首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Minimal inhibitory concentration values of HgCl2 and 5 organomercurials were determined against 24 mercury-resistant N2-fixing soil bacteria previously isolated from soil and identified in our laboratory. These bacterial strains also displayed multiple antibiotic resistant properties. Typical growth pattern of a highly mercury-resistantBeijerinckia sp (KDr2) was studied in liquid broth supplemented with toxic levels of mercury compounds. Four bacterial strains were selected for determining their ability to volatilize mercury and their Hg-volatilizing capacity was different. Cell-free extracts prepared from overnight mercury-induced cells catalyzed Hg2+-induced NADPH oxidation. Specific activities of Hg2+-reductase which is capable of catalyzing conversion of Hg2+ →Hg(o) of 10 Hg-resistant bacterial strains are also reported.  相似文献   

2.
To develop the potential of plant for phytoremediation of methylmercury pollution, a genetically engineered tobacco plant that coexpresses organomercurial lyase (MerB) with the ppk-specified polyphosphate (polyP) and merT-encoding mercury transporter was constructed by integrating a bacterial merB gene into ppk/merT-transgenic tobacco. A large number of independent transgenic tobaccos was obtained, in some of which the merB gene was stably integrated in the plant genome and substantially translated to the expected MerB enzyme in the transgenic tobacco. The ppk/merT/merB-transgenic tobacco callus showed more resistance to methylmercury (CH3Hg+) and accumulated more mercury from CH3Hg+-containing medium than the ppk/merT-transgenic and wild-type progenitors. These results suggest that the MerB enzyme encoded by merB degraded the incorporated CH3Hg+ to Hg2+, which then accumulated as a less toxic Hg-polyP complex in the tobacco cells. Phytoremediation of CH3Hg+ and Hg2+ in the environment with this engineered ppk/merT/merB-transgenic plant, which prevents the release mercury vapor (Hg0) into the atmosphere in addition to generating potentially recyclable mercury-rich plant residues, is believed to be more acceptable to the public than other competing technologies, including phytovolatilization.  相似文献   

3.
Thiobacillus ferrooxidans became significantly more tolerant to mercury stress after culturing in media of increasing mercury(II) concentrations. When mercuric chloride was added to the growth medium, the resistant organisms were found to volatilize elemental mercury (Hg0).T. ferrooxidans may be an important factor in the natural mercury cycle, since the environments whereT. ferrooxidans is found typically contain elevated levels of heavy metals, including mercury.  相似文献   

4.
The influence of mercury ions on germination of the resting cells (aplanospores) and on cell division, cell structure, phototaxis, and photosynthesis during the flagellate stage of Hoemotococcus lacustris was investigated. Aplanospores possess a higher tolerance against mercury ions than flagellates. The reason could be seen in the thicker wall of the resting cells which possibly provide a detoxifying effect by immobilisation of Hg2+. This is confirmed by a normal phototactic orientation of flagellates formed from Hg 2+-influenced aplanospores. In contrast, a direct addition of Hg2+ (0.1 to 1 /*M) to the flagellate stage induced an immediate loss of the flagellates to react phototactically, but it was interesting that the inhibition was overcome with time. Obviously, these Hg2+ concentrations influence only the sensory transduction chain, whereas the energetic background is not injured because the velocity of movement and the percentage of motile cells were scarcely affected. This is supported by the high level of the photochemical efficiency of photosystem II, which remains unchanged at 1 uM Hg2+. Recovery of photosynthesis from inhibition by 10/iM Hg2+ suggests a connection between Hg2+ influence and metabolism of the D, protein in the reaction centre of photosystem II. The Hg2+ effect was reversed with time in light, but not in darkness, and streptomycin, an inhibitor of chloroplast protein synthesis, prevented recovery. In flagellates, showing no reactivation, exposure to 10uA/l Hg2+ caused cell swelling, a loss of the flagella, and a disorganisation in structure of the chloroplast and of nucleus.  相似文献   

