首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Terence A. Smith 《Phytochemistry》1977,16(11):1647-1649
After purification, the polyamine oxidase from the leaves of oat seedlings grown in the dark appeared to be homogeneous on electrophoresis. The MW determined by density gradient centrifugation was 119 000. The enzyme would not oxidise diaminodipropylamine and neither diaminodipropylamine nor diaminopropane were inhibitors at concentrations up to 1 mM. With spermidine as substrate, the energy of activation was 19.7 kJ/mol and activity was reduced to 50% on heating for 10 min at 50°. With spermine as substrate, activity was increased up to 3-fold in the presence of M sodium chloride. This stimulation was not observed with spermidine as substrate The enzyme was also stimulated by sodium phosphate and sodium citrate at high concentrations. The pH for optimal stability was 6.5, the same as the pH for maximum activity with both spermidine and spermine as substrates. For spermidine and spermine the Kms were 8 × 10 ?6 M and 2 × 10 ?6 M respectively. Loss of activity on storage of leaves at ? 15° was ca 5 % per week and in extracts the loss was ca 10 % per week.  相似文献   

2.
Two l-lactate dehydrogenase isoenzymes and one dl-lactate dehydrogenase could be separated from potato tubers by polyacrylamide-gel electrophoresis. The enzymes are specific for lactate, while β-hydroxybutyric acid, glycolic acid, and glyoxylic acid are not oxidized. Their pH optima are pH 6.9 for the oxidation and 8.0 for the reduction reaction.The Km values for l-lactate for the two isoenzymes are 2.00 × 10?2 and 1.82 × 10?2, m. In the reverse reaction the affinities for pyruvate are 3.24 × 10?4 and 3.34 × 10?4, m. Both enzymes have similar affinities for NAD and NADH (3.00 × 10?4; 4.00 × 10?4, and 8.35 × 10?4; 5.25 × 10?4, m).The dl-lactate oxidoreductase may transfer electrons either to NAD or N-methyl-phenazinemethosulfate. The Km values of this enzyme for l-lactate are 4.5 × 10?2, m and for d-lactate 3.34 × 10?2, m. Its affinity for pyruvate is 4.75 × 10?4, m. The enzyme is inhibited by excess NAD (Km = 1.54 × 10?4, M) and has an affinity toward NADH (Km = 5.00 × 10?3, M) which is about one tenth of that of the two isoenzymes of l-lactate dehydrogenase.  相似文献   

3.
Alcohol dehydrogenase was prepared from germinating soybean seeds. Specific activity was increased from 511 to 31316 units. The coenzyme is NAD with a Km of 10?4M. Allyl alcohol is oxidized faster than ethanol; with the latter substrate, the Km is 1.3 × 10?2M, and the pH optimum 8.7. The enzyme catalyses acetaldehyde reduction, with a Km of 10?2M and a pH opt of 7.1. The MW is 53(±5) × 10?3.  相似文献   

4.
15-Hydroxyprostaglandin dehydrogenase from bovine lung was purified 7.4 times to a specific activity of 1.4 mU/mg of protein. The isoelectric point was estimated to 5.4 and the molecular weight by gelfiltration to 40,000. Km for prostaglandin E1 and for NAD+ were found to be 3.4 μM and 1.1 × 10?4M respectively. The enzyme was inhibited by indomethacin and aspirin. The indomethacin inhibition was found to be non-competitive to prostaglandin E1 having a Ki=1.4 × 10?4M and a Ki=1.6 × 10?5M.  相似文献   

5.
UDP-glucose:coniferyl alcohol glucosyltransferase was isolated from 10-day-old, darkgrown cell suspension cultures of Paul's scarlet rose. The enzyme was purified 120-fold by (NH4)2SO4 fractionation and chromatography on DEAE-cellulose, hydroxyapatite, and Sephadex G-100. The enzyme has a pH optimum of 7.5 in Tris-HCl buffer, required an -SH group for activity, and is inhibited by ?-chloromercuribenzoate and EDTA. Its molecular weight is estimated to be 52,000. The enzyme is specific for the glucosylation of coniferyl alcohol (Km 3.3 × 10?6 M) and sinapyl alcohol (Km 5.6 × 10?6 M). With coniferyl alcohol as substrate the apparent Km value for UDP-glucose is 2 × 10?6m. The enzyme activity can be detected in a number of callus-tissue and cell-suspension cultures. The role of this enzyme is believed to be to catalyze the transfer of glucose from UDPG to coniferyl (or sinapyl) alcohol as storage intermediates in lignin biosynthesis.  相似文献   

