首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell walls of the fungi Saprolegnia diclina Humphrey and Tremella mesenterica Fries were analyzed quantitatively. Particular attention was paid to the hydrolysis and analysis of neutral sugars, amino sugars and amino acids. These components, together with total lipids, total uronic acids and the ashed residue, accounted for more than 90% by weight of the original dry cell wall preparation. There were substantial losses of amino acids during hydrolysis; however, analytical recovery approached 100% when total protein was calculated from the total nitrogen analysis. The analytical procedures were reproducible (±3% for amino acids and amino sugars, and ±5–10% for other components) when applied to individual cell wall preparations. However, even under carefully standardized conditions, different cell wall preparations from the same species showed variable composition.Glucose was the predominant neutral sugar in the cell wall polymers of both species. The amino acid compositions were remarkable in that neither species contained detectable levels of cyst(e)ine. Hydroxyproline was detected in both species. The report from Tremella mesenterica is the first for this imino acid from the cell wall of a Basidiomycete.  相似文献   

2.
Summary Wheat straw (WS) was treated with 5% sodium hydroxide, ozone and 5% sulfur dioxide at 70°C for 72 h, and the effect of treatments on monosaccharide composition and in vitro degradability by rumen microorganisms was studied. The major sugars, glucose and xylose, comprising about 90% of the total monosaccharides in the untreated WS were mainly confined to the cell walls. SO2 exerted the greatest solubilizing effect, followed by ozone and NaOH; the respective values for the solubilized cell wall polysaccharides were: 26, 12 and 4.4%. One third of the total phenolics was oxidized by ozone, whereas, SO2 exerted mostly a solubilizing effect on this fraction, converting 75% of it into soluble phenolics. In the NaOH treated WS 41% of the total phenolics were soluble, as compared to 22% in the untreated. The in vitro digestibility of monosaccharides in the untreated WS were initially high: 50% and 58% for xylose and glucose, respectively and 63% to 80% for the minor sugars. The SO2 treatment resulted in an overall increase in digestibility of monosaccharides with values lying in the range of 90%. Sodium hydroxide was more efficient than ozone in enhancing the degradability of xylan and total sugars. The digestibility of cell wall sugars was increased from 52.4% to 84.4%, 63.4% and 72.3% by SO2, O3 and NaOH treatments respectively. Based on the present findings, it appears that wheat straw cell wall components are more sensitive to hydrolytic than to oxidative processes aimed at increasing its degradability by rumen microorganisms. SO2 exerted on WS a multi-effect which was particularly suitable for increasing the digestibility of monosaccharides.  相似文献   

3.
Neutral sugar composition of cell walls of suspension-cultured tobacco cells was examined with the advance of culture age by an anion-exchange chromatography. Isolated cell walls gave on hydrolysis the following sugars: 2% of l-rhamnose, 6% of d-mannose, 26% of l-arabinose, 13% of d-galactose, 8% of d-xylose and 47% of d-glucose as neutral sugars. Little changes in composition of cell wall polysaccharides were recognized with the advance of culture age. Sugar composition of the extra-cellular polysaccharides was similar to that of hemicellulose fraction from cell walls. Pectinic acid gave on hydrolysis 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, d-galacturonic acid and its oligosaccharides.  相似文献   

4.
Chen  FT; Dobashi  TS; Evangelista  RA 《Glycobiology》1998,8(11):1045-1052
A method for quantitative analysis of monosaccharides including N- acetylneuraminic acid derived from sialic acid-containing oligosaccharides and glycoproteins is presented. The analysis is based on the combination of chemical and enzymatic methods coupled with capillary electrophoretic (CE) separation and laser-induced fluorescence (LIF) detection. The present method utilizes a simplified acid hydrolysis procedure consisting of mild hydrolysis (0.1 M TFA) to release sialic acid and strong acid hydrolysis (2.0 N TFA) to produce amino and neutral sugars. Amino sugars released from strong acid hydrolysis of oligosaccharides and glycoproteins were reacetylated and derivatized with 8-aminopyrene-1,3,6-trisulfonate (APTS) along with neutral sugars in the presence of sodium cyanoborohydride to yield quantitatively the highly stable fluorescent APTS adducts. N- acetylneuraminic acid (Neu5Ac), a major component of most mammalian glycoproteins, was converted in a fast specific reaction by the action of neuraminic acid aldolase (N-acylneuraminate pyruvate-lyase EC 4.1.3.3) to N-acetylmannosamine (ManNAc) and pyruvate. ManNAc was then derivatized with APTS in the same manner as the other monosaccharides. This method was demonstrated for the quantitation of pure Neu5Ac and the species derived from mild acid hydrolysis of 6'-sialyl-N- acetyllactosamine and bovine fetuin glycan. Quantitative recovery of the N-acetylmannosamine was obtained from a known amount of Neu5Ac in a mixture of seven other monosaccharides or from the sialylated oligosaccharides occurring in glycoproteins. The sequence of procedures consists of acid hydrolysis, enzymatic conversion and APTS derivatization which produced quantitative recovery of APTS- monosaccharide adducts. The detection limits for sugars derivatized with APTS and detected by CE-LIF are 100 pmol for Neu5Ac and 50 pmol for the other sugars.   相似文献   

