首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epidermal growth factor receptor (EGFR) gene is frequently amplified and/or overexpressed in human malignancies. To investigate the biological effects of its overexpression, we constructed a eukaryotic vector containing human EGFR cDNA. Introduction of this construct led to reconstitution of functional EGF receptors in NR6 mutant cells, which are normally devoid of this receptor. Transfection of NIH 3T3 resulted in no significant alterations in growth properties. However, EGF addition led to the formation of densely growing transformed foci in liquid culture and colonies in semisolid medium. NIH 3T3-EGFR clonal lines, which expressed the EGF at 500- to 1000-fold levels over control NIH 3T3 cells, demonstrated a marked increase in DNA synthesis in response to EGF. Thus EGF receptor overexpression appears to amplify normal EGF signal transduction. Finally, high levels of EGFR expression, which conferred a transformed phenotype to NIH 3T3 cells in the presence of ligand, were demonstrated in representative human tumor cell lines that contained amplified copies of the EGFR gene.  相似文献   

2.
350sf and 625sf cells growing in serum free medium secrete transforming growth factors (TGFs) that induce NIH 3T3 indicator cells to form colonies in soft agar. The addition of 2 ng/ml of EGF increases twice the number of colonies of NIH 3T3 indicator cells. The TGFs secreted by 350sf and 625 sf cells do not compete with 125I EGF for binding to EGF receptors on human A-431 cells. The number of EGF receptors on 350 sf and 625 sf and 625 sf cells continuously grown in serum-free medium do not differ from that of EGF receptors on parental Lebr-350 and Lebr-625 cells continuously grown in the presence of 10% serum. These results suggest that TGFs produced by 350 sf and 625 sf cells are not alpha TGF. It is possible that cells secrete beta TGFs of yet unknown type.  相似文献   

3.
一种新的胰岛素及生长因子促生长活性测定系统   总被引:3,自引:2,他引:1  
GR2H6细胞是从小鼠乳腺癌细胞衍生来的成纤维细胞样细胞株。该细胞能在特定的无血清培养液中生长,我们发现在此无血清培养条件下,GR2H6细胞生长情况与胰岛素、表皮生长因子和类胰岛素生长因子-I的浓度有较好的相关性,根据细胞数目和DNA总量的变化可定量测定胰岛素和上述生长因子对该细胞株的促生长作用。据此,本实验室建立了一种新的胰岛素与生长因子促生长活性测定系统。与已知的胰岛素和生长因子测活系统比较,  相似文献   

4.
Two flat cellular revertant cell lines, F-2 and C-11, which were originally selected from the DT line of Kirsten murine sarcoma virus (Ki-MuSV)-transformed NIH/3T3 cells, were examined for the production of transforming growth factors (TGFs). The revertant cells fail to grow in semisolid medium as colonies and exhibit a markedly reduced level of tumorigenicity in nude mice, although they are known to express high levels of p21ras, the product of the Kirsten sarcoma virus oncogene, ras, and they contain a rescuable transforming virus. TGF activity associated with the transformed, revertant, and non-transformed cell lines was measured by the ability of concentrated conditioned medium (CM) from these cells to induce normal rat kidney (NRK) and NIH/3T3 cells to form colonies in semisolid agar suspension cultures and to inhibit the binding of 125I epidermal growth factor (EGF) to specific cell surface receptors. CM from the transformed DT cells and from both the F-2 and C-11 revertants contains TGF activity, in contrast to CM obtained from normal NIH/3T3 cells. Furthermore, unlike NIH/3T3 cells, neither the DT nor the revertant cells were able to bind 125I EGF. All four cell lines were able to proliferate in serum-free medium supplemented with transferrin, insulin, EGF, and Pedersen fetuin. However, in basal medium lacking these growth factors, only DT cells and, to a lesser extent, the revertant cells were able to grow. These results suggest that the F-2 and C-11 revertants fail to exhibit all of the properties associated with transformation because the series of events leading to the transformed phenotype is blocked at a point(s) distal both to the expression of the p21 ras gene product and also to the production of TGFs and that the production of TGFs may be necessary but not sufficient for maintaining the transformed state.  相似文献   

