共查询到20条相似文献,搜索用时 0 毫秒
1.
Hans-Ulrich Meisch Wolfgang Reinle Ursula Wolf 《Biochimica et Biophysica Acta (BBA)/General Subjects》1985,841(3):319-322
During chlorophyll biosynthesis, 4,5-dioxovaleric acid is supposed to be an intermediate between 2-oxoglutarate and 5-aminolevulinic acid. Although the occurrence of 4,5-dioxovaleric acid in cells and culture filtrates of unicellular green algae treated with levulinic acid has been previously reported, improvement of the analytical method now shows that 4,5-dioxovaleric acid does not occur in these organisms but arises due to interference of 5-aminolevulinic acid in 4,5-dioxovaleric acid analysis. The significance of 4,5-dioxovaleric acid as a free metabolite in 5-aminolevulinic acid biosynthesis must therefore be reconsidered. 相似文献
2.
Rafael E. Ummus Janice Onuki Dieter Drnemann Marisa H. G. Medeiros Paolo Di Mascio 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1999,729(1-2)
In this work we describe a sensitive method for the detection of 4,5-dioxovaleric acid (DOVA). 4,5-Dioxovaleric acid is derivatized with 2,3-diaminonaphthalene to form 3-(benzoquinoxalinyl-2)propionic acid (BZQ), a product with favorable UV absorbance and fluorescence properties. The high-performance liquid chromatographic method with UV absorbance and fluorescence detection is simple and its detection limit is approximately 100 fmol. This method was used to detect 4,5-dioxovaleric acid formation during metal-catalyzed 5-aminolevulinic acid (ALA) oxidation. Iron and ferritin were active in the formation of 4,5-dioxovaleric acid in the presence of 5-aminolevulinic acid. In addition, HPLC–MS–MS assay was used to characterize BZQ. The determination of 4,5-dioxovaleric acid is of great interest for the study of the mechanism of the metal-catalyzed damage of biomolecules by 5-aminolevulinic acid. This reaction may play a role in carcinogenesis after lead intoxication. The high frequency of liver cancer in acute intermittent porphyria patients may also be due to this reaction. 相似文献
3.
Phillip J. Brumm Gregory A. Thomas Herbert C. Friedmann 《Biochemical and biophysical research communications》1982,104(2):814-822
4,5-Dioxovalerate, which has been proposed as an intermediate in the newly discovered so-called C5 pathway that leads from L-glutamate to δ-aminolevulinate, strongly inhibits uroporphyrin formation from δ-aminolevulinate in cells of and in cell-free extracts of this organism, in spite of the presence of L-alanine: 4,5-dioxovalerate aminotransferase (aminolevulinate aminotransferase, EC 2.6.1.43). The interference by 4,5-dioxovalerate with porphyrin formation is due to strong inhibition of δ-aminolevulinate dehydratase (EC 4.2.1.24). Since 4,5-dioxovalerate hence effectively prevents the operation of the reaction sequence from L-glutamate to porphyrin, it is concluded that 4,5-dioxovalerate does not function as a physiological δ-aminolevulinate precursor. 相似文献
4.
5.
6.
过量表达自身hemA基因的重组大肠杆菌发酵生产5-氨基乙酰丙酸的研究 总被引:3,自引:0,他引:3
研究了优化重组大肠杆菌产5-氨基乙酰丙酸(ALA)的条件,提高大肠杆菌发酵生产AL气的产量。在测定重组大肠杆菌GT48的生长曲线的基础上,确定诱导时间,优化摇瓶发酵条件。然后,进一步在5L发酵罐上进行间歇和流加发酵研究。摇瓶实验表明,细胞培养最佳初始pH为6.5,最佳诱导时间为稳定期前期,最佳接种量为2%,过高的葡萄糖浓度对细胞生长和产物合成均有一定的抑制作用。在5L发酵罐间歇发酵中,重组菌产ALA能力达到47.8mg/L。采用流加发酵可以进一步将产物产量提高到63.8mg/L。构建的过量表达自身的hemA基因的大肠杆菌具有较高的产ALA能力,通过发酵条件优化和采用流加发酵可以提高AL气产量。 相似文献
7.
Hormonal activities of 5-aminolevulinic acid in callus induction and micropropagation 总被引:11,自引:0,他引:11
The role of 5-aminolevulinic acid (5-ALA) as a precursor of chlorophyll and a herbicide is well documented. 5-ALA as a Plant Growth substance is also proven in recent times. In the present report, to elucidate the physiological effects of 5-ALA, the compound was used in in vitro studies using MS medium supplemented with 5-ALA at 2, 5 and 10 mg l-1. Leaf and cotyledonary node were used as the explants. In vitro studies confirmed the hormonal role of 5-ALA by striking proliferation of callus paripassu induction of rooting and shooting with a profound effect of the former than the latter. Thus, 5-ALA has the dual properties of auxin and cytokinin in the induction of callusing and rhizogenesis, and shooting respectively. 相似文献
8.
