首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The ability of a temperature-sensitive (ts) mutant of reovirus, ts261-b, to synthesize virus-specific RNAs and proteins during infection at the nonpermissive temperature (37 degrees C) was investigated. The relative amounts of the mutant virus-specific single-stranded (ss) RNA''s and double-stranded (ds) RNA''s synthesized in cells at 37 degrees C were 20 to 25% as much as those synthesized in the wild-type virus-infected cells. The 10 segments of the mutant ds RNAs and the three size classes of the ss RNAs were synthesized in the usual proportions. The methylation of the mutant viral mRNA''s (ss RNAs) was not blocked at 37 degrees C in infected cells. A striking temperature-sensitive restricted function of the ts261-b mutant was expressed in the synthesis of the viral proteins. This study, which uses an in vitro protein-synthesizing system reconstituted with an endogenous polysomal fraction and a postribosomal supernatant from reovirus-infected cells, has demonstrated that the endogenous polysomes obtained from ts261-b mutant-infected cells at 37 degrees C are not active in the synthesis of the viral polypeptides of known molecular weights, and the amounts of the mutant viral polypeptides synthesized in vitro by these polysomes are 5 to 9% of those synthesized by the corresponding fraction from wild-type-infected cells. The impaired protein-synthesizing capacity of the mutant virus-specific polysomes can be restored during maintenance of the infected cells at 30 degrees C after shift-down from 37 degrees C. The in vitro synthesis of viral polypeptides of known size by the active endogenous polysomes derived from cells infected at the permissive temperature is accelerated by the addition of the postribosomal supernatant obtained from cells infected at the permissive temperature. The postribosomal supernatant from mutant-infected cells at 37 degrees C did not have a stimulatory effect, but rather, it inhibited in vitro viral protein synthesis.  相似文献   

4.
Four hours after infection of BHK cells by vesicular stomatitis virus (VSV), the rate of total protein synthesis was about 65% that of uninfected cells and synthesis of the 12 to 15 predominant cellular polypeptides was reduced to a level about 25% that of control cells. As determined by in vitro translation of isolated RNA and both one- and two-dimensional gel analyses of the products, all predominant cellular mRNA's remained intact and translatable after infection. The total amount of translatable mRNA per cell increased about threefold after infection; this additional mRNA directed synthesis of the five VSV structural proteins. To determine the subcellular localization of cellular and viral mRNA before and after infection, RNA from various sizes of polysomes and nonpolysomal ribonucleoproteins (RNPs) was isolated from infected and noninfected cells and translated in vitro. Over 80% of most predominant species of cellular mRNA was bound to polysomes in control cells, and over 60% was bound in infected cells. Only 2 of the 12 predominant species of translatable cellular mRNA's were localized to the RNP fraction, both in infected and in uninfected cells. The average size of polysomes translating individual cellular mRNA's was reduced about two- to threefold after infection. For example, in uninfected cells, actin (molecular weight 42,000) mRNA was found predominantly on polysomes with 12 ribosomes; after infection it was found on polysomes with five ribosomes, the same size of polysomes that were translating VSV N (molecular weight 52,000) and M (molecular weight 35,000) mRNA. We conclude that the inhibition of cellular protein synthesis after VSV infection is due, in large measure, to competition for ribosomes by a large excess of viral mRNA. The efficiency of initiation of translation on cellular and viral mRNA's is about the same in infected cells; cellular ribosomes are simply distributed among more mRNA's than are present in growing cells. About 20 to 30% of each of the predominant cellular and viral mRNA's were present in RNP particles in infected cells and were presumably inactive in protein synthesis. There was no preferential sequestration of cellular or viral mRNA's in RNPs after infection.  相似文献   