5.
A variety of cancer cells overexpress transforming growth factor alpha (TGF alpha), a mitogenic peptide. A cDNA sequence coding for the full-length human TGF alpha precursor protein was subcloned into a retroviral expression vector and introduced into clone 7 NIH 3T3 cells, which have low numbers of endogenous epidermal growth factor receptors (EGFRs). The autocrine synthesis of TGF alpha by these cells resulted in their focal transformation. In contrast, control NIH 3T3 cells treated in a paracrine manner with exogenous, saturating concentrations of the mature form of TGF alpha, though stimulated to divide, remained morphologically untransformed. The addition of saturating quantities of soluble, mature TGF alpha to NIH 3T3 cells expressing the transferred TGF alpha gene actually suppressed their growth and focal transformation. The transformation induced by the TGF alpha gene remained an EGFR-dependent process, since the degree of transformation was correlated with EGFR expression in NIH 3T3 cells and since NR6 cells, which are Swiss 3T3 cells devoid of endogenous EGFRs, were transformed by the TGF alpha vector only when exogenous EGFR genes were also introduced. When inoculated into nude mice, the TGF alpha-expressing cells rapidly gave rise to tumors that grew progressively, whereas control cells did not form tumors. We conclude that in certain circumstances autocrine TGF alpha can be more oncogenic than paracrine and that paracrine TGF alpha can suppress this effect.  相似文献   

6.
Transformation of NIH 3T3 cells, induced by v-myc oncogene, activates a proliferative potential of the cells cultivated in the serum-free medium, and reduces the ratio of 3H-Tdr incorporation into the cells grown in the presence of 10% fetal serum in comparison to those grown in the serum-free medium. The v-myc transformed cells (NIH 3T3-v-myc) as well as the untransformed ones are very responsive to insulin. On the other hand, the epidermal growth factor, able to stimulate proliferation of NIH 3T3 cells, exert no effects on the NIH 3T3-v-myc cells. The NIH 3T3-v-myc cells cultivated in the medium, containing 2.5% human plasma enriched with thrombocytes, have the same proliferative characteristics as cells grown in the thrombocyte-free plasma. It is concluded that transformation of NIH 3T3 cells induced by v-myc oncogene may reduce a requirement for thrombocyte-released growth factors and EGF but not for insulin.  相似文献   

7.
Summary To identify polypeptide growth factors for human teratocarcinoma cells, we studied the malignant ovarian teratoma-derived cell line, PA-1, that grew autonomously in serum-free medium. Medium conditioned by undifferentiated PA-1 cells strongly stimulated proliferation of the mouse mammary tumor cell line, GR 2H6, which is responsive to epidermal growth factor (EGF) and insulinlike growth factor-I (IGF-I). After ammonium sulfate precipitation, PA-1 conditioned medium was analyzed by anion exchange chromatography and bioassay of elution fractions on GR 2H6 cells that were grown in medium deficient in either EGF or insulin. The results demonstrated that PA-1 CM contained factors that can substitute for EGF and IGF-I in stimulating growth of GR 2H6 cells. Western blots of peak mitogenic fractions revealed low molecular weight polypeptides that were immunoreactive with either anti-EGF or anti-IGF-I antibodies. Indirect immunofluorescence staining of PA-1 cells with monoclonal antibodies localized receptors for each growth factor, and binding of human EGF and IGF-I to these cells was quantified by radioreceptor assays. Secretion of factors closely related to EGF and IGF-I by PA-1 cells under serum-free conditions may provide a novel model system to study molecular mechanisms of autocrine growth stimulation in teratocarcinomas.  相似文献   