5.
According to the acid-growth hypothesis, auxin-induced secretion of hydrogen ions activate “wall loosening” enzymes that change the rheological properties of the cell wall. The wall loosening process may yield monosaccharides by the enzymic cleavage of load-bearing polysaccharides. Our study was initiated to determine the metabolic fate of such sugars when released from the major hemicellulosic polysaccharides of the cell walls of Zea mays coleoptiles.  相似文献   

6.
Cell walls of Histoplasma capsulatum and Blastomyces dermatitidis, obtained by mechanical breakage of yeast- and mycelial-phase cultures, were lipid-extracted and then fractionated with ethylenediamine. Unextracted cell walls, lipid-extracted cell walls, and the three fractions resulting from ethylenediamine treatment were examined for monosaccharide and chitin content. The yeast-phase cell walls of five strains of H. capsulatum fell into two categories, designated chemotypes I and II, one of which, chemotype II, was similar to yeast-phase cell walls derived from three strains of B. dermatitidis. H. capsulatum chemotype I cell walls were characterized by lower content of material soluble in ethylenediamine, higher chitin content, and lower monosaccharide content than H. capsulatum chemotype II or B. dermatitidis cell walls. Approximately 80% of the monosaccharides of chemotype I cell walls was combined in forms susceptible to attack by mild acid hydrolysis, compared with about 50% of the monosaccharides of chemotype II and B. dermatitidis. H. capsulatum and B. dermatitidis yeast-phase cell walls could be distinguished, however, by their susceptibility to attack by a crude enzyme system derived from a Streptomyces sp. incubated with chitin as the only carbon source. Both glucose and acetylglucosamine were released from H. capsulatum cell walls, regardless of chemotype, during enzymatic hydrolysis, whereas only acetylglucosamine was released from B. dermatitidis yeast-phase cell walls. Mycelial-phase cell walls of H. capsulatum and B. dermatitidis were characterized by lower content of material soluble in ethylenediamine, higher proportions of mannose, and lower chitin content than their respective yeast phases. Glucose and acetylglucosamine were both released from all mycelial-phase cell walls, whether H. capsulatum or B. dermatitidis, by the crude enzyme system.  相似文献   

7.
In germinating lupin cotyledons, there was a rapid depletion of raffinose series oligosaccharides, a temporary increase in sucrose and constant low levels of reducing monosaccharides. The major polysaccharide fraction was extracted with hot NH4 oxalate—EDTA solution and had the constitution of intercellular/cell wall polysaccharide. GLC examination of component sugars showed that as cotyledons expanded this fraction was depleted and that there was selective hydrolysis of arabinose and galactose, so that the uronic acid proportion increased. Gel and DEAE-cellulose chromatography showed that this fraction became more heterogeneous. The neutral and acidic fractions were separated and the component sugars, viscosities, gel chromatographic behaviour and sedimentation constants of these determined. The results indicated that in the later phase of plant cell wall expansion in germinating lupin cotyledons the arabinogalactan side chains of the pectic polysaccharide fraction are selectively hydrolysed leaving a primary wall with a high uronic acid content.  相似文献   

8.
1. Cyst walls of the potato cyst-nematode (Heterodera rostochiensis Woll.) were isolated by sieving a suspension of crushed cysts. About 12mg. of dried cyst walls was obtained from 1000 cysts. 2. The cyst walls contained mainly protein (72%, calculated from nitrogen content). On acid hydrolysis about 77% of the cyst wall went into solution. Of 19 amino acids present, proline, glycine, and alanine were the most abundant, and made up about 50% by weight of the total amino acids. The amino acid composition suggested that collagen-like proteins predominated in the cyst wall and larval cuticle. 3. A small amount of glucosamine (1.5%) was present in the hydrolysates, but chitin was not detected in the cyst walls. 4. Other components of the cyst walls were lipid (2%), carbohydrate (0.5%) and a small amount of inorganic matter (ash, 5%). Polyphenols (2% by wt. of the cyst walls) occurred in the acid hydrolysates. The dark pigments of the cyst wall were not indole-containing melanins.  相似文献   