5.
Mercury (Hg) is a heavy metal with high toxicity and easy migration; it can be enriched through the food chain, and cause serious threats to the natural environment and human health. So, the development of a method that can be used to detect mercury ions (Hg2+) in the environment, in cells, and in organisms is very important. Here, a new 7‐hydroxycoumarin‐derived carbonothioate‐based probe ( CC‐Hg ) was designed and synthesized for detection of Hg2+. After addition of Hg2+, a large fluorescence enhancement was observed due to the formation of 7‐hydroxyl, which reinforced the intramolecular charge transfer process. The CC‐Hg probe had good water solubility and selectivity. Moreover, the probe was able to detect Hg2+ quantitatively over the concentration range 0–2 μM and with a detection limit of 7.9 nM. Importantly, we successfully applied the probe to detect Hg2+ in water samples, in living cells, and in zebrafish. The experimental results demonstrated its potential value in practical applications.  相似文献   

6.
The effect of mercury (Hg) on the growth and survival of parsley (Petroselinum crispum) was explored at various treatments. The plants were grown in pots having Hoagland's solution to which various Hg treatments were applied and placed under greenhouse conditions. The treatments were: no metal applied (control) and six doses of Hg as mercuric chloride for 15 days. Linear trend of Hg accumulation was noted in roots, stems, and leaves with increasing Hg treatments. The maximum Hg concentration in root, stem and leaf was 8.92, 8.27, and 7.88 at Hg treatments of 25 mg l–1, respectively. On the whole, Hg accumulation in different plant parts was in the following order: leaves > stem > roots. Linear trend was also observed for Bioaccumulation Factor (BF) and Translocation Factor (TF) with increasing Hg concentrations in the growth medium. The highest respective BFHg and TFHg values were 9.32 and 2.02 for the Hg treatments of 25 and 50 mg l–1. In spite of the reduced growth in the presence of Hg, the plant has phytoremediation potential. It is recommended that parsley should not be cultivated in Hg contaminated sites in order to avoid dietary toxicity.  相似文献   

7.
The rate of volatilization of Hg2+ as metallic Hg is accelerated by illumination of Chlorella cells. In the presence of the uncoupler methylamine the rate of volatilization in the light is greatly but transiently increased. DCMU (3-(3,4-dichlorophenyl)-1,1-dimethyl urea) prevented the light response. In the presence of Hg2+, O2 evolution by the cells was not completely inhibited by DCMU. Hg2+ appears to prevent DCMU reaching its binding site. Light seems to increase the amount of or leakage from the cells of a metabolite capable of reducing Hg2+ to Hg°.  相似文献   

8.
Methylation of mercury (Hg) is the crucial process that controls Hg biomagnification along the aquatic food chains. Aquatic sediments are of particular interest because they constitute an essential reservoir where inorganic divalent Hg (HgII) is methylated. Methylmercury (MeHg) concentrations in sediments mainly result from the balance between methylation and demethylation reactions, two opposite natural processes primarily mediated by aquatic microorganisms. Thus, Hg availability and the activity of methylating microbial communities control the MeHg abundance in sediments. Consistently, some studies have reported a significant positive correlation between MeHg and HgII or total Hg (HgT), taken as a proxy for HgII, in aquatic sediments using enzyme-catalyzed methylation/demethylation mechanisms. By compiling 1,442 published and unpublished HgT–MeHg couples from lacustrine, riverine, estuarine and marine sediments covering various environmental conditions, from deep pristine abyssal to heavily contaminated riverine sediments, we show that a Michaelis–Menten type relationship is an appropriate model to relate the two parameters: MeHg = aHgT/(K m  + HgT), with a = 0.277 ± 0.011 and K m  = 188 ± 15 (R 2 = 0.70, p < 0.001). From K m variations, which depend on the various encountered environmental conditions, it appears that MeHg formation and accumulation are favoured in marine sediments compared to freshwater ones, and under oxic/suboxic conditions compared to anoxic ones, with redox potential and organic matter lability being the governing factors.  相似文献   

