首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An anticoagulant isolated from the marine green alga Codium pugniformis was composed mainly of glucose with minor amounts of arabinose and galactose. It was highly sulfated (326 μg mg-1 polysaccharide) and contained protein(52 μg mg-1 polysaccharide) and was thus a proteoglycan. The anticoagulant properties of the purified proteoglycan were compared with those of heparin by studying the activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time(TT) using normal human plasma. The proteoglycan showed similar activities to heparin, but was weaker than heparin. On the other hand, the proteoglycan did not affect PT even at the concentration at which APTT and TT were prolonged. The anticoagulation mechanism of this proteoglycan was due to the direct inhibition of thrombin and the potentiation of antithrombin III. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
A proteoglycan isolated from plasma membranes of an ascites hepatoma, AH 66, was characterized structurally. The glycosaminoglycan was obtained by alkali treatment and was identified as heparan sulfate. It was essentially the only type of carbohydrate chain attached to the core protein. The identification was based on chemical analysis, electrophoresis, and digestibility with heparitinase from Flavobacterium heparinum. Analysis of neutral sugars of the proteoglycan by mass fragmentography indicated the presence of xylose and galactose which should be involved in the linkage region between a heparan sulfate chain and the core protein. The weight-average molecular weights of the proteoglycan and its heparan sulfate chain were determined to be 71,000 and 21,000, respectively, by meniscus depletion equilibrium centrifugation. The latter value was in good agreement with those obtained by chemical analysis and by gel filtration. From these values for molecular weight and the protein content of the proteoglycan (10.6%), the molecular weight of the core protein was estimated to be 7500. On the basis of these molecular parameters, it was proposed that three heparan sulfate chains on average are linked to the core protein.  相似文献   

3.
The cDNA for the full-length core protein of the small chondroitin sulphate proteoglycan II of bovine bone was cloned and sequenced. A 1.3 kb clone (lambda Pg28) was identified by plaque hybridization with a previously isolated 1.0 kb proteoglycan cDNA clone (lambda Pg20), positively identified previously by polyclonal and monoclonal antibody reactivity and by hybrid-selected translation in vitro [Day, Ramis, Fisher, Gehron Robey, Termine & Young (1986) Nucleic Acids Res. 14, 9861-9876]. The cDNA sequences of both clones were identical in areas of overlap. The 360-amino-acid-residue protein contains a 30-residue propeptide of which the first 15 residues are highly hydrophobic. The mature protein consists of 330 amino acid residues corresponding to an Mr of 36,383. The core protein contains three potential glycosaminoglycan-attachment sites (Ser-Gly), only one of which is within a ten-amino-acid-residue homologous sequence seen at the known attachment sites of related small proteoglycans. Comparisons of the published 24-residue N-terminal protein sequence of bovine skin proteoglycan II core protein with the corresponding region in the deduced sequence of the bovine core protein reveals complete homology. Comparison of the cDNA-derived sequences of bovine bone and human embryonic fibroblast proteoglycans shows a hypervariable region near the N-terminus. Nucleotide homology between bone and fibroblast core proteins was 87% and amino acid homology was 90%.  相似文献   

4.
Proteoglycans of developing bone   总被引:17,自引:0,他引:17  
We purified and characterized the bone proteoglycans from fetal calves, growing rats, and human fetuses. The major proteoglycan is part of the mineralized tissue matrix and only 10-20% can be extracted prior to demineralization. This bone proteoglycan is a small glycoconjugate (Mr = 80,000-120,000) containing approximately 20-30% protein and either one or two chondroitin sulfate chains (Mr = 40,000) attached to a relatively monodisperse protein core (Mr = 38,000). "O"-linked and "N"-linked oligosaccharide units are also present. Antibodies directed against the protein core of calf bone proteoglycan do not cross-react with cartilage, skin, corneal, or basement membrane proteoglycans in immunoassays and have minimal cross-reactivity with scleral proteoglycans. Quantitative immunoassays and indirect immunofluorescence were used to show that the molecule is localized to forming bone trabeculae and dentin, but not to any other tissue. Osteoblasts and osteoprogenitor cells adjacent to areas undergoing rapid osteogenesis also contain this small proteoglycan. A second proteoglycan (Mr approximately equal to 1,000,000) was extracted from newly forming bone prior to demineralization. This large proteoglycan, which was isolated from the cartilage-free areas of developing intramembranous bone, has a protein core similar to that of the cartilage aggregating proteoglycan and cross-reacts with antisera raised against these cartilage proteoglycans but not with the small mineral-entrapped proteoglycan. It contains larger (Mr = 40,000) and fewer chondroitin sulfate chains than its cartilage-derived analogue, and is localized to the soft connective tissue mesenchyme lying between growing bone trabeculae. More fully formed compact bone did not contain detectable quantities of this proteoglycan.  相似文献   