J. Oelze 《FEMS microbiology letters》1986,37(3):321-323
Abstract Activity of the key enzyme for tetrapyrrole biosynthesis, 5-aminolevulinic acid synthase, was inhibited upon irradiation of cell-free extracts from Rhodopseudomonas sphaeroides . maximum inactivation was observed after irradiation with light of 422, 522 and 552–556 nm. The relevance of this effect in the control of bacteriochlorophyll synthesis is discussed. 相似文献
9.
Taku Chibazakura Yui Toriyabe Hiroshi Fujii Kiwamu Takahashi Mariko Kawakami Haruna Kuwamura 《Bioscience, biotechnology, and biochemistry》2013,77(3):422-431
5-aminolevulinic acid (5-ALA) is contained in all organisms and a starting substrate for heme biosynthesis. Since administration of 5-ALA specifically leads cancer cells to accumulate protoporphyrin IX (PpIX), a potent photosensitizer, we tested if 5-ALA also serves as a thermosensitizer. 5-ALA enhanced heat-induced cell death of cancer cell lines such as HepG2, Caco-2, and Kato III, but not other cancer cell lines including U2-OS and normal cell lines including WI-38. Those 5-ALA-sensitive cancer cells, but neither U2-OS nor WI-38, accumulated intracellular PpIX and exhibited an increased reactive oxygen species (ROS) generation under thermal stress with 5-ALA treatment. In addition, blocking the PpIX-exporting transporter ABCG2 in U2-OS and WI-38 cells enhanced their cell death under thermal stress with 5-ALA. Finally, a ROS scavenger compromised the cell death enhancement by 5-ALA. These suggest that 5-ALA can sensitize certain cancer cells, but not normal cells, to thermal stress via accumulation of PpIX and increase of ROS generation. 相似文献
10.
5-氨基乙酰丙酸对NaCl胁迫下番茄幼苗光合特性的影响 总被引:1,自引:0,他引:1
为探讨5-氨基乙酰丙酸(ALA)对NaCl胁迫下番茄光合特性的调控作用,以‘金鹏一号’番茄幼苗为试材,研究叶面喷施50 mg·L-1或根施10 mg·L-1 ALA对100 mmol·L-1 NaCl胁迫下番茄幼苗光合及叶绿素荧光参数的影响.结果表明: NaCl胁迫下,番茄幼苗光合气体交换参数(净光合速率Pn、气孔导度gs、胞间CO2浓度Ci、蒸腾速率Tr)及叶绿素荧光参数(实际光化学量子产量Fv′/Fm′、Fm′、PSⅡ反应中心实际光化学效率ΦPSⅡ、表观光合电子传递效率ETR、光化学淬灭qP、光化学反应Pc)均显著降低,根施或叶施ALA均可以提高NaCl胁迫下番茄叶片的光合能力,但两种处理方式之间存在一定差异.叶面喷施50 mg·L-1ALA或根施10 mg·L-1ALA处理均显著提高了番茄叶片Pn、Tr、gs和Ci,提高了水分利用效率(WUE),显著增加了NaCl胁迫下叶片的最大净光合速率,减轻了光抑制.根施ALA对叶绿素含量的作用效果较好,而叶施ALA对光合参数的作用效果较好,两处理叶绿素荧光参数差异不显著.叶面喷施或根施ALA可以提高番茄幼苗的耐盐性,其调控作用与促进叶绿素合成与稳定、维持正常气孔开闭、降低气孔限制,进而提高NaCl胁迫下番茄叶片的光合能力和PSⅡ光化学效率有关.
相似文献
11.
5-Aminolevulinic acid (ALA), a heme precursor that accumulates in acute intermittent porphyria (AIP) and lead poisoning, undergoes enolization and subsequent iron-catalyzed oxidation at neutral pH. Iron is released from horse spleen ferritin (HoSF) by both ALA-generated O2•− and enoyl radical (ALA√), which amplifies the chain of ALA oxidation (autocatalysis). Iron chelators such as EDTA, ATP, but not citrate, and phosphate accelerate this process and ALA-promoted iron release from HoSF is faster in horse spleen isoferritins containing larger amounts of phosphate in the core. ALA (+0.377 V versus standard hydrogen electrode) is less effective in releasing iron from ferritin than are thioglycollic acid, 6-hydroxydopamine, and N,N,N′,N′-tetramethyl-p-phenylenediamine. During electrochemical one electron oxidation of ALA in a nitrogen atmosphere, spin trapping experiments with 3,5-dibromo-4-nitrosobenzenesulfonic acid demonstrated the formation of a spin adduct characterized by a six line signal, indicating a secondary carbon-centered radical and attributed to a resonant ALA√ radical. Iron is also released in such anaerobic electrochemical oxidations of ALA in the presence of ferritin, suggesting that, in addition to O2•−, ALA√ can promote iron mobilization from ferritin. Hence, ALA√ may amplify the metal-catalyzed oxidation of ALA, damaging ALA-accumulating cells and possibly contributing to the symptoms of porphyria. 相似文献
12.
