首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetin is used as an elicitor to induce vanillic acid formation in cell suspension cultures of Vanilla planifolia. Maximal induction is observed at a kinetin concentration of 20 micrograms per gram of fresh weight of cells. Vanillic acid synthesis is observed a few hours after elicitation. The effects of kinetin on the activity of some enzymes of the phenylpropanoid pathway, i.e. phenylalanine ammonia-lyase, 4-hydroxycinnamate:coenzyme A ligase and uridine 5′-diphosphate-glucose:trans-cinnamic acid glucosyltransferase, are reported and compared to the effects of chitosan. The former two enzymes are induced by chitosan with a maximum activity of approximately 25 to 40 hours after elicitation. All three enzymes are induced by kinetin with maximum activities for phenylalanine ammonia lyase and 4-hydroxycinnamate:coenzyme A ligase at approximately 50 hours after induction, whereas maximum glucosyltransferase activity is seen already after 24 hours. Furthermore, both elicitors induced the formation of lignin-like material, whereas only kinetin induced vanillic acid biosynthesis. Finally, kinetin but not chitosan induces catechol-4-O-methyltransferase activity, catalyzing the formation of 4-methoxycinnamic acids, which were shown to be intermediates of hydroxybenzoic acid biosynthesis within cells of V. planifolia. It is suggested that this methyltransferase is directly involved in the biosynthesis of vanillic acid.  相似文献   

2.
Primary processes during elicitation of the phenylpropanoid pathway (PPP) were studied in Petunia hybrida cell suspensions. We tested the hypothesis that decrease of the proton gradient across the plasma membrane activates the PPP. Induction of the PPP was determined by measuring phenylalanine ammonia lyase activity. A variety of ATPase inhibitors and ionophores were tested for the ability to elicit the PPP. The ATPase inhibitors orthovanadate and N,N′-dicyclohexylcarbodiimide and the ionophores carbonyl cyanide-4-trifluoromethoxyphenylhydrazone and nigericin were all effective elicitors. Carbonyl cyanide-4-trifluoromethoxyphenylhydrazone and nigericin elicit also when used in combination with N,N′-dicyclohexylcarbodiimide. Valinomycin had little effect on phenylalanine ammonia lyase activity. Treatment with orthovanadate or nigericin led to the formation of lignin. Alkalinization of the external medium by N,N′-dicyclohexylcarbodiimide, carbonyl cyanide-4-trifluoromethoxyphenylhydrazone, and nigericin was observed directly with the use of a sensitive pH electrode and internal acidification was deduced from the changes in emission intensity of the fluorescent probe bis[3-propyl-5-oxoisoxazol-4-yl] pentamethineoxonol. These data indicate that changes in the activity of the plasmamembrane H+-ATPase, and subsequent decrease of the proton gradient (particularly of the pH gradient) by itself are sufficient to influence phenylalanine ammonia lyase activity of P. hybrida cells and are therefore important intermediates in signal transduction.  相似文献   

3.
4.
Treatment of mature citrus fruit (Citrus sinensis) with ethylene induced rapid chlorophyll destruction, a rise in respiration, a release of free amino acids, an accumulation of reducing sugars, and an appearance of phenylalanine ammonia lyase activity. Gibberellin A3 (GA3) and N6-benzyladenine (BA) opposed the effects of ethylene on chlorophyll, amino acids, and to a lesser extent, reducing sugar levels. The ethylene-induced respiratory rise was only slightly modified by GA3 and BA. Phenylalanine ammonia lyase activity was not affected by GA3.  相似文献   

