purpose. We suggest that this continuing research on orchid mycorrhizal relationships are a solid foundation for further research that includes more rare and endangered taxa, and more in-situ studies to assist conservation and restoration of the endangered orchids. Knowledge on the identities and roles of mycorrhizal fungi of orchids holds one of the keys to successful restoration and sustainable use of Chinese orchids.  相似文献   

7.
Several key characteristics of the species-rich orchid familyare due to its symbiotic relationships with pollinators andmycorrhizal fungi. The majority of species are insect pollinatedand show strong adaptations for outcrossing, such as pollinationby food- and sexual-deception, and all orchids are reliant onmycorrhizal fungi for successful seedling establishment. Recentstudies of orchid pollination biology have shed light on thebarriers to reproductive isolation important to diversificationin different groups of deceptive orchids. Molecular identificationof orchid mycorrhizal fungi has revealed high fungal specificityin orchids that obtain organic nutrients from fungi as adults.Both pollinator and fungal specificity have been proposed asdrivers of orchid diversification. Recent findings in orchidpollination and mycorrhizal biology are reviewed and it is shownthat both associations are likely to affect orchid distributionand population structure. Integrating studies of these symbioseswill shed light on the unparalleled diversification of the orchidfamily. Key words: Mutualism, myco-heterotrophy, pollinator limitation, speciation Received 5 October 2007; Revised 12 December 2007 Accepted 21 December 2007  相似文献   

8.
Associations between epiphytes and their hosts are among the main factors affecting the biodiversity and distribution of epiphytes. While several previous studies explored the association between epiphyte diversity and host characteristics, very little is known about the generality of such associations at larger spatial scales. We aim to explore the associations between diversity and distribution of epiphytic orchids and host characteristics in different localities in Nepal. Epiphytic orchids and their hosts were recorded along the transects in total of 23,539 host individuals. To describe the diversity of orchids in the different localities, a rarefaction function was used. Univariate and multivariate analyses were carried out to explore the associations with locality, host characteristics, and their interactions with locality. In total, we recorded 141 species of orchids growing on 192 host species. The five localities significantly differed in orchid diversity and abundance. The number of orchid individuals per host species significantly increased with increasing number of host individuals. Species richness, abundances, occupancy of orchid species on host species and composition of orchids varied across the localities. Species richness and abundance was significantly higher on hosts in the higher strata and differed between families of host species. Abundance was higher on evergreen hosts. Composition of orchid communities are also associated with host characteristics, such as habit (shrub/tree/climber), bark texture, nature (deciduous/evergreen) and the plant families of host species. This study revealed a high diversity of epiphytic orchids in the localities studied and strong associations between the orchids and their hosts. Future studies looking at the relationships between epiphyte communities and host characteristics need to identify relationships at a wider scale in order to determine whether they are really general rather than site-specific.  相似文献   

9.
兰科菌根研究综述   总被引:2,自引:0,他引:2  
兰科菌根是一种内生菌根,主要寄生于兰科(Orchidaceae)植物的种子及根系上。对兰科菌根真菌的分类及真菌资源多样性、兰科菌根的形态和菌根对兰科植物的效应等最新研究进展进行了综述。目前研究已知,感染兰科植物根部并能与之共生的真菌绝大多数属于担子菌门(Basidiomycota)和半知菌门(Deuteromycotha),也有部分属于子囊菌门(Ascomycota);兰科菌根的形成可分为两种情况:一是对兰科植物种子的侵染;二是对成长新根的侵染。菌根真菌对兰科植物的种子萌发及植株生长发育均有一定影响。  相似文献   

10.
11.
Terrestrial orchid germination, growth and development are closely linked to the establishment and maintenance of a relationship with a mycorrhizal fungus. Mycorrhizal dependency and specificity varies considerably between orchid taxa but the degree to which this underpins rarity in orchids is unknown. In the context of examining orchid rarity, large scale in vitro and in situ germination trials complemented by DNA sequencing were used to investigate ecological specialization in the mycorrhizal interaction of the rare terrestrial orchid Caladenia huegelii. Common and widespread sympatric orchid congeners were used for comparative purposes. Germination trials revealed an absolute requirement for mycorrhisation with compatibility barriers to germination limiting C. huegelii to a highly specific and range limited, efficacious mycorrhizal fungus. DNA sequencing confirmed fidelity between orchid and fungus across the distribution range of C. huegelii and at key life history stages within its life cycle. It was also revealed that common congeners could swap or share fungal partners including the fungus associated with the rare orchid but not vice versa. Data from this study provides evidence for orchid rarity as a cause and consequence of high mycorrhizal specialization. This interaction must be taken into account in efforts to mitigate the significant extinction risk for this species from anthropogenically induced habitat change and illustrates the importance of understanding fungal specificity in orchid ecology and conservation.  相似文献   

