首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An analysis of the quantitative data obtained by processing the confocal images showed that the early variability of expression patterns of zygotic segmentation genes in Drosophila drastically decreases by the time of the onset of gastrulation. The following components of variability were examined: the scatter of the levels of gene expression in different embryos, the time and sequence of the formation of expression domains, the type of their formation, and the domain positioning. It was found that the positioning error at the level of zygotic genes is dynamically filtered with time.  相似文献   

2.
In order to reconstruct the establishment of the body pattern over time in Drosophila embryos, we have developed automated methods for detecting the age of an embryo on the basis of knowledge about its gene expression patterns. In this paper we perform temporal classification of confocal images of expression patterns of genes controlling segmentation by means of a neural network based on multi-valued neurons (MVN). MVN are artificial neural processing elements with complex-valued weights and high functionality, which proved to be efficient for solving the image recognition problems. The results obtained by this method confirm its efficiency for image recognition and indicate that the method can detect characteristic features of expression patterns which mark their development over time.  相似文献   

3.
Analysis of the quantitative data obtained by processing the confocal images showed that the initial variability of the expression pattern of Drosophila zygotic segmentation genes was strongly reduced by the onset of gastrulation. The following variability components were studied: the range of gene expression intensity in different embryos, the time and succession of the formation of expression domain, types of formation, and domain positioning. At the level of zygotic genes, the positioning error proved to be dynamically filtered with time.  相似文献   

4.
The formation of the segmentation pattern in Drosophila embryos provides an excellent model for investigating the process of pattern formation in multicellular organisms. Several genes required in an embryo for normal segmentation have been analyzed by classical and molecular genetic and morphological techniques. A detailed consideration of these results suggests that these segmentation genes are combinatorially involved in translating the positional identities of individual cells at an early stage in Drosophila development.  相似文献   

5.
The sex-determination genes of Drosophila act to repress the developmental pathway for the internal somatic reproductive organs of the opposite sex. By misregulating this pathway during preadult development, the organ-specific expression pattern of the glucose dehydrogenase gene (Gld) in the reproductive tract of adult flies has been changed without a concomitant sexual transformation of the reproductive organs. Misregulation of the tra, tra-2, and dsx genes leads to very similar patterns of ectopic expression of Gld. The induced ectopic patterns of Gld expression at the adult stage occur in a small subset of organs which all normally express the Gld gene during their morphogenesis. These ectopic patterns are irrevocably set during late larval-early pupal development. The normal pattern of Gld expression in several other Drosophila species is quite similar to the ectopic patterns which we have generated in D. melanogaster, suggesting that the interspecific variation in Gld expression may result from variation in the expression of the sex-determination genes.  相似文献   

6.
Summary A systematic search for X chromosome loci showing a dominant maternal interaction with the segmentation genes Krüppel, hunchback, knirps and hairy was performed using deficiencies spanning 65% of the X chromosome. No interaction with the knirps gene was observed, but five regions of the X chromosome showed a maternal dominant interaction with the Krüppel gene. Two of these regions also show a maternal dominant interaction with either hunchback (region 10A7–10A8) or hairy (region 10E1–10F3). In all of these interactions dead embryos were observed which showed the same defects as embryos homozygous for the segmentation gene tested. These results suggest that a complex repartition of maternal products necessary for subsequent segmentation may occur in the Drosophila egg.  相似文献   

7.
The BarH1 and BarH2 homeobox genes are coexpressed in cells of the fly retina and in the central and peripheral nervous systems. The fly Bar genes are required for normal development of the eye and external sensory organs. In Xenopus we have identified two distinct vertebrate Bar-related homeobox genes, XBH1 and XBH2. XBH1 is highly related in sequence and expression pattern to a mammalian gene, MBH1, suggesting that they are orthologues. XBH2 has not previously been identified but is clearly related to the Drosophila Bar genes. During early Xenopus embryogenesis XBH1 and XBH2 are expressed in overlapping regions of the central nervous system. XBH1, but not XBH2, is expressed in the developing retina. By comparing the expression of XBH1 with that of hermes, a marker of differentiated retinal ganglion cells, we show that XBH1 is expressed in retinal ganglion cells during the differentiation process, but is down-regulated as cells become terminally differentiated. Received: 12 August 1999 / Accepted: 5 October 1999  相似文献   

8.
9.
10.
11.
新基因的起源和进化对基因组多样性的产生具有重要的贡献.新基因起源常常通过外显子重排而形成嵌合的基因结构,以产生具有新功能的蛋白质.该文调查了在黒腹果蝇中的14个新起源的嵌合基因在群体中的多态性,发现其中8个在群体中的核苷酸多态性会引起提前终止子,而其他6个在群体中编码框都完整且其中4个受到负选择.研究结果表明,嵌合新基因起源后可能存在两种命运:积累提前终止子突变而假基因化,或者表现出一定功能而受自然选择固定下来.基因表达的数据显示,与RNA介导外显子重排(逆转座)形成的新基因不一样,这些由DNA水平外显子重排产生的新基因没有精巢或者雄性特异性表达模式,而是表现出更为多样性的时空表达模式,这提示尽管通过DNA水平外显子重排产生的新基因可能正在变成假基因或者非蛋白质编码的RNA基因,但它们依然可能具有进化出广泛的生物学功能的潜力.  相似文献   