9.
This paper describes the isolation and characterization of rhamnogalacturonan II, a hitherto unobserved component of the primary cell walls of dicotyledonous plants. Rhamnogalacturonan II constitutes 3 to 4% of the primary cell walls of suspension-cultured sycamore (Acer pseudoplatanus) cells. Rhamnogalacturonan II is a very complex polysaccharide yielding, upon hydrolysis, 10 different monosaccharides including the rarely observed sugars apiose, 2-O-methylxylose, and 2-O-methylfucose. In addition, rhamnogalacturonan II is characterized by the rarely observed glycosyl interconnections of 2-linked glucuronosyl, 3,4-linked fucosyl, and 3-linked rhamnosyl residues. These glycosyl linkages have never previously been detected in primary sycamore cell walls. Evidence is presented which suggests that polysaccharides similar to rhamnogalacturonan II are present in the primary cell walls of the three other dicotyledonous plants examined.  相似文献   

10.
Cell walls isolated from Lolium multiflorum endosperm grown in liquid suspension culture contain 90% carbohydrate (as anhydro-glucose), 0·3 nitrogen, 1·9% lipid and 4·3% ash. The relative proportions of neutral sugars present in hydrolysates of the wall polysaccharides are glucose, 50%; arabinose, 19%; xylose, 26% and galactose, 5%. Extraction of the wall with 7 M urea solubilizes a polysaccharide representing 19% of the wall and composed of glucose and minor amounts of pentoses. This fraction has been examined by acid and enzymic hydrolysis and by periodate oxidation, and was shown to be a β-1,3; 1,4-glucan with approx. 79% 1,4-linkages. A specific β-glucan hydrolase has been used to determine the content of this mixed-linked glucan in isolated endosperm cell walls.  相似文献   

11.
Summary The amount of acid formed in grass silage was greater than could have been formed from the soluble sugars present, even when only a lactic fermentation took place. This seemed to point to fermentation of cell wall substances by lactic acid bacteria. Lactic acid fermentation in potato pulp always takes place with cell wall substances as substrates, as sugars are absent. It was found that galactose, probably occurring as galactan, and also some pectic acid were fermented in potato pulp. Some lactobacilli were isolated from potato pulp; streptobacteria which could ferment galactan but no pectic or galacturonic acid, and betabacteria which could ferment galacturonic acid but no galactan or pectic acid. A number of homofermentative lactobacilli were all found to belong to the speciesStreptobacterium casei. It was shown that a strain of this species could ferment galactan in potato pulp sterilised previously with ethylene oxide. Part of this work was carried out at the Netherlands Institute for Dairy Research, Ede, Netherlands.  相似文献   

12.
We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)‐anchored cell wall proteins and 30 non‐GPI‐anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes.  相似文献   

13.
Resistance of Zygorhynchus Species to Lysis   总被引:3,自引:1,他引:2       下载免费PDF全文
Zygorhynchus vuilleminii, a nonmelanin-containing fungus, was not lysed by mycolytic actinomycetes. Several enzymes and Streptomyces enzyme preparations digesting walls of other fungi were without appreciable activity on walls of Zygorhynchus species. A bacterium able to solubilize a portion of the Zygorhynchus wall released little or no reducing sugars from these structures. Fractions of Z. vuilleminii walls were resistant to glucanase hydrolysis, but certain fractions were digested by chitinase and microbial enzyme preparations. The walls and several wall fractions were not readily susceptible to degradation by a soil community. Walls of lysis-resistant Zygorhynchus species contained glucosamine, fucose, glucuronic acid, and galactose but little or no glucose. Resistant wall fractions were rich in uronic acid and fucose, whereas the readily degradable fractions contained abundant glucosamine. Cultural conditions affected the extent of digestion and composition of the walls. Possible reasons for the resistance of Zygorhynchus to lysis in nature are discussed.  相似文献   

14.
Eckhard Loos  Doris Meindl 《Planta》1982,156(3):270-273
Isolated cell walls of mature Chlorella fusca consisted of about 80% carbohydrate, 7% protein, and 13% unidentified material. Mannose and glucose were present in a ratio of about 2.7:1 and accounted for most of the carbohydrate. Minor components were glucuronic acid, rhamnose, and traces of other sugars; galactose was absent. After treatment with 2 M trifluoroacetic acid or with 80% acetic acid/HNO3 (10/1, v/v), a residue with a mannose/glucose ratio of 0.3:1 was obtained, probably representing a structural polysaccharide. An X-ray diffraction diagram of the walls showed one diffuse reflection at 0.44 nm and no reflections characteristic of cellulose. Walls from young cells contained about 51% carbohydrate, 12% protein, and 37% unidentified material. Mannose and glucose were also the main sugars; their absolute amounts per wall increased 6–7 fold during cell growth. Walls isolated with omission of a dodecylsulphate/mercaptoethanol/urea extraction step had a higher protein content and, with young walls, a significantly higher glucose and fucose content. These data and other published cell wall analyses show a wide variability in cell wall composition of the members of the genus Chlorella.Abbreviations GLC gas liquid chromatography - TFA trifluoroacetic acid  相似文献   