8.
Summary Transforming growth factors (TGFs) are a relatively new category of factors that induce the anchorage-independent growth of non-transformed cells. These factors are usually detected by their ability to induce normal rat kidney (NRK) fibroblasts to grow in soft agar. Until now, this assay has been performed in serum-containing medium (SCM). Unfortunately, the background activity of this assay is variable and dependent on several factors, including passage number of the cells and the serum lot used. Furthermore, the addition of either EGF or TGF-β alone results in the appearance of additional colonies, which decreases the sensitivity of the assay. To circumvent these problems, serum-free media have been developed that support the growth of the NRK cells at low density in both monolayer culture and soft agar. Long-term growth in monolayer cultures occurs in serum-free medium supplemented with laminin, insulin, transferrin, epidermal growth factor (EGF), fibroblast growth factor (FGF) and high density lipoprotein (HDL). Growth in soft agar occurs when TGFs are added to a serum-free medium, AIG medium, that contains insulin, transferrin, FGF and HDL. In contrast to the background activity observed when the assay is performed in SCM, no colonies form in the AIG medium unless TGFs are added and few, if any, colonies form if EGF or TGF-β are added alone. Thus, the AIG medium provides an improved assay for TGFs. In addition, the AIG medium should prove useful for examining other factors, including serum factors, for TGF activity. Editor's Statement This communication describes a modification of the standard assay for transforming growth factors. The techniques employed make use of advantages provided by recent advances in serum-free cell culture to provide a well-defined detection system that is more sensitive than conventional procedures. Experimental approaches described in this article also should be helpful in unraveling differences in cellular behavior encountered under anchorage-dependent vs. anchorage-independent conditions. D. W. Barnes  相似文献   

9.
The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity.  相似文献   

10.
The untransformed mouse fibroblast cells NIH/3T3, C3H/10T1/2, and rat NRK cells do not grow in soft agar in medium supplemented with 10% fetal calf serum. When fetal calf serum in the growth medium was supplemented with less than 1% of sera from mice or other vertebrates, however, these cells responded, forming large colonies. The morphology of soft agar colonies was a function of the treated cell type. In the presence of 10% serum from C57BL/6 mice, NRK cells grew to smooth-surfaced spherical colonies, while NIH/3T3 colonies showed individual round cells on their surface and C3H/10T1/2 cells grew as extended cells forming columns of end to end connected fibroblasts. Mus Musculus Castaneus-Epithelial (MMC- E) cells were not stimulated to grow in soft agar under these conditions. The major fibroblast colony-inducing factor (F-CIF) was partially purified from mouse serum by acid/ethanol-extraction, gel permeation chromatography, and reverse-phase high-pressure liquid chromatography. F-CIF is a polypeptide, which does not compete for binding to epidermal growth factor (EGF) receptors, but stimulates normal fibroblasts to form small colonies in semisolid medium and very large colonies in the presence of added EGF (2 ng/ml). In contrast to unfractionated mouse serum, purified F-CIF did not induce C3H/10T1/2 cells to grow in soft agar, suggesting that serum contains additional cell type-specific agar growth-stimulating activities.  相似文献   

11.
Density-induced down regulation of epidermal growth factor receptors   总被引:4,自引:0,他引:4  
Summary Previous studies have shown that cell density can regulate the binding of several growth factors. To determine whether cell density exerts a uniform effect on the expression of epidermal growth factor (EGF) receptors, seven cell lines were examined in detail. For each cell line, EGF binding was found to decrease as cell density increases. Scatchard analysis of the binding data reveals that decreases in EGF binding are due to reductions in the number of cell surface EGF receptors. The only apparent exception is the effect of cell density on the binding of EGF to A-431 cells. For these cells, increases in cell density lead to two effects: decreases in the number of high affinity EGF receptors and increases in the total number of EGF receptors. In addition to the effects of cell density on EGF receptors, it was determined that increases in cell density can coordinately down-regulate receptors for as many as four different growth factors. Overall, the findings described in this report for EGF and those previously described for transforming growth factor type-β (TGF-β) and fibroblast growth factor (FGF) demonstrate the existence of a common mechanism for down-regulating growth factor receptors. This work was supported by grants from the Nebraska Department of Health (89-51), the National Cancer Institute (Laboratory Research Center Support Grant, CA36727), and the American Cancer Society (Core Grant ACS SIG-16). EDITOR'S STATEMENT The paper by Rizzino et al. demonstrates that receptor number decreases as a function of cell density. This may represent a mechanism by which cell proliferation is reduced as cell density increases.  相似文献   