9.
The speciation of mercury—including most phase minerals, secondary phases, gaseous and aqueous species—is very important for evaluating the environmental impact and mobilization of this contaminant. Mining activities produce mercury mine waste, which includes several types of material (mainly mine waste and calcines) with varying mercury content and speciation depending on the ore deposit and processing technology. The main phase minerals are cinnabar, metacinnabar, metallic Hg0, corderoite, livingstonite, calomel and schuetteite. The aqueous mobilization of mercury is controlled by complex formation, pH-Eh conditions, the primary phase mineral of mercury, and organic-matter and iron oxyhydroxide content. The possibility of colloidal transport of mercury from mine waste is influenced by the atmospheric emission of metallic Hg0 and the leaching of waste by episodic high-intensity precipitations. In these climatic conditions, mercury can be mobilized to pore water, surface water or groundwater by the dissolution of metallic Hg0 and cinnabar in acidic conditions, and by the colloidal transport. The presence of Hg-soluble phases (chlorides and oxychlorides) may enhance the mobilization of mercury. In the semi-arid conditions of the Valle del Azogue (SE Spain) the atmospheric emissions of the Hg0 present in calcines and mine waste may be significant and the dissolution of Hg0 and metal-sulfate salts during episodic runoff events may explain the mobilization of Hg, Fe, Pb, Zn and other heavy metals.  相似文献   

10.
Although resistance of microorganisms to Hg(II) salts has been widely investigated and resistant strains have been reported from many eubacterial genera, there are few reports of mercuric ion resistance in extremophilic microorganisms. Moderately thermophilic mercury resistant bacteria were selected by growth at 62 °C on Luria agar containing HgCl2. Sequence analysis of 16S rRNA genes of two isolates showed the closest matches to be with Bacillus pallidus and Ureibacillus thermosphaericus. Minimum inhibitory concentration (MIC) values for HgCl2 were 80 μg/ml and 30 μg/ml for these isolates, respectively, compared to 10 μg/ml for B. pallidus H12 DSM3670, a mercury-sensitive control. The best-characterised mercury-resistant Bacillus strain, B. cereus RC607, had an MIC of 60 μg/ml. The new isolates had negligible mercuric reductase activity but removed Hg from the medium by the formation of a black precipitate, identified as HgS by X-ray powder diffraction analysis. No volatile H2S was detected in the headspace of cultures in the absence or presence of Hg2+, and it is suggested that a new mechanism of Hg tolerance, based on the production of non-volatile thiol species, may have potential for decontamination of solutions containing Hg2+ without production of toxic volatile H2S.  相似文献   

11.
Currently, the fluorescent probe is an important method for detecting heavy metal ions, especially mercury ion (Hg2+), which is harmful to the health of humans and the environment due to its toxicity and extensive use. In this paper, we designed and synthesized a colorimetric and long‐wavelength fluorescent probe Hg‐P with high sensitivity and excellent selectivity, which could detect Hg2+ by the changes of visual color, fluorescence and absorption spectroscopy. With the addition of Hg2+ to probe Hg‐P solution, its color changed from yellow to pink, and showed a 171 nm red‐shifted absorption spectrum. Probe Hg‐P was used in real water and soil solution samples to detect Hg2+, and the result is satisfactory. Therefore, this new probe shows great value and application in detecting Hg2+ in the environment.  相似文献   

12.
Iron oxy(hydr)oxides (oxides) are important mercury sinks in tropical oxisols and the geochemistry of these two elements are thus closely entwined. We hypothesized that bacterial Fe-oxide reduction in anoxic conditions could be a significant mechanism for mobilizing associated Hg. Iron oxide and mercury solubilisation in presence of two chemical reducers (ascorbate and dithionite, dissolving amorphous and amorphous plus well crystallized Fe-oxides, respectively) was compared to their solubilisation in presence of autochthonous ferri-reducing bacteria. This work was carried out on two soil profiles from a small catchment basin in French Guyana, an oxisol (O) from a well drained slope and a water-saturated hydromorphic soil (H). The chemical reductions showed that in the oxisol 20 and 48% of total Hg (HgT) was associated to amorphous and well crystallized iron oxides, respectively. However, in the hydromorphic soil, no Hg seemed to be associated to amorphous iron oxides while the well crystallized fraction contained less than 9% of HgT. Chemical Fe-oxide reduction showed that Hg solubility was correlated to Fe reduction in the oxisol, demonstrating a relationship between the geochemistry of these two metals. During bacterial growth, while bacterial iron reduction solubilised up to 3.2 mg Fe g?1 soil in the oxisol sample, HgT remained unchanged. No mercury was detected in the culture medium either. However, chemical analysis showed a decrease of the amounts of Hg associated to amorphous and well crystallized Fe-oxides after 14 days of incubation, underlining the potential for iron-reducing bacteria to modify mercury distribution in soil.  相似文献   