5.
Based on evidence that 50% of herpes simplex 1 DNA is transcribed in HEp-2 cells in the absence of protein synthesis we examined the order and rates of synthesis of viral polypeptides in infected cells after reversal of cycloheximide- or puromycin-mediated inhibition of protein synthesis. These experiments showed that viral polypeptides formed three sequentially synthesized, coordinately regulated groups designated alpha, beta, and gamma. Specifically: (i) The alpha group, containing one minor structural and several nonstructural polypeptides, was synthesized at highest rates from 3 to 4 h postinfection in untreated cells and at diminishing rates thereafter. The beta group, also containing minor structural and nonstructural polypeptides, was synthesized at highest rates from 5 to 7 h and at decreasing rates thereafter. The gamma group containing major structural polypeptides was synthesized at increasing rates until at least 12 h postinfection. (ii) The synthesis of alpha polypeptides did not require prior infected cell protein synthesis. In contrast, the synthesis of beta polypeptides required both prior alpha polypeptide synthesis as well as new RNA synthesis, since the addition of actinomycin D immediately after removal of cycloheximide precluded beta polypeptide synthesis. The function supplied by the alpha polypeptides was stable since interruption of protein synthesis after alpha polypeptide synthesis began and before beta polypeptides were made did not prevent the immediate synthesis of beta polypeptides once the drug was withdrawn. The requirement of gamma polypeptide synthesis for prior synthesis of beta polypeptides seemed to be similar to that of beta polypeptides for prior synthesis of the alpha group. (iii) The rates of synthesis of alpha polypeptides were highest immediately after removal of cycloheximide and declined thereafter concomitant with the initiation of beta polypeptide synthesis; this decline in alpha polypeptide synthesis was less rapid in the presence of actinomycin D which prevented the appearance of beta and gamma polypeptides. The decrease in rates of synthesis of beta polypeptides normally occurring after 7 h postinfection was also less rapid in the presence of actinomycin D than in its absence, whereas ongoing synthesis of gamma polypeptides at this time was rapidly reduced by actinomycin D. (iv) Inhibitors of DNA synthesis (cytosine arabinoside or hydroxyurea) did not prevent the synthesis of alpha, beta, or gamma polypeptides, but did reduce the amounts of gamma polypeptides made.  相似文献   

6.
Mammalian reoviruses are thought to assemble and replicate within cytoplasmic, nonmembranous structures called viral factories. The viral nonstructural protein mu NS forms factory-like globular inclusions when expressed in the absence of other viral proteins and binds to the surfaces of the viral core particles in vitro. Given these previous observations, we hypothesized that one or more of the core surface proteins may be recruited to viral factories through specific associations with mu NS. We found that all three of these proteins--lambda 1, lambda 2, and sigma 2--localized to factories in infected cells but were diffusely distributed through the cytoplasm and nucleus when each was separately expressed in the absence of other viral proteins. When separately coexpressed with mu NS, on the other hand, each core surface protein colocalized with mu NS in globular inclusions, supporting the initial hypothesis. We also found that lambda 1, lambda 2, and sigma 2 each localized to filamentous inclusions formed upon the coexpression of mu NS and mu 2, a structurally minor core protein that associates with microtubules. The first 40 residues of mu NS, which are required for association with mu 2 and the RNA-binding nonstructural protein sigma NS, were not required for association with any of the three core surface proteins. When coexpressed with mu 2 in the absence of mu NS, each of the core surface proteins was diffusely distributed and displayed only sporadic, weak associations with mu 2 on filaments. Many of the core particles that entered the cytoplasm of cycloheximide-treated cells following entry and partial uncoating were recruited to inclusions of mu NS that had been preformed in those cells, providing evidence that mu NS can bind to the surfaces of cores in vivo. These findings expand a model for how viral and cellular components are recruited to the viral factories in infected cells and provide further evidence for the central but distinct roles of viral proteins mu NS and mu 2 in this process.  相似文献   

