首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. L-Alanine: 4,5-dioxovaleric acid aminotransferase (DOVA transaminase) activity was measured in murine liver, kidney and spleen homogenates. 2. Among the organs examined, the specific activity of the enzyme was highest in kidney, followed by liver then spleen. 3. No differences in DOVA transaminase activity in kidney, liver and spleen homogenates were detected between mouse strains C57BL/6J and DBA/2J. 4. Based on enzyme activity, the capacity of DOVA transaminase to catalyze the formation of delta-aminolevulinic acid (ALA) in liver appeared much greater than the capacity of ALA synthase. 5. In DBA/2J animals, DOVA transaminase activity in liver mitochondrial fractions prepared by differential centrifugation was 24 nmol ALA formed/hr/mg protein compared with 0.63 nmol ALA formed/hr/mg protein for ALA synthase. 6. Cell fractionation analyses indicated that liver DOVA transaminase is located in the mitochondrial matrix. 7. The liver enzyme was purified from mitoplasts by chromatography on DEAE-Sephacel followed by affinity chromatography on L-alanine-AH-Sepharose. 8. The specific activity of the purified DOVA transaminase was 1600 nmol ALA formed/hr/mg protein. 9. The yield of the purification was ca 90 micrograms of protein per gram liver wet weight. 10. The purified enzyme had a subunit mol. wt of 146,000 +/- 5000 as determined by electrophoresis under denaturing conditions.  相似文献   

2.
1. A procedure is described for purifying the enzyme L-alanine:4,5-dioxovaleric acid aminotransferase (DOVA transaminase) from chicken liver. The enzyme catalyzes a transamination reaction between L-alanine and 4,5-dioxovaleric acid (DOVA), yielding delta-aminolevulinic acid (ALA). 2. In cell fractionation studies, DOVA transaminase activities were detected in mitochondria and in the post-mitochondrial supernatant fraction from liver homogenates. 3. For the mitochondrial enzyme, any of most L-amino acids could serve as a source for the amino group transferred to DOVA, but L-alanine appeared the preferred substrate. At pH 7.0, the enzyme had an apparent Km of 60 microM for DOVA and of 400 microM for L-alanine. 4. The enzyme was purified from disrupted mitoplasts in three steps: chromatography on DEAE-Sephacel, gel filtration through Sephadex G-150, and chromatography on hydroxyapatite. The yield was approx. 100 micrograms of enzyme protein per 10 g wet wt of liver. 5. The purified enzyme had a subunit mol. wt of 63,000 as determined by gel electrophoresis under denaturing conditions. 6. The activity of DOVA transaminase was also measured in embryonic chicken liver, and based on activity, the enzyme's capacity to produce ALA was significantly greater than that of ALA synthase. Unlike ALA synthase, however, DOVA transaminase activity did not increase in liver mitochondria of chicken embryos exposed for 18 hr to two potent porphyrogenic agents.  相似文献   

3.
Harel E  Ne'eman E  Meller E 《Plant physiology》1983,72(4):1056-1061
Cell-free extracts from greening maize (Zea mays L.) leaves catalyze the conversion of [14C]2-ketoglutarate (KG) to [14C]5-aminolevulinic acid (ALA) in a reaction which requires NADH and an amino donor and shows maximal activity around pH 6.5. The enzymic system is located in the cytosol. This cell fraction contains a low level of `KG dehydrogenase' activity and a transaminase which catalyzes the conversion of 4,5-dioxovaleric acid (DOVA) to ALA. The transaminase can use glutamate, aspartate, or alanine as amino donor. It is effectively inhibited by aminooxyacetate and ethylenediamine tetraacetate and shows maximal activity at pH 6.7. The activity of DOVA transaminase is only slightly affected by preillumination of leaves and can also be detected in green leaves and in roots.

DOVA was isolated from leaves and roots and determined as its benzoquinoxaline derivative. Significant amounts were found only in tissues in which ALA had accumulated or after it was exogenously supplied. DOVA was labeled in vivo by both [14C]ALA and [14C]KG. Small amounts were also formed from ALA in a cell-free system.

It is suggested that DOVA may be an intermediate in the diversion of ALA to respiratory metabolism and that it is not involved in the biosynthesis of this porphyrin precursor.