T. V. Samovich N. V. Shalygo A. P. Kudryashov N. G. Averina 《Russian Journal of Plant Physiology》2006,53(6):814-823
Treatment of chlorella (Chlorella sp.) cells for 2 h in darkness with tetrapyrrole-dependent photodynamic herbicides (TDPH) derived on the basis of 0.3 mM 1,10-phenanthroline (Ph) combined with 0.6 mM Glu or 0.6 mM Gln induced the accumulation of sensitizers of photodynamic processes: magnesium protoporphyrin IX (MgPP) and MgPP monomethyl ester (MgPPE). Within the first day after chlorella cells treated with TDPH were illuminated, photodestruction of MgPP(E) was observed, and production of the first specific precursor of chlorophyll (Chl), 5-aminolevulinic acid (ALA), in the cells declined. Then the accumulation of ALA was stimulated, and the level of heme, which is a retroinhibitor of ALA synthesis, simultaneously fell. During the first two days of illumination, the content of Chl and carotenoids in the algae treated with TDPH did not differ from their levels in control culture, which suggests a high resistance of photosynthetic pigments to photodynamic process induced by porphyrins. Subsequently, a slight but rising in time accumulation of pheophytin (Pheo) was observed, as well as photodestruction of Chl and carotenoids. After five days of illumination, the difference in the content of Chl between the culture treated with TDPH and control material was 10–30% depending on the illuminance. Chlorella cells treated with TDPH remained capable of producing Chl from exogenous ALA in the dark for at least eight days. In the experiments simultaneously conducted with a higher plant, cucumber (Cucumis sativa L.), which accumulated in the dark essentially the same content of porphyrins in response to TDPH as algae did, the residual level of Chl after five days of illumination was only 10–20% of control plants. It was assumed that a high tolerance of the chlorella pigment pool to photooxidative stress induced by the accumulation of MgPP(E) and Pheo depended on a highly active state of the antioxidant protective system and the ability of ALA molecules additionally formed under the influence of TDPH to be converted into Chl, thereby participating in its de novo synthesis. 相似文献
13.
5-Aminolevulinic acid (ALA) recently received much attention due to its potential applications in many fields. In this study, we developed a metabolic strategy to produce ALA directly from glucose in recombinant Escherichia coli via the C5 pathway. The expression of a mutated hemA gene, encoding a glutamyl-tRNA reductase from Salmonella arizona, significantly improved ALA production from 31.1 to 176 mg/L. Glutamate-1-semialdehyde aminotransferase from E. coli was found to have a synergistic effect with HemAM from S. arizona on ALA production (2052 mg/L). In addition, we identified a threonine/homoserine exporter in E. coli, encoded by rhtA gene, which exported ALA due to its broad substrate specificity. The constructed E. coli DALA produced 4.13 g/L ALA in modified minimal medium from glucose without adding any other co-substrate or inhibitor. This strategy offered an attractive potential to metabolic production of ALA in E. coli. 相似文献
14.
15.
Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid 总被引:20,自引:0,他引:20
Of 12 different plant growth regulators (PGRs) tested,5-aminolevulinic acid (ALA) was found to improve the salttolerance of cotton seedlings. Cotton seedlings treated with ALAcould grow in soil containing levels as high as 1.5% (wt/wt)NaCl. The analyses of mineral compositions of plant parts revealed that the Naplus concentrations in the roots of the plantstreated with ALA were suppressed to low concentrations. Fromthese results, it can be presumed that the presence of ALA maycause a reduction of Naplus uptake. 相似文献
16.