12.
Summary Simian virus 40-transformed 3T3 cells are dependent on serum for survival and growth. This growth activity can be separated on a pH 2 Sephadex G100 column into two fractions: a high molecular weight activity and a low molecular weight substance that has recently been characterized as containing as its major agent, biotin. To replace the remainder of the serum requirement, hormones and other growth factors were tested. Both insulin at high, nonphysiological concentrations (200 to 500 ng/ml) and transferrin (5×10−8 M) stimulate the growth rate in low serum medium (0.3% v/v bovine calf serum DME) individually and, when added together, are nearly as growth enhancing as 10% serum. The need for the residual serum in this medium can be eliminated by the use of crystalline trypsin during trypsinization. Under these serum-free conditions, biotin and transferrin supplementation provide for moderately good growth (20 to 30 hr population doubling time, 1×106 cells/3.2-cm dish final cell density). Insulin addition further stimulates the growth rate (16 to 20 hr) and the final density (1.5×106 cells). Although the protein growth factors, EGF (0.5 to 1.0 ng/ml) and FGF (4 to 10 ng/ml), also appear to enhance growth individually and additively, their effects are slight and very variable. Nevertheless, the complete serum-free medium (DME supplemented with biotin, transferrin, insulin, EGF and FGF) yields growth comparable but still inferior to 10% serum supplementation (14-versus 12-hr population doubling time, 1 to 2×106 versus 2 to 3×106 cells final cell density). This work was supported by NIH Grant CA 20040.  相似文献   

13.
卵泡刺激素和表皮生长因子对小鼠精原细胞增殖的影响   总被引:2,自引:0,他引:2  
利用生殖细胞-体细胞体外无血清共培养模型研究了卵泡刺激素(FSH)和表皮生长因子(EGF)对小鼠A型精原细胞增殖的影响。精原细胞在ITS培养液(添加胰岛素、转铁蛋白和亚硒酸钠的DMEM)中培养24h后进行c-kit免疫细胞化学鉴定和EGF及其受体(EGFR)免疫细胞化学检测,72h后测定其形成集落数的情况。结果表明:ITS培养液能维持生殖细胞的活性,增殖细胞核抗原(PCNA)的表达增高。A型精原细胞呈c-kit阳性,EGF和EGFR主要表达于精原细胞。单独的FSH(1~100ng/ml)或EGF(1~10ng/ml)显著促进精原细胞集落数的增加。此外,EGF(0.1ng/ml)联合FSH(10ng/ml)具有加性效应,但更高剂量的EGF(1~10ng/ml)则降低了FSH的刺激作用。结果说明FSH可联合适量的EGF促进精原细胞的增殖。  相似文献   

14.
Summary Cloned mouse keratinocytes (MK-1 cells) display density-dependent growth arrest when reaching confluency in a serum-free medium with a calcium concentration <0.1 mM, supplemented only with insulin and transferrin. In this quiescent state, greater than 95% of the cell population is in the G0/1 phase of the cell cycle. Treatment of quiescent MK-1 cells with 1 to 10 ng/ml epidermal growth factor (EGF) resulted in a sharp burst of DNA synthetic activity. Both insulin and cholera toxin potentiated the mitogenic effect of EGF, but neither agent was necessary or sufficient to induce thymidine incorporation into DNA. Dexamethasone abolished the effect of insulin, but not the mitogenic effect of EGF alone. In contrast, retinoic acid (RA) did not possess any mitogenic effect for quiescent MK-1 cells, nor did it modulate the actions of EGF or dexamethasone. A number of commercially available crude extracts of bovine brain and pituitary were also capable of initiating DNA synthesis in resting MK-1 cells. Finally, transforming growth factor type beta (TGFβ) proved to be a potent inhibitor of the mitogen-induced DNA synthesis in MK-1 cells (IC50∶10pM). This defined culture system is eminently suited to study the regulation of DNA synthesis of epidermal cells. In addition, it can be used as a sensitive bioassay for the detection of epidermal mitogens, as well as inhibitors of DNA synthesis such as TGFβ. Supported by PHS Award CA-41556 from the National Cancer Institute, Bethesda, MD.  相似文献   