12.
兰科植物是开花植物中最大的家族之一,其科研和经济价值越来越受到全世界的重视。兰花的组织培养近年来发展迅速,对兰花组织培养中原球茎的诱导和培养基选择的国内外研究进行了综述;并对近年来应用分子标记、转基因等分子生物学技术研究兰花的遗传多样性、系统分类和基因功能进行综述。  相似文献   

13.
A second orchid species, Nematoceras sulcatum M.A.Clem. et D.L.Jones, has been found on subantarctic Macquarie Island. A history of its discovery and recognition is provided. The morphology, biology and ecology of the new species are compared with N. dienemum (D.L.Jones) D.L.Jones, M.A.Clem. et Molloy, the other species of orchid on Macquarie Island. Molecular studies based on the internal transcribed spacer (ITS) region of nuclear ribosomal DNA reveal the phylogenetic relationship of the two Macquarie Island species compared to others in the genus from New Zealand and its Southern Ocean islands.  相似文献   

14.
We present a phylogenetic analysis of the major lineages of the sexually deceptive orchid genus Ophrys based on nuclear ribosomal (nr) DNA (internal transcribed spacer region) and noncoding chloroplast (cp) DNA (trnL-trnF region) sequences. Sequence divergence within and among major Ophrys lineages was low for both nrDNA and cpDNA sequences. Separate analyses resulted in similar but poorly resolved trees. An incongruence length difference test revealed that nrDNA and cpDNA data sets were not incongruent. A combined analysis resulted in a better-resolved phylogenetic hypothesis of relationships among the major Ophrys lineages. Our data strongly support a division of Ophrys into two groups. These groups do not correspond to the earlier proposed sections Euophrys and Pseudophrys and are thus in conflict with traditional classifications. Our results support a well-resolved monophyletic group that contains the geographically widespread O. bombyliflora, O. speculum, O. tenthredinifera, and the O. fusca-lutea lineage. Relationships in the other group are poorly resolved. Based on our observations that taxa with identical sequences at presumably rapidly evolving loci clearly differ in floral morphology, we hypothesize that the diversity in the genus Ophrys is the result of a recent radiation in this orchid lineage.  相似文献   

15.
Orchid mycorrhiza probably affects about 25 000 plant species and thus roughly one tenth of all higher plants. Histologically, this symbiosis resembles other kinds of endomycorrhiza, the fungal hyphae growing within living plant cells. Considerable evidence, however, suggests that it is not a two‐way exchange relationship and thus not potentially mutualistic, such as the wide‐spread endomycorrhiza between plants and Glomalean fungi, known as arbuscular mycorrhiza. During the achlorophyllous seedling stage orchids are obligately dependent on the fungi; some species remain so through life, while others establish photosynthesis but to varying degrees remain facultatively dependent of /responsive to fungal infection as adults. None of the fungi involved are so far known to depend on the symbiosis with orchids. Transfer of organic carbon compounds from hyphae to the orchid has been demonstrated repeatedly, but it is not clear to what extent this takes place during a biotrophic phase while the intracellular hyphae remain intact, or during the subsequent extensive degradation of the hyphal coils. The advantage of viewing orchid mycorrhiza basically as a unilateral mycophagous relationship, in spite of hypothetical beneficial spin‐offs to the mycobiont, is that it provides a conceptual framework similar to that of other parasitic or fungivore relationships; mechanisms known in such relationships could be searched for in future studies of the orchid–fungus symbiosis. These could include mechanisms for recognition, attraction and selection of fungi, physiological regulation of internal hyphal growth, breakdown, and material transfer, nutritional consequences of the plant's preference(s) and trophic changes, fungal avoidance mechanisms, and consequences at population and ecosystem levels. A whole range of possible life strategies becomes apparent that could support divergent evolution and lead to the proliferation of species that has indeed occurred in the orchid family. We outline some of the possible physiological mechanisms and ecological implications of this approach.  相似文献   