5.
In vitro cultures of Ruta graveolens L. respond with rapid accumulation of acridone epoxides, furoquinolines and furanocoumarins, when challenged with autoclaved homogenate of the yeast Rhodotorula rubra. A transient increase of several enzymes of the respective biosynthetic pathways was measured but we still look for the key regulatory enzymes. We investigated whether the branch point enzymes of the shikimic acid pathway anthranilate synthase (AS) and chorismate mutase (CM) possibly play such a role. The two enzymes compete for chorismate. AS forms anthranilate, the precursor amino acid of acridone and furoquinoline alkaloids. CM channels chorismate into phenylalanine, tyrosine and phenylpropanoid biosynthesis. Elicitation resulted in a transient increase of the activity of both enzymes. Relative induction rates were 2–4 fold for AS and about 1.5 fold for CM. Constitutive CM activity, however, is about 1000 fold higher than AS activity. As in other plants 2 isoforms of CM are expected to be present in R. graveolens. A differential determination of the activity of the isoforms via the tryptophan activation rate proved to be ambiguous. Some evidence for the specific induction of a plastidic form of CM was obtained by inhibition of translation. The time courses of CM induction show CM not to be a key enzyme in elicitor induction of furanocoumarin accumulation. In comparison to other enzyme activities induction of anthranilate synthase activity corresponds closest to inducible acridone epoxide accumulation indicating a key role in its regulation. Induction of AS and CM was inhibited by actinomycin D and chloramphenicol while cycloheximid inhibited AS induction only.Abbreviations ACT actinomycin D - AS anthranilate synthase - CAP chloramphenicol - CHX cycloheximid - 4-CL 4-coumarate CoA ligase - CM chorismate mutase - DTT dithiothreitol - NMT S-adenosyl-L-methionine:anthranilic acid N-methyltransferase - PAL phenylalanine ammonia lyase - XOMT S-adenosylmethionine: xanthotoxol-O-methyltransferase  相似文献   

6.
Both phenylalanine ammonia lyase and tyrosine ammonia lyase were detected in tobacco (Nicotiana tabacum L. Wisconsin 38) callus. The enzymes were separated from each other by Sephadex G-200 column chromatography. Increased activity of tyrosine ammonia lyase was observed during culture of tobacco callus under shoot-forming conditions, while activity of phenylalanine ammonia lyase increased during culture under non-organ-forming conditions. Confirmation of these findings was obtained by examining the incorporation of [14C]tyrosine and [14C]phenylalanine into p-coumarate and trans-cinnamate, respectively.  相似文献   

7.
Potato (solanum tuberosum L. cv Katahdin) tuber discs treated with arachidonic acid become necrotic and accumulate sesquiterpenoid phytoalexins. The arachidonic acid also causes increases in both phenylalanine ammonia lyase and lignin, but no change in total alcohol-soluble phenols. Linoleic acid does not alter any of these parameters. A high concentration of nonanoic acid promotes both necrosis and accumulation of low levels of phytoalexins, but decreased levels of phenols, phenylalanine ammonia lyase, and lignin. The respiration of the control discs and those treated with linoleic acid declines by 24 hours after treatment, but the respiration of arachidonic acid-treated discs remains constant for at least 48 hours.  相似文献   

8.
Addition of cell wall fragments from Phytophthora species or cellulase from Trichoderma viride, but not pectolyase from Aspergillus japonicus, to tobacco (Nicotiana tabacum) cell suspension cultures induced the accumulation of the extracellular sesquiterpenoid capsidiol. Pulse-labeling experiments with [14C]acetate and [3H]mevalonate suggested that enzymatic steps preceding mevalonate were limiting capsidiol biosynthesis in the pectolyase-treated cell cultures. Treatment of the cell cultures with either Phytophthora cell wall fragments or cellulase induced 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and sesquiterpene cyclase activities, enzymes of the sesquiterpene biosynthetic pathway, and phenylalanine ammonia lyase activity, an enzyme of the general phenylpropanoid pathway. Pectolyase treatment induced sesquiterpene cyclase and phenylalanine ammonia lyase activities, but not HMGR activity. These results corroborate the importance of inducible HMGR enzyme activity for sesquiterpene accumulation.  相似文献   

9.
Increases in the synthesis of the isoflavonoid, pisatin, and the activity of phenylalanine ammonia lyase (PAL) are induced in excised pea pods by low concentrations (5×10?4M) of CdCL2. The induction of pisatin synthesis and PAL are suppressed if RNA-synthesis-inhibiting concentrations of 6-methyl purine, actinomycin D or ∝-amanitin are applied within 1 h of inducer application. Cycloheximide (0.1 mg/ml) blocks the induction of these responses if applied to tissues within 6 h after inducer application. Within 1 h after CdCl2 (5×10?4M) is applied to pods there is an increase in the rate of synthesis of all sizes of RNA as well as an increase in the template activity and dye binding capacity of pea chromatin. The results support the hypothesis that conformational changes in DNA are associated with the induction process.  相似文献   