15.
Epidermal growth factor (EGF)-stimulated tyrosine phosphorylation of proteins was examined in cells expressing wild-type (WT-EGFR) EGF receptors or EGF receptors truncated at residue 973 (973-EGFR). A much broader spectrum of tyrosine phosphorylated proteins was found following EGF treatment of 973-EGFR expressing cells compared with cells expressing wild-type receptors. Several additional ras GTPase activating protein-associated tyrosine phosphorylated proteins were found in EGF-treated 973-EGFR cells relative to WT-EGFR cells. Additional tyrosine-phosphorylated proteins were also found to co-immunoprecipitate with phospholipase C gamma 1 (PLC gamma 1) following EGF treatment of cells expressing 973-EGFR relative to cells expressing WT-EGFR. EGF-stimulated tyrosine phosphorylation of PLC gamma 1 was found in cells expressing WT-EGFR, but not in cells expressing 973-EGFR. WT-EGF receptor from EGF-treated cells bound well to bacterially expressed src homology (SH) regions of PLC gamma 1 and to a lesser extent to bacterially expressed GTPase activating protein SH regions. No binding of 973-EGF receptor to SH regions of either protein could be detected. EGF treatment greatly reduced the half-life of WT-EGFR, but had relatively little effect on the half-life of 973-EGFR. EGF induced internalization of 973-EGFR at a slower rate than WT-EGFR and caused the appearance of discrete receptor degradation products for both cell types. The data indicate that truncation of the EGF receptor at residue 973 alters receptor substrate specificity, decreases the rate of receptor internalization, and has an inhibitory effect on receptor degradation.  相似文献   

16.
Rat mammary carcinoma (RMC) cells derived from serially transplantable mammary tumors are independent of epidermal growth factor (EGF) for long-term growth in serum-free medium. This phenotype is in contrast to that of normal mammary epithelial cells or cells derived from nontransplantable tumors that express an absolute requirement for EGF for growth in culture. The results of the experiments reported here indicate that EGF-independent RMC cells secrete a growth factor with potent EGF-like mitogenic activity. Conditioned media obtained from these cells can substitute for EGF for the growth of the EGF-dependent cell line MCF-10. This growth factor is neither EGF nor transforming growth factor alpha and does not compete with 125I-EGF for binding to EGF receptors. Phosphotyrosine Western blot analysis of lysates obtained from EGF-independent RMC cells revealed the presence of a 190 kilodalton (kDa) protein that was distinct from the EGF receptor. Similarly, growth of MCF-10 cells to confluence in serum-free medium supplemented with conditioned medium growth factor in place of EGF resulted in the disappearance of the EGF receptor band and appearance of the 190 kDa band in phosphotyrosine Western blots. The 190 kDa tyrosine-phosphorylated protein detected in cells stimulated by the conditioned medium factor is unlikely to be the c-erbB-2 protein, as indicated by negative results in immunoprecipitation experiments and in vitro kinase assays. In summary, EGF-independent RMC cells secrete a factor with potent EGF-like mitogenic activity. This suggests that an autocrine loop involving this growth factor mediates EGF independence in these cells.  相似文献   

17.
Transforming growth factors (TGFs) are growth-promoting polypeptides that cause phenotypic transformation and anchorage-independent growth of normal cells. They have been isolated from several human and animal carcinoma and sarcoma cells. One TGF is sarcoma growth factor (SGF) which is released hy murine sarcoma virus-transformed cells. The TGFs interact with epidermal growth factor (EGF) cell membrane receptors. TGFs are not detectable in culture fluids from cells which contain high numbers of free EGF cell membrane receptors. SGF acts as a tumor promoter in cell culture systems and its effect on the transformed phenotype is blocked by retinoids (vitamin A and synthetic analogs). The production of TGFs by transformed cells and the responses of normal cells to the addition of TGFs to the culture medium raise the possibility that cells “autostimulate” their own growth by releasing factors that rebind at the cell surface. The term “autocrine secretion” has been proposed for this type of situation where a cell secretes a hormone-like substance for which it has external cell membrane receptors. The autocrine concept may provide a partial explanation for some aspects of tumor cell progression.  相似文献   