The proton-coupled oligopeptide transporter PEPT2 (or SLC15A2 ) is the major protein involved in the reclamation of peptide-bound amino acids and peptide-like drugs in kidney. PEPT2 is also important in effluxing peptides and peptidomimetics from CSF at the choroid plexus, thereby limiting their exposure in brain. In this study, we report a neuroprotective role for PEPT2 in modulating the toxicity of a heme precursor, 5-aminolevulinic acid (5-ALA). Our findings demonstrate that in PEPT2-deficient mice, 5-ALA administration results in reduced survivability, a worsening of neuromuscular dysfunction, and CSF concentrations of substrate that are 8–30 times higher than that in wild-type control animals. The ability of PEPT2 to limit 5-ALA exposure in CSF suggests that it may also have relevance as a secondary genetic modifier of conditions (such as acute hepatic porphyrias and lead poisoning) in which 5-ALA metabolism is altered and in which 5-ALA toxicity is important. 相似文献
17.
Cloning, expression, and characterization of 5-aminolevulinic acid synthase from Rhodopseudomonas palustris KUGB306 总被引:3,自引:0,他引:3
The hemA gene encoding 5-aminolevulinic acid synthase (ALAS) was cloned from the genomic DNA of photosynthetic bacterium Rhodopseudomonas palustris KUGB306. The deduced protein (ALAS) of this gene contained 409 amino acids. The hemA gene was subcloned into an expression vector pGEX-KG and the encoded protein was overexpressed as a fusion protein with glutathione-S-transferase (GST) in Escherichia coli BL21. The recombinant ALAS was purified and isolated free of the fusion partner (GST) by affinity purification on glutathione-Sepharose 4B resin and cleavage of the purified fusion protein by thrombin protease. The optimum pH and temperature of the recombinant ALAS was found to be at pH 7.5-8.0 and 35-40 degrees C, respectively. The Km value of the enzyme was 2.01 mM for glycine and 49.55 microM for succinyl-CoA. The enzyme activity was strongly inhibited by Pb2+, Fe2+, Co2+, Cu2+, and Zn2+ at 1 mM, but slightly affected by Mg2+ and K+. The recombinant ALAS required pyridoxal 5'-phosphate (PLP) as a cofactor for catalysis. Removal of this cofactor led to complete loss of the activity. Ultraviolet-visible spectroscopy with the ALAS suggested the presence of an aldimine linkage between the enzyme and PLP. 相似文献
18.
Chengchao Zhu Jiuzhou Chen Yu Wang Lixian Wang Xuan Guo Ning Chen Ping Zheng Jibin Sun Yanhe Ma 《Biotechnology and bioengineering》2019,116(8):2018-2028
5-Aminolevulinic acid (ALA) is a value-added compound with potential applications in the fields of agriculture and medicine. Although massive efforts have recently been devoted to building microbial producers of ALA through metabolic engineering, few studies focused on the cellular response and tolerance to ALA. In this study, we demonstrated that ALA caused severe cell damage and morphology change of Escherichia coli via generating reactive oxygen species (ROS), which were further determined to be mainly hydrogen peroxide and superoxide anion radical. ALA treatment activated the native antioxidant defense system by upregulating catalase (CAT) and superoxide dismutase (SOD) expression to combat ROS. Further overexpressing CAT (encoded by katG and katE) and SOD (encoded by sodA, sodB, and sodC) not only improved ALA tolerance but also its production level. Notably, coexpression of katE and sodB in an ALA synthase expressing strain enhanced the biomass and final ALA titer by 81% and 117% (11.5 g/L) in a 5 L bioreactor, respectively. This study demonstrates the importance of tolerance engineering in strain development. Reinforcing the antioxidant defense system holds promise to improve the bioproduction of chemicals that cause oxidative stress. 相似文献
19.
B. Bisbis J.P. Billard C. Huault C. Kevers F. Le Dily T. Gaspar 《Biologia Plantarum》1997,40(4):493-497
5-Aminolevulinic acid synthase (ALAS) has been detected in a normal (auxin- and cytokinin-dependent) green sugar beet callus under light and under darkness. ALAS activity was lower when the callus was grown under light. The supply of precursors of the Shemin pathway (glycine and succinate) to dark-grown callus enhanced considerably the capacity of the 5-aminolevulinic acid (ALA) formation. Glutamate, -aminobutyrate or -ketoglutarate also increased ALA accumulation. Such an accumulation was also obtained after inhibition of polyamine synthesis. The results show that glutamate or its derivatives might feed the Shemin pathway in conditions preventing glutamate to be used through the Beale pathway. 相似文献
20.
Microbial synthesis of (R)- and (S)-3,4-dimethoxyamphetamines through stereoselective transamination 总被引:1,自引:0,他引:1
Two soil isolates, Arthrobacter sp. KNK168 and Pseudomonas sp. KNK425, aminated 3,4-dimethoxyphenylacetone in presence of sec-butylamine as an amino donor to yield 3,4-dimethoxyamphetamine (DMA) with different enantioselectivities. The former gave (R)-DMA (>99% e.e.) and the latter the (S)-isomer (>99% e.e.). 相似文献