6.
Diamine oxidase was purified separately from cotyledon and embryo of pea seedlings germinated for 6 days. The Km of the cotyledon enzyme for putrescine was 1.6 × 10?4M while that for the embryo enzyme was 9 × 10?5M. On heating for 15 min at 70° the embryo enzyme retained about 90% activity whereas the cotyledon enzyme retained only 20% activity. The electrophoretic mobility of the cotyledon enzyme was ca twice that of the enzyme from embryo.  相似文献   

7.
A laccase from the culture filtrate of Phellinus linteus MTCC-1175 has been purified to homogeneity. The method involved concentration of the culture filtrate by ammonium sulphate precipitation and an anion exchange chromatography on DEAE-cellulose. The SDS-PAGE and native-PAGE gave single protein band indicating that the enzyme preparation was pure. The molecular mass of the enzyme determined from SDS-PAGE analysis was 70 kDa. Using 2.6-dimethoxyphenol, 2.2′[azino-bis-(3-ethylbonzthiazoline-6-sulphonic acid) diammonium salt] (ABTS) and 4-hydroxy-3,5-dimethoxybenzaldehyde azine as the substrates, the K m, k cat and k cat/K m values of the laccase were found to be 160 μM, 6.85 s?1, 4.28 × 104 M?1 s?1, 42 μM, 6.85 s?1, 16.3 × 104 M?1 s?1 and 92 μM, 6.85 s?1, 7.44 × 104 M?1 s?1, respectively. The pH and the temperature optima of the P. linteus MTCC-1175 laccase were 5.0 and 45°C, respectively. The activation energy for thermal denaturation of the enzyme was 38.20 kJ/mole/K. The enzyme was the most stable at pH 5.0 after 1 h reaction. In the presence of ABTS as the mediator, the enzyme transformed toluene, 3-nitrotoluene and 4-chlorotoluene to benzaldehyde, 3-nitrobenzaldehyde and 4-chlorobenzaldehyde, respectively.  相似文献   

8.
Polyamine oxidase of maize shoots purified 10-fold had a pH optimum of 6·3 with spermidine as substrate, and Km of 6 × 10?4 M. The enzyme was inhibited by the acridine compounds quinacrine, 6,9-diamino-2-ethoxyacridine and acriflavin, but carbonyl reagents, typical thiol inhibitors and copper-binding agents were without effect. Inhibition by quinacrine was reversed by FMN and FAD. Furthermore, about 50 % of the activity of the apoenzyme was restored by the addition of FAD, but not by FMN or riboflavin, indicating that the maize polyamine oxidase is an FAD-dependent flavoprotein.  相似文献   

9.
Some properties of a preparation of an enzyme, lunularic acid decarboxylase, from the liverwort Conocephalum conicum are described. The enzyme is normally bound and could be solubilized with Triton X-100; at least some of the bound decarboxylase activity appears to be associated with chloroplasts. For lunularic acid the enzyme has Km 8.7 × 10?5 M (pH 7.8 and 30°). Some substrate analogues have been tested but no other substrate was found. Pinosylvic acid is a competitive inhibitor for the enzyme, Ki 1.2 × 10?4 M (pH 7.8 and 30°). No product inhibition was observed. Lunularic acid decarboxylase activity has also been observed with a cell-free system from Lunularia cruciata.  相似文献   

10.
Polyamine analogues have been studied as potential inhibitors or substrates of barley leaf polyamine oxidase. NH2(CH2)3NH(CH2)10NH2 was particularly effective as an inhibitor of spermine oxidation at pH 4·5 (Ki = 5 × 10?6 M). Methylglyoxal-bis(guanylhydrazone) inhibited spermine oxidation only slightly (Ki = 10?4 M). Activity with the polyamine analogues as substrates was generally 10% or less of the activity with spermine. The Km for oxygen was 3 × 10?4 M. The Km for spermine oxidation was independent of oxygen concentration. Using the N-methyl-2-benzothiazolone hydrazine reagent, 1-(3-aminopropyl)pyrroline was shown to be formed stoichiometrically by the enzyme on oxidation of spermine. The enzyme will not function as a dehydrogenase in the presence of oxygen with either potassium ferricyanide or dichlorophenolindophenol as electron acceptors. Activity in the leaves increased with age, up to 4 weeks. In the leaves of 11-week-old plants activity was lower than in leaves of 1-week-old plants. The enzyme was mainly associated with an easily-sedimented particulate fraction, and relatively small proportions were found in the cell wall or soluble fractions.  相似文献   