15.
Coleoptile cell wall proteins from Zea mays L. hybrid B 37 × Mo 17 were extracted and fractionated. Three enzymes identified in that extract were examined to determine their role in cell wall hydrolysis with a goal of evaluating the extent to which they participated in autohydrolytic reactions. Two separate proteins were identified as endo- and exo-glucanases. Incubation of these enzymes with heat inactivated cell walls, liberates products derived from the constitutive (1→3), (1→4)-β- d -glucan. The release of sugars from walls resembles that of cell wall autolysis. A third cell wall protein degraded polysaccharides in a more general manner, releasing carbohydrates containing xylose, arabinose, galactose and glucose. Polyclonal antibodies raised against the exoglucanase protein suppressed autolytic reactions of isolated cell wall.  相似文献   

16.
Purified cell walls were prepared from both the conchocelis and thallus phases of Porphyra tenera (Kjellm.). The nitrogen content of cell walls from the conchocelis was significantly greater than that for the thallus cell walls, being 3.35 ± 0.26% and 2.39± 0.03%, respectively. Amino acid analysis revealed important differences. The conchocelis cell wall hydrolyzates were richer in aspartic acid, glutamic acid, methionine, and basic amino acids. The thallus cell wall hydrolyzates, however, contained much more glycine and alanine than did those of the conchocelis. Hydroxyproline was not detected in cell walls of either phase. The neutral sugar content of cell wall hydrolyzates from the thallus was more than double that from the conchocelis being 83.6% and 34.5%, respectively. The former contained predominantly mannose which accounted for 72.2% of the neutral sugars while the latter was principally galactose (49.9%) and glucose (36.4%). Methylation analysis confirmed the presence of cellulose microfibrils in the conchocelis in contrast to xylan microfibrils in the thallus. The results establish that the conchocelis and thallus phases of P. tenera differ markedly in the structure and composition of the cell walls.  相似文献   

17.
Use of Ultrafiltration membrane systems in stirred cell and in thin-Channel systems for immobilizing enzyme (sweet potato intrinsic and β-amylase) in hydrolysis of sweet potato through a continuous operation mode were studied. Both the filtration rate and reducing sugars, produced as the result of enzymatic hydrolysis, decreased with the filtration time. The immobilized enzymes in the thin-channel system showed a much better performance compared to that in the stirred cell system. Addition of crystalline sweet potato β-amylase to the sweet potato increased both the filtration rate and reducing-sugars content. Alcoholic fermentation of the filtrate resulted in an alcohol content of 4.2%. This represented fermentation of 95% of the sugars with an efficiency of 88%.  相似文献   

18.
A high-throughput method is described by which Arabidopsis thaliana stems can be screened for variation in cell wall composition after hydrolysis with Driselase or trifluoroacetic acid (TFA). Driselase, a mixture of fungal enzymes, hydrolyses cellulose (to glucose) and all the major matrix polysaccharides (to monosaccharides and/or characteristic disaccharides); TFA hydrolyses the matrix polysaccharides, but not cellulose, to monosaccharides. Two different wild-type ecotypes, Columbia and Wassilewskija, showed only minor differences in wall carbohydrate composition. A small number of T-DNA-tagged populations that were screened contained individuals in which the proportion of cellulose, xyloglucan or xylan differed quantitatively from the wild-type. Differences from the wild-type were also observed in the susceptibility of the hemicelluloses to hydrolysis by Driselase, probably reflecting differences in wall architecture.  相似文献   

19.
Cell wall preparations of Bacillus anthracis, strain Pasteur No. 2-H, were treated with heat or with acetone and ether. Both of the treated cell walls preparations inactivated γ phage. The centrifuged supernatant of the heat-treated cell walls was fractionated on Sephadex G-200, and four fractions containing reducing sugars were obtained. The first fraction had the phage-inactivating activity. On the other hand, the fourth fraction had no phage-inactivating activity, but strongly inhibited phage adsorption to the cell walls. In the fourth fraction, glutamic acid, alanine, 2, 6-diaminopimelic acid and glucosamine were detected by paper chromatography after acid hydrolysis. Authentic D,L -2, 6-diaminopimelic acid and D -glucosamine markedly inhibited phage adsorption to the cell walls. D -Galactosamine, D -mannosamine and L -lysine also showed similar activities. Results suggest the possibility that one or a combination of these substances defines the characteristics of phage adsorption to the cell walls of B. anthracis, strain Pasteur No. 2-H.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号