  相似文献   

4.
Usually, 4,5-dioxovaleric acid (DOVA) is determined in biological materials by measuring the absorption at 269 nm of its benzoquinoxaline derivative which is formed by condensation with 2,3-diaminonaphthalene (DAN). Not only must this benzoquinoxaline be separated from unreacted DAN and flavins which have interfering uv absorption but, when working with higher-plant tissues, additional interfering compounds with uv absorption, ionic and solubility properties similar to polyphenols must also be removed. The separation of the DOVA-derived benzoquinoxaline from all these interfering compounds by a series of solvent extractions utilizing the difference in ionic behaviour of the benzoquinoxaline and the interfering contaminants is described.It was found that a small but significant amount of a benzoquinoxaline is formed when 5-aminolaevulinic acid (ALA) was incubated with DAN at pH 8 at 60°C and was due to the prior non-enzymic deamination of a small portion of ALA to DOVA: this benzoquinoxaline was spectrophotometrically, spectrofluorimetrically, and chromatographically indistinguishable from that formed by the condensation of DOVA and DAN. Since formation of this benzoquinoxaline interferes with the assay of l-alanine:4,5-dioxovaleric acid aminotransferase (EC 2.6.1.43), a procedure to measure DOVA formed by this enzyme from ALA and pyruvate is described in which the DOVA is first separated from the ALA by ion-exchange chromatography prior to condensation with DAN: this method permits the separate determination of both DOVA and ALA concentrations in the aminotransferase reaction mixture.  相似文献   

5.
Foley T  Beale SI 《Plant physiology》1982,70(5):1495-1502
γ,δ-Dioxovaleric acid (DOVA) has been proposed as a precursor to heme and chlorophyll in plants and algae. DOVA transaminase activity was found in extracts of the unicellular green alga Euglena gracilis Klebs strain Z Pringsheim. Optimum conversion of DOVA to δ-aminolevulinic acid (ALA) occurred at pH 6.8. ALA formation was linear with time for at least 30 minutes at 37° C and was proportional to amount of cell extract in the incubation mixture. Boiled cell extract was inactive. DOVA transaminase from either wild-type or aplastidic derivative strain W14ZNaIL ran as a single band in agarose gel permeation chromatography, with a calculated molecular weight of 98,000 ± 3,000. l-Glutamic acid was the most effective amino donor. d-Glutamic acid was inactive. Km values for l-glutamic acid and DOVA were 11 and 1.1 millimolar, respectively. Pyridoxal phosphate stimulated activity maximally at 30 micromolar, and (aminooxy)acetate was strongly inhibitory. Glyoxylic acid was a competitive inhibitor with respect to DOVA, with an inhibition constant of 0.62 millimolar. Wild-type and aplastidic cells vielded equal activity, 31 ± 1 nanomoles ALA per 30 minutes per 107 cells, whether grown in light or dark. DOVA transaminase could not be separated from glyoxylate transaminase activity by agarose gel permeation or diethylaminoethyl-cellulose column chromatography. In all fractions, glyoxylate transaminase activity was at least 75 times greater than DOVA transaminase activity. DOVA transamination appears to be catalyzed by glyoxylate transaminase, and not to be of physiological significance with respect to chlorophyll synthesis in Euglena.  相似文献   

6.
In this work we describe a sensitive method for the detection of 4,5-dioxovaleric acid (DOVA). 4,5-Dioxovaleric acid is derivatized with 2,3-diaminonaphthalene to form 3-(benzoquinoxalinyl-2)propionic acid (BZQ), a product with favorable UV absorbance and fluorescence properties. The high-performance liquid chromatographic method with UV absorbance and fluorescence detection is simple and its detection limit is approximately 100 fmol. This method was used to detect 4,5-dioxovaleric acid formation during metal-catalyzed 5-aminolevulinic acid (ALA) oxidation. Iron and ferritin were active in the formation of 4,5-dioxovaleric acid in the presence of 5-aminolevulinic acid. In addition, HPLC–MS–MS assay was used to characterize BZQ. The determination of 4,5-dioxovaleric acid is of great interest for the study of the mechanism of the metal-catalyzed damage of biomolecules by 5-aminolevulinic acid. This reaction may play a role in carcinogenesis after lead intoxication. The high frequency of liver cancer in acute intermittent porphyria patients may also be due to this reaction.  相似文献   