18.
MCF-10A cells are a spontaneously immortalized normal human mammary epithelial cell line. MCF-10A cells were transfected with two expression vector plasmids containing either a human point-mutated c-Ha-ras protooncogene or the rat c-neu protooncogene. c-Ha-ras-transfected MCF-10A cells grow as colonies in soft agar, exhibit a 3- to 4-fold increase in their growth rate in serum-free medium, and show a reduced mitogenic response to exogenous epidermal growth factor (EGF) or transforming growth factor-alpha (TGF alpha) as compared to MCF-10A cells. c-Ha-ras-transfected MCF-10A cells express a 4- to 8-fold increase in TGF alpha mRNA levels and secrete 4- to 6-fold more TGF alpha protein as compared to MCF-10A cells. Addition of either an anti-TGF alpha neutralizing monoclonal antibody or an anti-EGF receptor blocking monoclonal antibody to the Ha-ras-transformed MCF-10A cells produces a 50 to 80% inhibition of colony formation of these cells in soft agar. c-neu-transfected MCF-10A cells grown in soft agar and exhibit an increase in their growth rate in serum-free medium at a level comparable to that observed in Ha-ras-transformed MCF-10A cells. Addition of an anti-c-erbB-2 monoclonal antibody inhibits the anchorage-independent growth of these cells in soft agar. However, c-neu-transformed MCF-10A cells show no increase in TGF alpha secretion and no change in their responsiveness to exogenous EGF or TGF alpha. A recombinant retroviral vector containing the human TGF alpha gene was also introduced into MCF-10A cells. TGF alpha-infected MCF-10A cells secrete 15- to 20-fold more TGF alpha protein than MCF-10A cells, form colonies in soft agar, exhibit an enhanced growth rate in serum-free medium, and show a decreased mitogenic response to exogenous EGF or TGF alpha at a level equivalent to Ha-ras-transformed MCF-10A cells. Growth of TGF alpha-infected MCF-10A cells in soft agar is completely inhibited by anti-TGF alpha neutralizing or anti-EGF receptor blocking monoclonal antibodies. These results suggest that TGF alpha is an intermediary in the transformation of human mammary epithelial cells by an activated c-Ha-ras gene, but not by the c-neu gene, and demonstrate that overexpression of this growth factor is able to transform immortalized human mammary epithelial cells which also express a sufficient complement of functional EGF receptors.  相似文献   

19.
Transformation of NIH/3T3 cells by Kirsten murine sarcoma virus (MSV) caused a dramatic reduction in the number of cell-surface receptors for epidermal growth factor (EGF). However, the number of EGF receptors remained at a very low level in a non-tumourigenic revertant cell line isolated from the virus-transformed cells, indicating that an increase in EGF receptors is not a requirement for the phenotypic reversion of Kirsten MSV-transformed 3T3 cells. Serum-free conditioned medium from normal and virus-transformed cell lines contained similar amounts of cell growth-promoting activity as assayed by the ability to stimulate DNA synthesis in quiescent Swiss 3T3 cell cultures. However, the concentrated conditioned medium from these cell lines showed no evidence of beta-transforming growth factor (TGF) activity as assayed by promotion of anchorage-independent growth of untransformed normal rat kidney (NRK) fibroblasts in agarose. The cellular release of alpha-TGF activity was assayed by measuring the ability of concentrated conditioned medium to inhibit the binding of 125I-EGF to Swiss 3T3 cells. Conditioned medium protein from the virus-transformed cell line inhibited 125I-EGF binding but only to the same extent as conditioned medium protein prepared from the untransformed cell line. The alpha-TGF secretion by these cell lines was estimated to be 30-45-fold lower than the level of alpha-TGF released by a well-characterized alpha-TGF-producing cell line (3B11). These results suggest that the induction of TGF release is not a necessary event in the transformation of NIH/3T3 cells by Kirsten MSV.  相似文献   

20.
The rate of cell division in olfactory epithelium (OE) is upregulated by ablation of the olfactory bulb (Carr and Farbman, 1992), or downregulated by occlusion of a naris. We used an organ culture assay of fetal rat olfactory mucosa to study regulation of the mitotic rate. Addition of any one of three members of the epidermal growth factor (EGF) family—EGF, transforming growth factor-α (TGF-α), or amphiregulin (AR)—to a serum-free culture medium resulted in a two- to threefold increase in the number of dividing OE cells. TGF-α elicited a maximal response in a dose of 100–200 pM culture medium and was 2 orders of magnitude more potent than the other EGF family members. Addition of TGF-β1, TGF-β2, insulinlike growth factor-1 or platelet-derived growth factor to the culture medium had slightly less effect than EGF or AR, in about the same molar dose range; addition of nerve growth factor had virtually no net effect on cell division. Immunohistochemistry on adult rat OE showed that basal cells, supporting cells, and acinar cells of Bowman's glands were immunoreactive with antibody to TGF-α but not with antibody to EGF. Most growth factors upregulated division of both olfactory neuron progenitors and supporting cells. The data suggest that several growth factors, most prominently TGF-α, may participate in the mitotic regulation of OE. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号