7.
8.
9.
Reovirus replication occurs in the cytoplasm of infected cells and culminates in the formation of crystalline arrays of progeny virions within viral inclusions. Two viral nonstructural proteins, sigma NS and micro NS, and structural protein sigma 3 form protein-RNA complexes early in reovirus infection. To better understand the minimal requirements of viral inclusion formation, we expressed sigma NS, mu NS, and sigma 3 alone and in combination in the absence of viral infection. In contrast to its concentration in inclusion structures during reovirus replication, sigma NS expressed in cells in the absence of infection is distributed diffusely throughout the cytoplasm and does not form structures that resemble viral inclusions. Expressed sigma NS is functional as it complements the defect in temperature-sensitive, sigma NS-mutant virus tsE320. In both transfected and infected cells, mu NS is found in punctate cytoplasmic structures and sigma 3 is distributed diffusely in the cytoplasm and the nucleus. The subcellular localization of mu NS and sigma 3 is not altered when the proteins are expressed together or with sigma NS. However, when expressed with micro NS, sigma NS colocalizes with mu NS to punctate structures similar in morphology to inclusion structures observed early in viral replication. During reovirus infection, both sigma NS and mu NS are detectable 4 h after adsorption and colocalize to punctate structures throughout the viral life cycle. In concordance with these results, sigma NS interacts with mu NS in a yeast two-hybrid assay and by coimmunoprecipitation analysis. These data suggest that sigma NS and mu NS are the minimal viral components required to form inclusions, which then recruit other reovirus proteins and RNA to initiate viral genome replication.  相似文献   

10.
Rabies virus protein synthesis in infected BHK-21 cells.   总被引:11,自引:9,他引:2       下载免费PDF全文
Rabies virus specific polypeptide synthesis was examined under hypertonic conditions, which selectively inhibit cellular protein synthesis. The rabies virus proteins (L, G, N, M1, M2) were synthesized throughout the course of infection, with little change in their relative rates of synthesis. The rates of synthesis of the G and M1 polypeptides were more sensitive to increasing osmolarity than those of the L, N, and M2 polypeptides. Extrapolation to isotonicity of the results obtained under hypertonic conditions indicated that the molar ratios of the polypeptides synthesized under normal conditions were 0.4 (L), 64 (G), 100 (N), 75 (M1) and 35 (M2). A high-molecular-weight polypeptide (190,000), designated polypeptide L, was repeatedly detected both in infected cells and in extracellular virus. The estimated number of L polypeptide molecules per virion was 33. The synthesis of a viral glycoprotein precursor, designated gp78, , preceded the appearance of the mature viral glycoprotein in infected cells labeled with [3H]glucosamine under isotonic conditions. In cells labeled under hypertonic conditions, little or no mature viral glycoprotein was detected, but a virus-specific glycoprotein with an electrophoretic mobility similar to that of gp78 was observed. This glycoprotein could be chased into mature viral glycoprotein when the hypertonic conditions were made isotonic. These results suggest that a reversible block of viral glycoprotein synthesis occurs under hypertonic conditions.  相似文献   

11.
12.
The electrophoretic analysis of reovirus-specific polypeptides in infected cells using a discontinuous gel system has allowed the resolution of additional viral-specific polypeptides, including one large-sized gamma3 and two (or possibly three) medium-sized (mu3, mu4, mu5(?)) species. The proteins designated mu0, sigma1, and sigma2 based on electrophoretic mobility in gel systems containing phosphate-urea correspond to mu4, sigma2, and sigma1, respectively, when analyzed in systems containing Tris-glycine. It is likely that protein modifications (phosphorylation and glycosylation) are responsible for at least some of these differences.  相似文献   