10.
Cell suspension cultures (cell line No 615) of Catharanthus roseus cv. Little Delicata responded to elicitor treatment by accumulating monoterpenoid indole alkaloids and phenolic compounds. The excretion of phenols into the culture medium resulted from the induction of the branch-point enzyme phenylalanine ammonia lyase. The accumulation of alkaloids, however, occurred several hours earlier than the elicitor-mediated induction of tryptophan decarboxylase through which shikimate pathway intermediates are channelled into tryptamine and related indole alkaloids. The results indicate that both pathways for phenol and indole alkaloid biosynthesis responded to elicitor treatment and that no obvious causal relationship between pathways could be deduced from this study.Abbreviations PAL phenylalanine ammonia lyase - TDC tryptophan decarboxylase Dedicated to Dr. Friedrich Constabel on the occasion of his 60th birthday  相似文献   

11.
Effect of nitrate on the nitrogenase (C2H2-reduction) activity, growth of nodule tissue accumulation of nitrate and nitrate reductase activity in 4-weeks-old nodulated peas (Pisum sativum l.) was investigated. A relatively slow decrease of the total nitrogenase activity (μmol C2H4 per root per h), as compared with plants cultivated without nitrate, was due to both retardation of further growth of the nodule tissue and to a decrease of their specific nitrogenase activity (μmol C2H4 per gf.wt. per h). However, an absolute and pronounced decrease of both nitrogenase activities occurred only 4 or 7 d after the application of nitrate. The addition of nitrate led to its rapid accumulation in the nodule and leaf tissue with a simultaneous induction of the nitrate reductase activity. The nitrogenase activity was not completely inhibited even after a 7-d cultivation with 280 ppm NO3 ?-N in the nutrient medium and after accumulation of up to 180 ppm NO3 ?-Nf.wt. in the nodule tissue. The results obtained indicate that the “photosynthate deprivation” reflects competition between assimilation of nitrate and fixation of dinitrogen.  相似文献   

12.
bstract Suspension cultures of Coleus blumei (Lamiaceae) treated with either an elicitor preparation from the culture medium of the phytopathogenic oomycete Pythium aphanidermatum or with methyl jasmonate enhanced accumulation of rosmarinic acid approximately threefold. The specific activities of phenylalanine ammonia lyase and rosmarinic acid synthase were also enhanced after addition of the fungal elicitor. The addition of methyl jasmonate transiently increased activities of phenylalanine ammonia lyase and hydroxyphenylpyruvate reductase, whereas the activity of rosmarinic acid synthase was not stimulated and the activity of tyrosine aminotransferase was slightly and constantly enhanced. Methyl jasmonate stimulated rosmarinic acid accumulation not only when added directly to the culture medium, but also when it could reach the cells only via the gas phase. Received: 2 April 1997 / Revision received:16 June 1997 / Accepted: 15 September 1997  相似文献   

13.
Cell suspension cultures of parsley (Petroselinum crispum) accumulated coumarin phytoalexins and exhibited increased β-1,3-glucanase activity when treated with either a purified α-1,4-d-endopolygalacturonic acid lyase from Erwinia carotovora or oligogalacturonides solubilized from parsley cell walls by endopolygalacturonic acid lyase. Coumarin accumulation induced by the plant cell wall elicitor was preceded by increases in the activities of phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL) and S-adenosyl-l-methionine:xanthotoxol O-methyltransferase (XMT). The time courses for the changes in these three enzyme activities were similar to those observed in cell cultures treated with a fungal glucan elicitor. The plant cell wall elicitor was found to act synergistically with the fungal glucan elicitor in the induction of coumarin phytoalexins. As much as a 10-fold stimulation in coumarin accumulation above the calculated additive response was observed in cell cultures treated with combinations of plant and fungal elicitors. The synergistic effect was also observed for the induction of PAL, 4CL, and XMT activities. These results demonstrate that plant cell wall elicitors induce at least two distinct biochemical responses in parsley cells and further support the role of oligogalacturonides as important regulators of plant defense.  相似文献   