7.
Cellular accumulation of 5-aminolevulinic acid (ALA), the first specific intermediate of heme biosynthesis, is correlated in liver biopsy samples of acute intermittent porphyria affected patients with an increase in the occurrence of hepatic cancers and the formation of ferritin deposits in hepatocytes. 5-Aminolevulinic acid is able to undergo enolization and to be subsequently oxidized in a reaction catalyzed by iron complexes yielding 4,5-dioxovaleric acid (DOVA). The released superoxide radical (O(*-)(2)) is involved in the formation of reactive hydroxyl radical ((*)OH) or related species arising from a Fenton-type reaction mediated by Fe(II) and Cu(I). This leads to DNA oxidation. The metal catalyzed oxidation of ALA may be exalted by the O(*-)(2) and enoyl radical-mediated release of Fe(II) ions from ferritin. We report here the potentiating effect of ferritin on the ALA-mediated cleavage of plasmid DNA and the enhancement of the formation of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodGuo). Plasmid pBR322 was incubated with ALA and varying amounts of purified ferritin. DNA damage was assessed by gel electrophoresis analysis of the open and the linear forms of the plasmid from the native supercoiled structure. Addition of either the DNA compacting polyamine spermidine or the metal chelator ethylenediaminetetraacetic acid (EDTA) inhibited the damage. It was also shown that ALA in the presence of ferritin is able to increase the oxidation of the guanine moiety of monomeric 2'-deoxyguanosine (dGuo) and calf thymus DNA (CTDNA) to form 8-oxodGuo as inferred from high performance liquid chromatography (HPLC) measurements using electrochemical detection. The formation of the adduct dGuo-DOVA was detected in CTDNA upon incubation with ALA and ferritin. In a subsequent investigation, the aldehyde DOVA was also able to induces strand breaks in pBR322 DNA.  相似文献   

8.
BACKGROUND AND AIMS: Trypanosoma cruzi is the causative agent of Chagas disease or American trypanosomiasis. The parasite manifests a nutritional requirement for heme compounds because of its biosynthesis deficiency. The aim of this study has been to investigate the presence of metabolites and enzymes of porphyrin pathway, as well as ALA formation in epimastigotes of T. cruzi, Tulahuén strain, Tul 2 stock. METHODS: Succinyl CoA synthetase, 5-aminolevulinic acid (ALA) synthetase, 4,5-dioxovaleric (DOVA) transaminase, ALA dehydratase and porphobilinogenase activities, as well as ALA, porphobilinogen (PBG), free porphyrins and heme content were measured in a parasite cells-free extract. Extracellular content of these metabolites was also determined. RESULTS: DOVA, PBG, porphyrins and heme were not detected in acellular extracts of T. cruzi. However ALA was detected both intra- and extracellularly This is the first time that the presence of ALA (98% of intracellularly formed ALA) is demonstrated in the extracellular medium of a parasite culture. Regarding the ALA synthesizing enzymes, DOVA transaminase levels found were low (7.13+/-0.49EU/mg protein), whilst ALA synthetase (ALA-S) activity was undetectable. A compound of non-protein nature, low molecular weight, heat unstable, inhibiting bacterial ALA-S activity was detected in an acellular extract of T. cruzi. This inhibitor could not be identified with either ALA, DOVA or heme. CONCLUSIONS: ALA synthesis is functional in the parasite and it would be regulated by the heme levels, both directly and through the inhibitor factor detected. ALA formed can not be metabolized further, because the necessary enzymes are not active, therefore it should be excreted to avoid intracellular cytotoxicity.  相似文献   

9.
1. We report on the kinetic properties of murine liver 4,5-dioxovaleric acid:L-alanine aminotransferase (DOVA transaminase). 2. The transamination of 4,5-dioxovaleric acid (DOVA) led to the production of delta-aminolevulinic acid. 3. L-Alanine was the preferred amino group donor among the common 20 amino acids. 4. The optimum pH of the reaction was 7-8. 5. A Km of 220 microM for DOVA and a Km of 970 microM for L-alanine were obtained. 6. The reaction was inhibited by each of the following: glyoxylate, beta-chloroalanine, methylglyoxal, delta-aminolevulinate, pyruvate, heme, and gabaculine. 7. None of several xenobiotic inducers of microsomal mixed function oxidases tested had a significant effect on DOVA transaminase activity in studies performed with murine primary hepatocyte cultures.  相似文献   