11.
Inhibition of bovine erythrocyte acetylcholinesterase (free and immobilized on controlled pore glass) by separate and simultaneous exposure to malathion and malathion transformation products which are generally formed during storage or through natural or photochemical degradation was investigated. Increasing concentrations of malathion, its oxidation product malaoxon, and its isomerisation product isomalathion inhibited free and immobilized AChE in a concentration-dependent manner. KI, the dissociation constant for the initial reversible enzyme inhibitor-complex, and k3, the first order rate constant for the conversion of the reversible complex into the irreversibly inhibited enzyme, were determined from the progressive development of inhibition produced by reaction of native AChE with malathion, malaoxon and isomalathion. KI values of 1.3 × 10? 4 M? 1, 5.6 × 10? 6 M? 1 and 7.2 × 10? 6 M? 1 were obtained for malathion, malaoxon and isomalathion, respectively. The IC50 values for free/immobilized AChE, (3.7 ± 0.2) × 10? 4 M/(1.6 ± 0.1) × 10? 4, (2.4 ± 0.3) × 10? 6/(3.4 ± 0.1) × 10? 6 M and (3.2 ± 0.3) × 10? 6 M/(2.7 ± 0.2) × 10? 6 M, were obtained from the inhibition curves induced by malathion, malaoxon and isomalathion, respectively. However, the products formed due to photoinduced degradation, phosphorodithioic O,O,S-trimethyl ester and O,O-dimethyl thiophosphate, did not noticeably affect enzymatic activity, while diethyl maleate inhibited AChE activity at concentrations > 10 mM. Inhibition of acetylcholinesterase increased with the time of exposure to malathion and its inhibiting by-products within the interval from 0 to 5 minutes. Through simultaneous exposure of the enzyme to malaoxon and isomalathion, an additive effect was achieved for lower concentrations of the inhibitors (in the presence of malaoxon/isomalathion at concentrations 2 × 10? 7 M/2 × 10? 7 M, 2 × 10? 7 M/3 × 10? 7 M and 2 × 10? 7 M/4.5 × 10? 7 M), while an antagonistic effect was obtained for all higher concentrations of inhibitors. The presence of a non-inhibitory degradation product (phosphorodithioic O,O,S-trimethyl ester) did not affect the inhibition efficiencies of the malathion by-products, malaoxon and isomalathion.  相似文献   

12.
The interactions of chymotrypsin, subtilisin and trypsin with a low MW proteinase inhibitor from potatoes were investigated. The Ki value calculated for the binding of inhibitor to chymotrypsin was 1.6 ± 0.9 × 10?10M, while the second-order rate constant for association was 6 × 105 M?1/sec. Although binding was not observed to chymotrypsin which had been treated with diisopropyl fluorophosphate or with l-tosylamide-2-phenylethyl chloromethyl ketone, the 3-methylhistidine-57 derivative bound inhibitor with a Ki value of 9.6 × 10?9 M. The inhibitor also exhibited a tight association with subtilisin (Ki < 4 × 10?9 M). In contrast, little inhibition of trypsin was observed, and this was believed to be due to low levels of a contaminant in our preparations. No evidence for reactive site cleavage was observed after incubation of the inhibitor with catalytic amounts of chymotrypsin or subtilisin at acid pH.  相似文献   