16.
Recent developments in the study of orchid mycorrhiza   总被引:21,自引:0,他引:21  
Rasmussen  Hanne N. 《Plant and Soil》2002,244(1-2):149-163
Orchids are mycoheterotrophic during their seedling stage and in many species the dependency on fungi as a carbohydrate source is prolonged into adulthood. The mycobionts in orchid mycorrhiza belong in at least 5 major taxonomic groups of basidiomycetes. Traditional records have mainly focused on saprotrophic mycobionts but the participation of both ectomycorrhizal and parasitic fungi in orchid mycorrhiza has been corroborated. There is an increasing evidence of specific relationships between orchids and fungi, though usually not on a species-to-species level. Physiological compatibility demonstrated under artificial conditions, as in vitro, may be much broader, however. Recent development of field sowing techniques has improved the possibilities of evaluating orchid-fungal relations in an ecological context. Although the general nutrient flow in orchid mycorrhiza is well known, some questions remain regarding breakdown processes of fungi within orchid tissues, especially the ptyophagic syndrome that has recently been illustrated at the ultrastructural level for the first time.  相似文献   

17.
A molecular phylogenetic analysis was performed on 14 species of the Mediterranean unrewarding orchid genus Serapias using sequences of four noncoding regions of chloroplast DNA. This study has led to a new interpretation of the evolutionary relationships in this genus. The well-defined phylogenetic tree supports a division of taxa into two main clades, each including two minor groups. The molecular relationships found in this study differ from those defined by traditional systematic morphological assessments. By comparing the variation in sequence to variations in floral traits, we propose that the split in the two main lineages reflects an early differentiation of flower size, perhaps due to the shift from allo- to self-pollination. Conversely, the relationships within each minor group do not reflect floral size variation; therefore, we presume that this diversification resulted from genetic drift, local selection forces, and multiple, independent transitions towards self-pollination and polyploidy.  相似文献   

18.
The study of congruency between phylogenies of interacting species can provide a powerful approach for understanding the evolutionary history of symbiotic associations. Orchid mycorrhizal fungi can survive independently of orchids making cospeciation unlikely, leading us to predict that any congruence would arise from host-switches to closely related fungal species. The Australasian orchid subtribe Drakaeinae is an iconic group of sexually deceptive orchids that consists of approximately 66 species. In this study, we investigated the evolutionary relationships between representatives of all six Drakaeinae orchid genera (39 species) and their mycorrhizal fungi. We used an exome capture dataset to generate the first well-resolved phylogeny of the Drakaeinae genera. A total of 10 closely related Tulasnella Operational Taxonomic Units (OTUs) and previously described species were associated with the Drakaeinae orchids. Three of them were shared among orchid genera, with each genus associating with 1–6 Tulasnella lineages. Cophylogenetic analyses show Drakaeinae orchids and their Tulasnella associates exhibit significant congruence (p < 0.001) in the topology of their phylogenetic trees. An event-based method also revealed significant congruence in Drakaeinae–Tulasnella relationships, with duplications (35), losses (25), and failure to diverge (9) the most frequent events, with minimal evidence for cospeciation (1) and host-switches (2). The high number of duplications suggests that the orchids speciate independently from the fungi, and the fungal species association of the ancestral orchid species is typically maintained in the daughter species. For the Drakaeinae–Tulasnella interaction, a pattern of phylogenetic niche conservatism rather than coevolution likely explains the observed phylogenetic congruency in orchid and fungal phylogenies. Given that many orchid genera are characterized by sharing of fungal species between closely related orchid species, we predict that these findings may apply to a wide range of orchid lineages.  相似文献   

19.
Orchidaceae establish symbiotic relationships with fungi in the Rhizoctonia group, resulting in interactions beneficial to both organisms or in cell destruction in one of them (pathogenicity). Previous studies have focused mostly on terrestrial species with a few, preliminary studies, on epiphytes. To further our understanding of the molecular mechanisms involved in these symbioses, we evaluated the interaction between Oncidium sphacelatum Lindl. and the mycorrhizal fungus Thanatephorus sp. strain RG26 (isolated from a different orchid species) in vitro using morphometric and proteomic analyses. Evidence from the morphometric and microscopic analysis showed that the fungus promoted linear growth and differentiation of orchid protocorms during 98 days interaction. On day 63, protocorm development was evident, so we analyzed the physiological response of both organisms at that moment. Proteome results suggest that orchid development stimulated by the fungus apparently involves cell cycle proteins, purine recycling, ribosome biogenesis, energy metabolism, and secretion that were up-regulated in the orchid; whereas in the fungus, a high expression of proteins implicated in stress response, protein-protein interaction, and saccharides and protein biosynthesis were found in the symbiotic interaction. This is the first work reporting proteins differentially expressed in the epiphytic orchid-fungus interaction and will contribute to the search for molecular markers that will facilitate the study of this symbiosis in both wild orchids and those in danger of extinction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号