10.
L L Ilag  D Jahn 《Biochemistry》1992,31(31):7143-7151
Glutamate 1-semialdehyde aminotransferase (glutamate 1-semialdehyde 2,1-aminomutase; EC 5.4.3.8; GSA-AT) catalyzes the transfer of the amino group on carbon 2 of glutamate 1-semialdehyde (GSA) to the neighboring carbon 1 to form delta-aminolevulinic acid (ALA). To gain insight into the mechanism of this enzyme, possible intermediates were tested with purified enzyme and the reaction sequence was followed spectroscopically. While 4,5-dioxovaleric acid (DOVA) was efficiently converted to ALA by the pyridoxamine 5'-phosphate (PMP) form of the enzyme, 4,5-diaminovaleric acid (DAVA) was a substrate for the pyridoxal 5'-phosphate (PLP) form of GSA-AT. Thus, both substances are reaction intermediates. The purified enzyme showed an absorption spectrum with a peak around 338 nm. Addition of PLP led to increased absorption at 338 nm and a new peak around 438 nm. Incubation of the purified enzyme with PMP resulted in an additional absorption peak at 350 nm. The reaction of the PLP and PMP form of the enzyme with GSA allowed the detection of a series of peaks which varied in their intensities in a time-dependent manner. The most drastic changes to the spectrum that were observed during the reaction sequence were at 495 and 540 nm. Some of the detected absorption bands during GSA-AT catalysis were previously described for several other aminotransferases, indicating the relationship of the mechanisms. The reaction of the PMP form of the enzyme with DOVA resulted in a similar spectrum as described above, while the spectrum for the conversion of DAVA by the PLP form of the enzyme indicated a different mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Extracellular formation of 5-aminolevulinic acid (ALA) by adding levulinic acid (LA), an inhibitor of ALA dehydratase, was examined in the anaerobic-light culture of Rhodobacter sphaeroides. The addition of LA (10–25 mmol/l) during the middle log phase retarded the growth and accelerated the extracellular formation of ALA, while over 50 mmol/l completely suppressed both growth and formation.The formation of ALA was closely related to intracellular ALA synthetase activity. Light intensity was also an important factor for enhancing ALA formation. The optimal condition, addition of 15 mmol/l of LA during the middle log phase with 3 klx illumination, resulted in ALA formation of 0.26 mol/l. In addition, supplementation with glycine (30 mmol/l) and succinate (30 mmol/l), precursors of ALA biosynthesis, enhanced ALA formation up to ca. 2 mmol/l.  相似文献   

12.
The kinetic properties of the enzyme L-glutamate:4,5-dioxovaleric acid aminotransferase (Glu:DOVA transaminase) from Euglena gracilis have been studied. 5-Aminolevulinic acid formation was linear with time for at least 45 min at 37 degrees C and L-glutamate was the most effective amino-group donor. Lineweaver-Burk double-reciprocal plots suggested a ping-pong reaction mechanism, with Km values for L-glutamate and DOVA of 1.92 mM and 0.48 mM respectively. Competitive parabolic substrate inhibition by DOVA at concentrations greater than 3.5-4.5 mM was observed. Glyoxylate (4-10 mM) was found to be a competitive inhibitor with respect to DOVA, whereas at low concentrations (0-4 mM) noncompetitive plots were obtained. An analysis of the possible enzyme forms involved, was carried out. In more crude preparations most of the enzyme is found to be in the form of an enzyme-glutamate complex.  相似文献   

13.
Laevulinic acid (LA) inhibited chlorophyll formation and δ-aminolaevulinic acid (ALA) accumulation in dark-grown barley leaves. Mole ratios (ALA: chlorophyll × 8) indicate that LA decreased ALA production by about 30%. The turnover of glycine-[14C] in 7-day-old leaves treated with LA was 70% slower than in control tissue and this resulted in an increase in endogenous glycine. Total amino acid also increased in LA treated leaves. The data indicate that any contribution made by glycine to ALA synthesis in LA-treated barley leaves would be significantly restricted.  相似文献   