13.
Arthrobacter sialophilus neuraminidase catalyzes the hydration of 5-acetamido-2,6-anhydro-3, 5-dideoxy-d-glycero-d-galacto-non-2-enonic acid (2,3-dehydro-AcNeu) with Km and kcat values of 8.9 × 10?4m and 6.40 × 10?4 s?1, respectively. The methyl ester of 2,3-dehydro-AcNeu as well as 2,3-dehydro-4-epi-AcNeu are also hydrated by the enzyme. The product resulting from the enzymatic hydration of 2,3-dehydro-AcNeu is N-acetylneuraminic acid. A series of derivatives of 2,3-dehydro-AcNeu (KI 1.60 × 10?6m) including 2,3-dehydro-4-epi-AcNeu (2.10 × 10?4m) and 2,3-dehydro-4-keto-AcNeu (KI = 6.10 × 10?5 m) were each competitive inhibitors of the enzyme. The methyl esters of these ketal derivatives were also competitive enzyme inhibitors. Dissociation constants for these ketals were determined independently by fluorescence enzyme titrations which gave values similar to those found kinetically. These six relatives of 2,3-dehydro-AcNeu were also competitive inhibitors for the influenza viral neuraminidases. For the viral neuraminidases, the dissociation constant for 2,3-dehydro-AcNeu and its methyl ester were 2.40 × 10?6 and 1.17 × 10?3m, respectively. The interpretation placed upon the KI values determined for these ketals against the Arthrobacter versus influenza neuraminidases is that the bacterial enzyme has a more flexible glycone binding site.  相似文献   

14.
Diamine oxidase of rice seedlings has been purified 1800-fold to homogeneity. The MW of the enzyme as determined by Sephadex G-100 gel filtration was 12.3 × 104 and the enzyme contained two identical subunits each with a MW of 6.12 × 104. The optimal temperature and pH for the enzyme were 30° and 7.5 respectively and the enzyme followed typical Michaelis kinetics with a Km of 10?5 M. Each enzyme molecule contained four molecules of FAD.  相似文献   

15.
The partial purification of shikimate dehydrogenase (SDH) from tomato fruit was achieved by precipitation with ammonium sulphate, and chromatography on DEAE-cellulose and hydroxyapatite. The enzyme has a MW of 73000, shows an optimum at pH 9.1 and Km values of 3.8 × 10?5 M and 1.0 × 10?5 M with shikimic acid and NADP as substrates. NADP could not be replaced by NAD. The tomato enzyme is competitively inhibited by protocatechuic acid with a Ki value of 7.7 × 10?5 M. On the other hand, cinnamic acid derivatives and 2-hydroxybenzoic acid were ineffective. At 50° for 5 min the SDH is inactivated by 85%. The activity was inhibited by pCMB and N-ethylmaleimide, suggesting a requirement for SH groups. The inactivation plot of oxidation by pCMB was biphasic, and NADP decreased the reactivity of sulphydryl groups to the reagent. The activation energy was found to be 14.2kcal/mol. The properties of the SDH are discussed in relation to the enzymes from other sources.  相似文献   

16.
Potato tuber phosphofructokinase was purified 19·.6-fold by a combination of ethanol fractionation and DEAE-cellulose column chromatography. The enzyme was very unstable; its pH optimum was 8·0. Km for fructose-6-phosphate, ATP and Mg2+ was 2·1 × 10?4 M, 4·5 × 10?5 M and 4·0 × 10?4 M respectively. ITP, GTP, UTP and CTP can act as phosphate donors, but are less active than ATP. Inhibition of enzyme activity by high levels of ATP was reversed by increasing the concentration of fructose-6-phosphate; the affinity of enzyme for fructose-6-phosphate decreased with increasing concentration of ATP. 5′-AMP, 3′,5′-AMP, 3′-AMP, deoxy AMP, UMP, IMP, CMP, GMP, ADP, CDP, GDP and UDP did not reverse the inhibition of enzyme by ATP. ADP, phosphoenolpyruvate and citrate inhibited phosphofructokinase activity but Pi did not affect it. Phosphofructokinase was not reactivated reversibly by mild change of pH and addition of effectors.  相似文献   

17.
Polyamine oxidase from Penicillium chrysogenum oxidized spermine rapidly and spermidine slightly at pH 7.5. The apparent Km values for spermine and spermidine were calculated to be 2.25 × 10?5 m and 9.54 × 10?6 m, respectively. The relative maximum velocities for spermine and spermidine were 3.37 × 10?3 m (H2O2) per min per mg of protein and 2.08 × 10?4 m (H2O2) per min per mg of protein, respectively. Spermine oxidation of the enzyme was competitively inhibited by spermidine and putrescine. The apparent Ki values by spermidine and putrescine were calculated to be 3.00 × 10?5 m and 1.80 × 10?8 m, respectively. On the other hand, polyamine oxidase from Aspergillus terreus rapidly oxidized both spermidine and spermine at pH 6.5. The apparent Km values for spermidine and spermine were 1.20 × 10?8 m and 5.37 × 10?7 m, respectively. The relative maximum velocities for spermidine and spermine were 1.55 × 10?2 m (H2O2) per min per mg of protein and 6.20 × 10?3 m (H2O2) per min per mg of protein, respectively.