13.
Summary Most bacterial cells (Pseudomonas, Acinetobacter) obtained from the soil at the Khaidarkan mercury and antimony mine (Kirghiz USSR) contain R plasmids with mercury (HgCl2) resistance determinants. The plasmids have a large molecular mass (about 100 MD, though smaller ones also occur), and at least some of them are transmissive. Many of the Hgr bacteria also display an elevated antimony (SbCl3) resistance, though this trait was not shown to be plasmid-dependent. There are practically no Hgr plasmids in bacteria taken from the soil at different distances from the mine: the saturation of bacteria with Hgr plasmids is maintained by selective pressure only in the area with a high enough toxin concentration.In the same mercury and antimony deposit area Hgr plasmids were also found in Escherichia coli isolates from the gut of Mus musculus mice and Bufo viridis toads. At least some of the bacterial plasmids obtained from animals also carry antibiotic-resistance determinants (Tcr, Cmr, Smr). These plasmids are also transmissive. They display internal instability and lose their resistance determinants after a conjugation transfer to other E. coli trains.  相似文献   

14.
Preliminary studies of mercury (Hg) cycling in the Everglades revealed that dissolved gaseous mercury (DGM), total mercury (HgT), and reactive mercury (HgR) show reproducible, diel trends. Peak water-column DGM concentrations were observed on or about noon, with a 3 to 7 fold increase over night-time concentrations. Production of DGM appears to cease during dark periods, with nearly constant water column concentrations that were at or near saturation with respect to the overlying air. A simple mass balance shows that the flux of Hg to the atmosphere from diel DGM production and evasion represents about 10% of the annual input from atmospheric deposition. Production of DGM is likely the result of an indirect photolysis reaction that involves the production of reductive species and/or reduction by electron transfer. Diel variability in HgT and HgR appears to be controlled by two factors: inputs from rainfall and photolytic sorption/desorption processes. A possible mechanism involves photolysis of chromophores on the surface of a solid substrate (e.g., the periphyton mat) giving rise to destabilization of sorbed mercury and net desorption during daylight. At night, the sorption reactions predominate and the water-column HgT decreases. Methylmercury (MeHg) also showed diel trends in concentration but were not clearly linked to the solar cycle or rainfall at the study site.  相似文献   

15.
Summary Diffusion of inorganic mercury (Hg2+) through planar lipid bilayer membranes was studied as a function of chloride concentration and pH. Membranes were made from egg lecithin plus cholesterol in tetradecane. Tracer (203Hg) flux and conductance measurements were used to estimate the permeabilities to ionic and nonionic forms of Hg. At pH 7.0 and [Cl] ranging from 10–1000mm, only the dichloride complex of mercury (HgCl2) crosses the membrane at a significant rate. However, several other Hg complexes (HgOHCl, HgCl 3 and HgCl 4 2– ) contribute to diffusion through the aqueous unstirred layer adjacent to the membrane. The relation between the total mercury flux (J Hg), Hg concentrations, and permeabilities is: 1/J Hg=1/P ul[Hg t ]+1/P m [HgCl2], where [Hg t ] is the total concentration of all forms of Hg,P ul is the unstirred layer permeability, andP m is the membrane permeability to HgCl2. By fitting this equation to the data we find thatP m =1.3×10–2 cm sec–1. At Cl concentrations ranging from 1–100mm, diffusion of Hg t through the unstirred layer is rate limiting. At Cl concentrations ranging from 500–1000mm, the membrane permeability to HgCl2 becomes rate limiting because HgCl2 comprises only about 1% of the total Hg. Under all conditions, chemical reactions among Hg2+, Cl and/or OH near the membrane surface play an important role in the transport process. Other important metals, e.g., Zn2+, Cd2+, Ag+ and CH3Hg+, form neutral chloride complexes under physiological conditions. Thus, it is likely that chloride can facilitate the diffusion of a variety of metals through lipid bilayer and biological membranes.  相似文献   