14.
The universal tetrapyrrole precursor δ-aminolevulinic acid (ALA) is formed from glutamate (Glu) in algae and higher plants. In the postulated reaction sequence, Glu-tRNA is produced by a Glu-tRNA synthetase, and the product serves as a substrate for a reduction step catalyzed by a pyridine nucleotide-requiring Glu-tRNA dehydrogenase. The reduced intermediate is then converted into ALA by a transaminase. An RNA and three enzyme fractions required for ALA formation from Glu have been isolated from soluble Chlorella extracts. The recombined fractions catalyzed ALA production from Glu or Glu-tRNA. The fraction containing the synthetase produced Glu-tRNA from Glu and tRNA in the presence of ATP and Mg2+. The isolated product of this reaction served as substrate for ALA production by the partially reconstituted enzyme system lacking the synthetase fraction and incapable of producing ALA from Glu. The production of ALA from Glu-tRNA by this partially reconstituted system did not require free Glu or ATP, and was not affected by added ATP. These results show that (a) free Glu-tRNA is an intermediate in the formation of ALA from Glu, (b) ATP is required only in the first step of the reaction sequence, and NADPH only in a later step, (c) Glu-tRNA production is the essential reaction catalyzed by one of the enzyme fractions, (d) this enzyme fraction is active in the absence of the other enzymes and is not required for activity of the others. The specific Glu-tRNA synthetase required for ALA formation has an approximate molecular weight of 73,000 ± 5,000 as determined by Sephadex G-100 gel filtration and native polyacrylamide gel electrophoresis. Other Glu-tRNA synthetases were present in the cell extracts but were ineffective in the the ALA-forming process.  相似文献   

15.
16.
Exogenously administered 5-aminolevulinic acid (ALA) inhibited the formation of bacteriochlorophyll a (Bchl a) in a dose-dependent manner in the aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh 114, under dark growth conditions. The ALA concentration required for half-inhibition after 24-h growth was estimated to be about 3.0 mM. Porphyrin and Bchl precursors were not found in either the cells or the growth medium. The same inhibition was also observed with cytochrome c formation. When ALA was incubated with intact cells, a large amount of ALA was converted to an unknown metabolite. The pH optimum of the conversion was 7.8. The metabolite did not react with Ehrlich's reagent, but did so with ninhydrin, giving a yellow color. Based on analyses by several techniques including mass spectrometry, ir spectrometry, and paper electrophoresis, it was identified as 4-hydroxy-5-aminovaleric acid (HAVA). Authentic HAVA prepared from ALA was a competitive inhibitor of the enzyme, porphobilinogen synthase of Erythrobacter. The Ki value for authentic HAVA was calculated to be 2.4 mM from a Dixon plot and the HAVA concentration required for half-inhibition was 17 mM. It is concluded that in Erythrobacter cells, exogenous ALA is converted to the metabolite, HAVA, which is responsible for the inhibition of porphobilinogen synthase as well as that of Bchl a and cytochrome formation.  相似文献   

17.
Harel E  Ne'eman E 《Plant physiology》1983,72(4):1062-1067
Intact plastids from greening maize (Zea mays L.) leaves converted [14C]glutamate and [14C]2-ketoglutarate (KG) to [14C]5-aminolevulinic acid (ALA). Glutamate appeared to be the immediate precursor of ALA, while KG was first converted to glutamate, as shown by the effect of various inhibitors of amino acid metabolism. Plastids from greening leaves contained markedly higher activity as compared with etioplasts or chloroplasts. The synthesis of ALA by intact plastids was light dependent. The enzyme system resides in the stroma of plastids or may be lightly bound to membranes. The solubilized system showed maximal activity around pH 7.9 and required Mg2+, ATP, and NADPH although dependence on the latter was not clear-cut. A relatively high level of activity could be extracted from etioplasts. Maximal activity was obtained from plastids of leaves which had been illuminated for 90 minutes, after which activity declined sharply. The enzyme system solubilized from plastids also catalyzed the conversion of putative glutamate 1-semialdehyde to ALA in a reaction which was not dependent on the addition of an amino donor.

The system in maize greatly resembled the one which had been reported from barley. It is suggested that this system is the one responsible for the biosynthesis of ALA destined for chlorophyll formation.