13.
The proteins synthesized in vaccinia-infected HeLa cells have been analyzed at different times after infection by using two-dimensional gel electrophoresis. Vaccinia-infected cells present up to 198 polypeptides (138 acidic, isoelectric focusing; 60 basic, nonequilibrium pH gradient electrophoresis) not detected in control cells. Cells infected in the presence of cycloheximide show 81 additional polypeptides after cycloheximide removal, resulting in a total estimate of 279 proteins induced after vaccinia infection. The glycoproteins made at various times postinfection were also analyzed. At least 13 proteins labeled with [3H]glucosamine were detected in vaccinia-infected HeLa cells.  相似文献   

14.
Cordycepin (3'-deoxyadenosine) has no effect on the size or relative proportions of Newcastle disease virus-specific 18-22S mRNA species nor on the amount or size of the polyadenylic acid associated with them. Cordycepin does, however, cause an inhibition of incorporation of [3H]uridine into 50S virus-specific RNA relative to 18-22S RNA. This inhibition is probably not a direct effect of the drug on the synthesis of 50S viral RNA. Like cycloheximide, another drug which inhibits 50S RNA accumulation in paramyxovirus-infected cells, cordycepin inhibits protein synthesis as measured by amino acid incorporation. It is likely that the inhibition of 50S RNA accumulation is a secondary effect of protein synthesis inhibition. This is supported by the finding that concentrations of cordycepin and cycloheximide, which inhibit protein synthesis to the same extent, have the same effect on the ratio of 50 to 18-22S virus-specific RNA.  相似文献   

15.
Physical and chemical characterization of an avian reovirus.   总被引:12,自引:8,他引:4       下载免费PDF全文
  相似文献   

16.
Infection of animal cells by vesicular stomatitis virus (VSV) results in inhibition of translation of cellular mRNA. We showed previously that, in BHK cells infected by the Glasgow isolate of VSV Indiana, this is due to competition during the initiation step of protein synthesis of viral and cellular mRNA for a constant, limiting number of ribosomes. We show here that infection of the same cells with the San Juan isolate of VSV resulted in a more rapid shutoff of host protein synthesis and that this was paralleled by a more rapid accumulation of viral mRNA. Extending our conclusion that shutoff is due to mRNA competition, we show further that the average size of polysomes translating viral and cellular mRNA was threefold smaller in cells infected by VSV San Juan than by VSV Glasgow, which, in turn, was about one-half that of uninfected cells. In all cases, cellular and viral mRNA's which encoded the same-sized polypeptides were found on the same-sized polysomes, a result indicating that the efficiency of translation of both types of mRNA's is about the same in the infected cell. Also, there was no preferential sequestration of viral or cellular mRNA's in ribonucleoprotein particles. Additional correlations between the levels of viral mRNA's and the inhibition of protein synthesis came from studies of three other wild-type VSV strains and also from studies with Vero and L cells. In particular, the rate of shutoff of L-cell protein synthesis after infection by any VSV isolate was slower than that in BHK cells, and this was correlated with a slower rate of accumulation of viral mRNA. VSV temperature-sensitive mutants which synthesized, at the nonper-missive temperature, no VSV mRNA failed to inhibit synthesis of cellular proteins. Stanners and co-workers (C. P. Stanners, A. M. Francoeur, and T. Lam, Cell 11:273-281, 1977) claimed that VSV mutant R1 inhibited synthesis of L cell protein synthesis less rapidly than did its parent wild-type strain HR. They concluded that this effect was due to a mutation in an unspecified VSV protein, “P.” We found, in both L and BHK cells, that R1 infection resulted in a slightly slower inhibition of cellular mRNA translation than did HR infection and that this was correlated with a slightly reduced accumulation of VSV mRNA. The level of VSV mRNA, rather than any specific VSV protein, appeared to be the key factor in determining the rate of shutoff of host protein synthesis.  相似文献   