14.
15.
Soybean seedlings (Glycine max, cv. Harosoy 63) which had been inoculated in the hypocotyls with mycelium from either race 1 (incompatible) or race 3 (compatible) of Phytophthora megasperma f. sp. glycinea were pulse labeled with 14CO2. The time course of accumulation of glyceollin and daidzein and of 14C incorporation into these compounds was determined. Metabolic rates of glyceollin were measured by pulse-chase experiments. Differences in glyceollin accumulation between the incompatible and compatible interaction were not apparent before about 14 h after inoculation. Subsequently glyceollin accumulated to a higher level in the incompatible interaction. This difference is also reflected in the rate of 14C incorporation, which declines more rapidly in the compatible interaction. The apparent half-life of glyceollin metabolism was 28 ± 7 h for inoculation with race 1, while no metabolism was observed with race 3. In contrast to a previous report (M. Yoshikawa, K. Yamauchi, and H. Masago (1979)Physiol. Plant Pathol.14, 157–169), our data prove that the higher accumulation of glyceollin in the incompatible interaction is due to a longer duration of synthetic activity and that the level of glyceollin in both the incompatible and compatible interaction is determined predominantly by its rate of synthesis.  相似文献   

16.
The accumulation of the isoflavonoid phytoalexin, glyceollin, occurs in hypocotyls of green soybean seedlings (Glycine max L. Merr. cv Harosoy 63) in response to the injection of a glucan elicitor isolated from the mycelial walls of the fungus, Phytophthora megasperma f. sp. glycinea. This accumulation, which levels off after 24 hours, is preceded by a dramatic, transient rise in extractable activities of two early enzymes in the biosynthetic pathway, phenylalanine ammonia-lyase (PAL) and p-coumaryl CoA ligase (pCL). The maximum amount of extractable activity occurs 12 to 16 hours after elicitor treatment and is coincident with the most rapid period of glyceollin accumulation. These results suggest a regulatory role for these early enzymes in the biosynthesis of this secondary metabolite. High performance liquid chromatography analysis of the early intermediates in the pathway further corroborates this hypothesis. The relative pool size and rate of turnover of p-coumaric acid, an early intermediate in glyceollin production, increase during the period of rapid increases in enzyme activities. Removal of cotyledons from elicitor-treated seedlings reduces glyceollin accumulation approximately 70%. This limitation of phytoalexin accumulation by cotyledon removal is correlated with a similar cotyledon effect on reduction of extractable activities of both PAL and pCL as well as a decrease in the flux of carbon through the p-coumaric acid pool. This research further supports the hypothesis that early enzymic steps in a biosynthetic pathway diverting carbon from primary to secondary metabolites function as regulatory control points.  相似文献   

17.
Hydrogen sulfide (H2S) has proved to be a multifunctional signaling molecule in plants and animals. Here, we investigated the role of H2S in the decay of fresh-cut pears (Pyrus pyrifolia). H2S gas released by sodium hydrosulfide (NaHS) prolonged the shelf life of fresh-cut pear slices in a dose-dependent manner. Moreover, H2S maintained higher levels of reducing sugar and soluble protein in pear slices. H2S significantly reduced the accumulation of hydrogen peroxide (H2O2), superoxide radicals (•O2 ) and malondialdehyde (MDA). Further investigation showed that H2S fumigation up-regulated the activities of antioxidant enzymes ascorbate peroxidase (APX), catalase (CAT), and guaiacol peroxidase (POD), while it down-regulated those of lipoxygenase (LOX), phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO). Furthermore, H2S fumigation effectively inhibited the growth of two fungal pathogens of pear, Aspergillus niger and Penicillium expansum, suggesting that H2S can be developed as an effective fungicide for postharvest storage. The present study implies that H2S is involved in prolonging postharvest storage of pears by acting as an antioxidant and fungicide.  相似文献   