12.
Zhan ZB  Zhang Y  Zhao RP  Wang W 《动物学研究》2011,32(6):585-595
Origin and evolution of new genes contribute a lot to genome diversity. New genes usually form chimeric gene structures through DNA-based exon shuffling and generate proteins with novel functions. We investigated polymorphism of 14 chimeric new genes in Drosophila melanogaster populations and found that eight have premature stop codons in some individuals while six are intact in the population, four of which are under negative selection, suggesting the two evolutionary fates of new chimeric genes after origination: accumulate premature stop codons and pseudolize, or acquire functions and get fixed by natural selection. Different from new genes originated through RNA-based duplication (retroposition) which are usually testis-specific or male-specific expressed, the expression patterns of these new genes through DNA-based exon shuffling are temporally and spatially diverse, implying that they may have the potential to evolve various biological functions despite that they may become pseudogenes or non-protein-coding RNA genes.  相似文献   

13.
The anion/cation symporter (ACS) family is a large subfamily of the major facilitator superfamily (MFS) of transporters. ACS family permeases are widely distributed in nature and transport either organic or inorganic anions in response to chemiosmotic cation gradients. The only protein in the ACS family to which a human disease has been linked, is sialin, the proton-driven lysosomal carrier for sialic acid. Genetic defects in sialin cause a lysosomal storage disease in humans. Here we have identified a group of conserved Drosophila ACS family genes related to sialin and studied their expression patterns throughout embryogenesis. Drosophila sialin-related genes are expressed in a wide variety of tissues. Expression is frequently observed throughout various parts of the intestinal tract, including Malpighian tubules and salivary glands. Additionally, some genes are expressed in vitellophages (yolk nuclei), nervous system, respiratory tract and a number of other embryonic tissues. These data will aid the establishment of a fruitfly model of human lysosomal storage disorders, the most common cause of neurodegeneration in childhood.  相似文献   

14.
The zfh-1 and zfh-2 genes of D. melanogaster encode novel proteins containing both homeodomain and C2-H2 zinc-finger DNA-binding motifs. Antisera against these proteins were used to investigate their expression patterns during embryonic development. The zfh-1 gene is expressed in the mesoderm of early embryos and in a number of mesodermally-derived structures of late embryos, including the dorsal vessel, support cells of the gonads, and segment-specific arrays of adult muscle precursors. In addition, zfh-1 is expressed in the majority of identified motor neurons of the developing CNS. The mesodermal zfh-1 expression requires the products of the twist and snail genes. The zfh-2 gene displays a more limited expression pattern, largely restricted to the CNS of late embryos. Ubiquitous zfh-1 expression in transgenic flies bearing an hsp70-zfh-1 construct has specific developmental consequences, including embryonic CNS defects as well as adult eye and bristle abnormalities. The expression patterns of zfh-1 and zfh-2 suggest that both genes may be involved in Drosophila neurogenesis and that zfh-1 may have additional functions in mesoderm development.  相似文献   

15.
S B Carroll  M P Scott 《Cell》1986,45(1):113-126
The establishment of the segmental body pattern of Drosophila requires the coordinated functions of three classes of zygotically active genes early in development. We have examined the effects of mutations in these genes on the spatial expression of the fushi tarazu (ftz) pair-rule segmentation gene. Mutations in four gap loci and in three pair-rule loci dramatically affect the initial pattern of transverse stripes of ftz-containing nuclei. Five other pair-rule genes and several other loci that affect the larval cuticular pattern do not detectably affect ftz expression. No simple regulatory relationships can be deduced. Rather, expression of the ftz gene depends upon the interactions among the different segmentation genes active at each position along the anterior-posterior axis of the early embryo.  相似文献   

16.
The kidneys of androgen stimulated mice exhibit a hypertrophic response but no hyperplasia or concomitant DNA replication. Androgens increase the expression of several genes in mouse kidney. The response of the beta-glucuronidase gene to testosterone in this tissue is characterized by a 1-2 day lag and relatively slow induction kinetics. The gene coding for kidney androgen-regulated protein (KAP) exhibits quite a different response to the hormone when compared on the basis of initial response to a given dose, dose required to produce maximal response, and apparent sensitivity to low levels of androgen-receptor complexes in renal nuclei. The analysis of the accumulation of the mRNAs produced by these two genes suggests that gene-specific differential sensitivity to androgen receptor complexes governs the development of the cellular male phenotype in this tissue.  相似文献   

17.
18.
19.
20.
The conserved relationship between orthologs of many cytochrome P450 genes involved in ecdysone synthesis is not reflected in the evolution of the Drosophila Cyp307a genes. In Drosophila melanogaster Cyp307a1 (spook) and Cyp307a2 (spookier) both play essential roles in ecdysone synthesis and may possess biochemically redundant functions. Using phylogenetic analyses we show that the Drosophila Cyp307a genes were formed from two independent duplication events depicting a complicated evolutionary scenario. An initial duplication, from a Cyp307a2 ancestral gene produced the Cyp307a1 gene that has been maintained only in the Sophophoran subgenus. A second duplication in the Drosophila subgenus formed an additional paralog, Cyp307a3. Microsynteny is conserved for Cyp307a2 throughout the Drosophila species, but is not conserved between Cyp307a1 and Cyp307a3. These are located in different genomic positions in the Sophophora and Drosophila subgenera, respectively. Cyp307a3 appears to encode a functional gene product and is expressed in a different spatial and temporal manner to Cyp307a1. This suggests some level of functional divergence between the Cyp307a paralogs in different Drosophila species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号