17.
[3H]leucine-labeled proteins synthesized in BHK-21 cells infected with Semliki Forest virus were fractionated by polyacrylamide gel electrophoresis (PAGE). Cellular and virus-specific proteins were identified by difference analysis of the PAGE profiles. The specific activity of intracellular [3H-A1leucine was determined. Two alterations of protein synthesis, which develop with different time courses, were discerned. (i) In infected cultures an inhibition of overall protein synthesis to about 25% of the protein synthesis in mock-infected cultures develops between about 1 and 4 h postinfection (p.i.). (ii) The relative amount of virus-specific polypeptides versus cellular polypeptides increases after infection. About 80% of the proteins synthesized at 4 h p.i. are cellular proteins. Since significant amounts of nontranslocating robosomes in polyribosomes were not detected up to 7 h p.i., the inhibition of protein synthesis is not caused by inactivation of about 75% of all polyribosomes but by a decreased protein synthetic activity of the majority of polyribosomes. Indirect evidence indicates that an inhibition of elongation and/or release of protein synthesis develops in infected cells, which is sufficient to account for the observed inhibition of protein synthesis. Inhibition of over-all protein synthesis developed when virus-specific RNA began to accumulate at the maximal rate. This relationship was observed during virus multiplication at 37, 30, and 25 C. A possible mechanism by which synthesis of virus-specific RNA in the cytoplasm could inhibit cellular protein synthesis is discussed. Indirect evidence and analysis of polyribosomal RNA show that the increased synthesis of virus-specific protein is brought about by a substitution of cellular by viral mRNA in the polyribosomes.  相似文献   

18.
Guanylyltransferase and methyltransferases that modify the 5'-terminals of viral mRNA's to form the structures m7G(5')pppAm- and m7G(5')pppGm- appear to be synthesized afte- vaccinia virus infection of HeLa cells. Elevations in these enzyme activities were detected within 1 h after virus inoculation and increased 15- to 30-fold by 4 to 10 h. Increases in the guanylyl- and methyltransferase activities were prevented by cycloheximide, an inhibitor of protein synthesis, but not by cytosine arabinoside, an inhibitor of DNA synthesis. The latter results suggest that the mRNA guanylyl- and methyltransferases are "early" or prereplicative viral gene products. The guanylyltransferase and two methyltransferases, a guanine-7-methyltransferase and nucleoside-2'-methyltransferase, were isolated by column chromatography from infected cell extracts and found to have properties similar or identical to those of the corresponding enzyme previously isolated from vaccinia virus cores. In contrast, enzymes with these properties could not be isolated from uninfected cells.  相似文献   

19.
[3H]leucine-labeled proteins synthesized in BHK-21 cells infected with Semliki Forest virus were fractionated by polyacrylamide gel electrophoresis (PAGE). Cellular and virus-specific proteins were identified by difference analysis of the PAGE profiles. The specific activity of intracellular [3H]leucine was determined. Two alterations of protein synthesis, which develop with different time courses, were discerned. (i) In infected cultures an inhibition of overall protein synthesis to about 25% of the protein synthesis in mock-infected cultures develops between about 1 and 4 h postinfection (p.i.). (ii) The relative amount of virus-specific polypeptides versus cellular polypeptides increases after infection. About 80% of the proteins synthesized at 4 h p.i. are cellular proteins. Since significant amounts of nontranslocating ribosomes in polyribosomes were not detected up to 7 h p.i., the inhibition of protein synthesis is not caused by inactivation of about 75% of all polyribosomes but by a decreased protein synthetic activity of the majority of polyribosomes. Indirect evidence indicates that an inhibition of elongation and/or release of protein synthesis develops in infected cells, which is sufficient to account for the observed inhibition of protein synthesis. Inhibition of over-all protein synthesis developed when virus-specific RNA began to accumulate at the maximal rate. This relationship was observed during virus multiplication at 37, 30, and 25 C. A possible mechanism by which synthesis of virus-specific RNA in the cytoplasm could inhibit cellular protein synthesis is discussed. Indirect evidence and analysis of polyribosomal RNA show that the increased synthesis of virus-specific protein is brought about by a substitution of cellular by viral mRNA in the polyribosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号