Differential determination of spermine and spermidine was carried out using the two enzymes. The initial rate was assayed with Penicillium enzyme and the end point was measured afte addition of Aspergillus enzyme. Small amounts of polyamines (25 to 200 nmol of spermine and 25 to 250 nmol of spermidine) were assayed by solving two simultaneous equations obtained from the rate assay method and the end point assay method. The calculated values were in close agreement with those obtained by an amino-acid analyzer.  相似文献   

18.
α-d-Galactosidases (α-d-galactoside galactohydrolase, EC 3.2.1.22) from normal coconut endosperm were isolated and partially purified by a combination of ammonium sulfate fractionation, SP-Sephadex C50–120 ion-exchange chromatography and Sephadex G-200 and G-100 gel filtration. Two molecular forms of the enzyme, designated as A and B, were eluted after SP-Sephadex C50–120 ion-exchange chromatography. α-d-Galactosidase A, which is the major isoenzyme, was partially purified 43-fold on Sephadex G-200 and has a MW of about 23 000 whereas α-d-galactosidase B was partially purified 23-fold on Sephadex G-100 and has a similar MW of about 26 600. Both isoenzymes exhibited optimum activity at pH 7.5. The apparent Km and Vmax of α-d-galactosidase A were obtained at 3.46 × 10?4M and 1.38 × 10?3 M p-nitrophenyl α-<d-galactoside, respectively. A distinct substrate inhibition was noted. The enzyme was inhibited strongly by d-galactose and to a lesser extent by myo-inositol, d-glucose-6-phosphate, l-arabinose, melibiose and iodoacetic acid. Similarly, makapuno α-d-galactosidase was localized in the 40–70 % (NH4)2SO4 cut but its optimum activity at pH 7.5 was considerably lower as compared to the normal. Its Km was obtained at 6.75 × 10?4 M p-nitrophenyl α-d-galactoside while the Vmax was noted at 5.28 × 10?3 M p-nitrophenyl α-d-galactoside. Based on the above kinetic data, the possible cause(s) of the deficiency of α-d-galactosidase activity in makapuno is discussed.  相似文献   

19.
Fructose 1,6-bisphosphatase (EC 3.1.3.11) from Saccharomyces cerevisiae has been purified to homogeneity. A molecular weight of 115,000 has been obtained by gel filtration. The enzyme appears to be a dimer with identical subunits. The apparent Km for fructose bisphosphatase varies with the Mg2+ concentration of the enzyme, being 1 × 10?6m at 10 mm Mg2+ and 1 × 10?5m at 2 mm Mg2+. Other phosphorylated compounds are not significantly hydrolyzed by the enzyme. An optimum pH of 8.0 is exhibited by the enzyme. This optimum is not changed by addition of EDTA. AMP inhibits the enzyme with a Ki of 8.0 × 10?5m at 25 °C. The inhibition is temperature dependent, the value of Ki increasing with raising temperature. 2-Deoxy-AMP is also inhibitory with a Ki value at 25 °C of 1.6 × 10?4m. An ordered uni-bi mechanism has been deduced for the reaction with phosphate leaving the enzyme as the first product and the fructose 6-phosphate as the second one.  相似文献   

20.
Agmatine deiminase activity in rice embryos increased gradually upto 24 hr during germination and then decreased. Gibberellic acid and kinetin inhibited the activity when added to the germination medium. The enzyme was purified 717 fold with specific activity 788.5 nkat/mg protein and yield 8.8%. The Mr of the native enzyme was 18.3 x 104 and the enzyme was a dimer of two identical subunits. The pH and temperature optimum of the enzyme were 6.0 and 28° respectively. The enzyme followed typical Michaelis-Menten kinetics with a Km value of 1.5 x 10?2 M. The enzyme activity was inhibited by various divalent cations and spermidine and spermine, but putrescine showed no effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号