16.
17.
The consumption of rice has become a global food safety issue because rice paddies support the production of high levels of the potent neurotoxin, methylmercury. The production of methylmercury is carried out by chemotrophic anaerobes that rely on a diversity of terminal electron acceptors, namely sulphate. Sulphur can be a limiting nutrient in rice paddies, and sulphate amendments are often used to stimulate crop production, which can increase methylmercury production. Mercury (Hg) redox cycling can affect Hg methylation by controlling the delivery of inorganic Hg substrates to methylators in anoxic habitats. Whereas sulphur is recognized as a key substrate controlling methylmercury production, the controls sulphur exerts on other microbe‐mediated Hg transformations remain poorly understood. To explore the potential coupling between sulphur assimilation and anaerobic HgII reduction to Hg0, we studied Heliobacillus mobilis, a mesophilic anoxygenic phototroph representative from the Heliobacteriacea family originally isolated from a rice paddy. Here, we tested whether the redox state of the sulphur sources available to H. mobilis would affect its ability to reduce HgII. By comparing Hg0 production over a redox gradient of sulphur sources, we demonstrate that phototrophic HgII reduction is favoured in the presence of reduced sulphur sources such as thiosulphate and cysteine. We also show that cysteine exerts dynamic control on Hg cycling by affecting not only Hg's bioavailability but also its abiotic photoreduction under low light conditions. Specifically, in the absence of cells we show that organic matter (as yeast extract) and cysteine are both required for photoreduction to occur. This study offers insights into how one of the most primitive forms of photosynthesis affects Hg redox transformations and frames Heliobacteria as key players in Hg cycling within paddy soils, forming a basis for management strategies to mitigate Hg accumulation in rice.  相似文献   

18.
To develop the potential of plants to sequester and accumulate mercurials from the contaminated sites, we engineered a tobacco (Nicotiana tabacum) plant to express a bacterial ppk gene, encoding polyphosphate kinase (PPK), under control of a plant promoter. The designated plant expression plasmid pPKT116 that contains the entire coding region of ppk was used for Agrobacterium-mediated gene transfer into tobacco plants. A large number of independent transgenic tobacco plants were obtained, in some of which the ppk gene was stably integrated in the plant genome and substantially translated to the expected PPK protein in the transgenic tobacco. The presence of Hg2+ did not cause considerable morphological abnormalities in the transgenic tobacco, which grew, flowered, and set seed similarly to the wild-type tobacco on the medium containing normally toxic levels of Hg2+. The ppk-transgenic tobacco showed more resistance to Hg2+ and accumulated more mercury than its wild-type progenitors. These results suggest that ppk-specified polyphosphate has abilities to reduce mercury toxicity, probably via chelation mechanism, and also to accumulate mercury in the transgenic tobacco. Based on the results obtained in the present study, the expression of ppk gene in transgenic tobacco plants might provide a means for phytoremediation of mercury pollution.  相似文献   

19.
A biosorbent prepared by alkaline extraction of Aspergillus niger biomass was evaluated for its potential to remove mercury species – inorganic (Hg2+) and methyl mercury (CH3Hg+) – from aqueous solutions. Batch experiments were carried out to determine the pH and time profile of sorption for both species in the pH range 2–7. The Hg2+ exhibited more rapid sorption and higher capacity than the CH3Hg+. Further, removal of both mercury species from spiked ground water samples was efficient and not influenced by other ions. Sorption studies with esterified biosorbent indicated loss of binding of both mercury species (>80%), which was regained when the ester groups were removed by alkaline hydrolysis, suggesting the involvement of carboxyl groups in binding. Further, no interconversion of sorbed species occurred on the biomass. The biosorbent was reusable up to six cycles without serious loss of binding capacity. Our results suggest that the biosorbent from Aspergillus niger can be used for removal of mercury and methyl mercury ions from polluted aqueous effluents.  相似文献   

20.
The interactions of mercury (Hg2+) with biological membranes have been investigated. The experimental results indicate that Hg2+ induces a rapid alkalinization in energized Lysosomes from rat liver. The interpretation of the process is that the mercury enters the Lysosomes as a Hg(OH)2 electroneutral compound, thus inducing alkalinization in the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号