  相似文献   

18.
Linoleic acid (LA, C18:2) and α-linolenic acid (ALA, C18:3) are polyunsaturated fatty acids (PUFAs) and major storage compounds in plant seed oils. Microsomal ω-6 and ω-3 fatty acid (FA) desaturases catalyze the synthesis of seed oil LA and ALA, respectively. Jatropha curcas L. seed oils contain large proportions of LA, but very little ALA. In this study, two microsomal desaturase genes, named JcFAD2 and JcFAD3, were isolated from J. curcas. Both deduced amino acid sequences possessed eight histidines shown to be essential for desaturases activity, and contained motif in the C-terminal for endoplasmic reticulum localization. Heterologous expression in Saccharomyces cerevisiae and Arabidopsis thaliana confirmed that the isolated JcFAD2 and JcFAD3 proteins could catalyze LA and ALA synthesis, respectively. The results indicate that JcFAD2 and JcFAD3 are functional in controlling PUFA contents of seed oils and could be exploited in the genetic engineering of J. curcas, and potentially other plants.  相似文献   

19.
Euglena gracilis cells synthesize the key tetrapyrrole precursor, δ-aminolevulinic acid (ALA), by two routes: plastid ALA is formed from glutamate via the transfer RNA-dependent five-carbon route, and ALA that serves as the precursor to mitochondrial hemes is formed by ALA synthase-catalyzed condensation of succinyl-coenzyme A and glycine. The biosynthetic source of succinyl-coenzyme A in Euglena is of interest because this species has been reported not to contain α-ketoglutarate dehydrogenase and not to use succinyl-coenzyme A as a tricarboxylic acid cycle intermediate. Instead, α-ketoglutarate is decarboxylated to form succinic semialdehyde, which is subsequently oxidized to form succinate. Desalted extract of Euglena cells catalyzed ALA formation in a reaction that required coenzyme A and GTP but did not require exogenous succinyl-coenzyme A synthetase. GTP could be replaced with ATP. Cell extract also catalyzed glycine-and α-ketoglutarate-dependent ALA formation in a reaction that required coenzyme A and GTP, was stimulated by NADP+, and was inhibited by NAD+. Succinyl-coenzyme A synthetase activity was detected in extracts of dark- and light-grown wild-type and nongreening mutant cells. In vitro succinyl-coenzyme A synthetase activity was at least 10-fold greater than ALA synthase activity. These results indicate that succinyl-coenzyme A synthetase is present in Euglena cells. Even though the enzyme may play no role in the transformation of α-ketoglutarate to succinate in the atypical tricarboxylic acid cycle, it catalyzes succinyl-coenzyme A formation from succinate for use in the biosynthesis of ALA and possibly other products.  相似文献   

20.
The structure of the metabolic network is highly conserved, but we know little about its evolutionary origins. Key for explaining the early evolution of metabolism is solving a chicken–egg dilemma, which describes that enzymes are made from the very same molecules they produce. The recent discovery of several nonenzymatic reaction sequences that topologically resemble central metabolism has provided experimental support for a “metabolism first” theory, in which at least part of the extant metabolic network emerged on the basis of nonenzymatic reactions. But how could evolution kick-start on the basis of a metal catalyzed reaction sequence, and how could the structure of nonenzymatic reaction sequences be imprinted on the metabolic network to remain conserved for billions of years? We performed an in vitro screening where we add the simplest components of metabolic enzymes, proteinogenic amino acids, to a nonenzymatic, iron-driven reaction network that resembles glycolysis and the pentose phosphate pathway (PPP). We observe that the presence of the amino acids enhanced several of the nonenzymatic reactions. Particular attention was triggered by a reaction that resembles a rate-limiting step in the oxidative PPP. A prebiotically available, proteinogenic amino acid cysteine accelerated the formation of RNA nucleoside precursor ribose-5-phosphate from 6-phosphogluconate. We report that iron and cysteine interact and have additive effects on the reaction rate so that ribose-5-phosphate forms at high specificity under mild, metabolism typical temperature and environmental conditions. We speculate that accelerating effects of amino acids on rate-limiting nonenzymatic reactions could have facilitated a stepwise enzymatization of nonenzymatic reaction sequences, imprinting their structure on the evolving metabolic network.

The evolutionary origins of metabolism are largely unknown. This study shows that the prebiotically available proteinogenic amino acid cysteine can promote the metabolism-like rate-limiting formation of ribose-5-phosphate, suggesting that early metabolic pathways could have emerged thought the stepwise enzymatization of non-enzymatic reaction sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号