18.
Increases in phenylalanine ammonia lyase activity and pisatin synthesis were induced in excised pea pods (a) by basic polypeptides such as protamine, histone, lysozyme, cytochrome c, and ribonuclease; (b) by the polyamines spermine, spermidine, cadaverine, and putrescine, and (c) by the synthetic oligopeptides poly-l-lysine, poly-dl-ornithine, and poly-l-arginine.Poly-l-lysine (1 milligram per milliliter, molecular weight 7,200) was utilized as a model inducer of pisatin and phenylalanine ammonia lyase. The poly-l-lysine-induced responses could be inhibited by adding the RNA synthesis inhibitors cordycepin or alpha-amanitin to the pods prior to or at the time of inducer application. Cordycepin added 1.5 hours after inducer no longer completely inhibited induction. The application of poly-l-lysine was shown to characteristically change the rate of RNA synthesis within 30 minutes. Ultrastructural changes in pea nuclei were detected within 3 hours, and gross changes in nuclear morphology were apparent at 14 hours after inducer application. The physical appearance of uranyl acetate-stained chromatin isolated from poly-l-lysine 2 hours after inducer application differed from that of water-treated tissues. The template properties of chromatin extracted from pods 3 hours after inducer application were consistently superior to control chromatin when assayed with Escherichia coli RNA polymerase (without sigma factor). Chromatin from poly-l-lysine-induced tissue also bound 49% more actinomycin D-(3)H.The DNA-complexing properties of inducer compounds and the induced changes in the template and dye-binding properties of pea chromatin formed the basis for a proposed mode of action for phytoalexin induction.  相似文献   

19.
Suspension cultured cells of a blast-resistant rice genotype (Oryza sativa L. cv. Gigante Vercelli) were treated with cell wall hydrolysates prepared from the fungal pathogen Magnaporthe oryzae. As a consequence, a complex pattern of phenylalanine ammonia lyase time course specific activity levels was evident. Ion-exchange chromatographic fractionation of crude extracts suggested that the early (6 h) and the late (48-72 h after elicitation) increase of activity relied upon the sequential induction of two different isoenzymes. The relative expression levels of 11 genes putatively coding for a phenylalanine ammonia lyase were measured by semi-quantitative capillary gel electrophoresis of RT-PCR products. Two genes were indeed found to be induced by treatments with the hydrolysate, and data were validated by real-time PCR. Conversely, only the early-responsive enzyme form was observed following elicitation in a blast-sensitive rice genotype (cv. Vialone nano). Therefore, the late-responsive isoform may represent a candidate gene to select for decreased sensitivity to blast.  相似文献   

20.
Compounds with planar triple ring systems such as acridine orange, 9-amino acridine, 9-amino-1,2,3,4-tetrahydroacridine (tacrine), 6,9-diamino-2-ethoxyacridine lactate monohydrate (DE-acridine), 6-chloro-9-(3′-diethylamino-2′-hydroxypropylamino) -2-methoxyacridine·2 HCl (CDM-acridine), quinacrine, 6-chloro-9-(4′-diethylamino-1′-methylbutylamino) -2-methoxy-1,10-diazaanthracene (CDM 1,10-diazaanthracene), thionine, azure A, methylene blue, and pyronine Y when applied to excised pea pods were potent inducers of phenylalanine ammonia lyase or of pisatin, or of both. Compounds with an array of structural variation around the planar three-ring system were tested for their ability to induce these responses in pea tissue. In general, dimethylamino, diethylamino, or amino substitutions at position 2 and 6 or an amino (with or without an aliphatic side chain) substitution at position 9 of the three-ring system augmented induction potential. Methyl green, methylene blue, 2,7-diaminofluorene, nile blue, neutral red, pyrogallol red, ethidium bromide, nogalamycin, quinine, chloroquine, spermine, 8-azaguanine, gliotoxin, chromomycin A3, actinomycin D, and mitomycin C were also potent inducers. The inhibition of phenylalanine ammonia lyase induction by the application of actinomycin D (300 micrograms per milliliter) or 6-methylpurine (1 milligram per milliliter) within 1 hour after inducer application indicated that newly synthesized RNA is necessary for induction. Phenylalanine ammonia lyase induction was also inhibited by cycloheximide (150 micrograms per milliliter).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号