5.
The expression and core protein structure of two proteoglycans, the major cartilage proteoglycan isolated from a rat chondrosarcoma and a small molecular weight chondroitin sulfate proteoglycan isolated from a rat yolk sac tumor, have been compared. The cartilage proteoglycan was not detectable in the cartilage tissue of cartilage matrix deficient (cmdcmd) neonatal mice by immunofluorescence, but the cmd cartilage did react with antibodies against the core protein of the yolk sac tumor proteoglycan. Radioimmunoassays showed that the core proteins of these proteoglycans are not cross-reactive with each other. Analysis of the core proteins by sodium dodecyl sulfate/polyacrylamide gel electrophoresis after chondroitinase ABC treatment of the proteoglycan revealed a large difference in their sizes. The cartilage proteoglycan core protein had a molecular weight of about 200,000 while the yolk sac tumor proteoglycan core protein migrated with an apparent molecular weight of about 20,000. In addition, the cultured yolk sac tumor cells that make the small proteoglycan did not react with antiserum against the cartilage proteoglycan. These results indicate that the proteoglycan isolated from the yolk sac tumor is similar to the small chondroitin sulfate proteoglycan species found in cartilage and support the existence of at least two dissimilar and genetically independent chondroitin sulfate proteoglycan core proteins.  相似文献   

6.
The proteoglycans characterized were those isolated from the calcified matrix of mature bovine bone [Franzén & Heinegård (1984) Biochem. J. 224, 47-58]. The average molecular mass of the bone proteoglycan is 74 600 Da, determined by sedimentation-equilibrium centrifugation in 4M-guanidinium chloride. Its sedimentation coefficient (s0(20),w) is 3.04 S. The apparent Mr of its core protein is 46 000, estimated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the chondroitinase ABC-digested proteoglycan. A more likely molecular mass of the core protein is 30 000 Da, as calculated from the molecular mass and the protein content (40%) of the proteoglycan. The bone proteoglycan contains one or probably two chondroitin sulphate chains each with a molecular mass (weight-average) of 33 700 Da and several oligosaccharides both of the N-glycosidically and the O-glycosidically linked type. Antibodies against the homogeneous bone proteoglycans were raised in rabbits. An e.l.i.s.a. (enzyme-linked immunosorbent assay) method was developed that allowed specific quantification of bone proteoglycans at nanogram levels. The specificity of the antibodies was tested by using the e.l.i.s.a. method. The bone proteoglycan showed partial cross-reactivity with the small proteoglycan of cartilage. The antibodies were used to localize immunoreactivity of bone proteoglycans by indirect immunofluorescence in frozen sections of foetal bovine epiphysial growth plate. The fluorescence was entirely found in the primary spongiosa, and no fluorescence was found among the hypertrophied chondrocytes or in the region of provisional calcification.  相似文献   

7.
Proteoglycan monomers from pig laryngeal cartilage were examined by electron microscopy with benzyldimethylalkylammonium chloride as the spreading agent. The proteoglycans appeared as extended molecules with a beaded structure, representing the chondroitin sulphate chains collapsed around the protein core. Often a fine filamentous tail was present at one end. Substructures within proteoglycan molecules were localized by incubation with specific antibodies followed by Protein A-gold (diameter 4 nm). After the use of an anti-(binding region) serum the Protein A-gold (typically one to three particles) bound at the extreme end of the filamentous region. A small proportion of the labelled molecules (10-15%) showed the presence of gold particles at both ends. A monoclonal antibody specific for a keratan sulphate epitope (MZ15) localized a keratan sulphate-rich region at one end of the proteoglycan, but gold particles were not observed along the extended part of the protein core. This distribution was not changed by prior chondroitin AC lyase digestion of the proteoglycan. Localization with a different monoclonal antibody to keratan sulphate (5-D-4) caused a change in the spreading behaviour of a proportion (approx. 20%) of the proteoglycan monomers that lost their beaded structure and appeared with the chondroitin sulphate chains projecting from the protein core. In these molecules the Protein A-gold localized antibody (5-D-4) along the length of the protein core whereas in those molecules with a beaded appearance it labelled only at one end. Labelling with either of the monoclonal antibodies was specific, as it was inhibited by exogenously added keratan sulphate. The differential localization achieved may reflect structural differences within the proteoglycan population involving keratan sulphate and the protein core to which it is attached. The results showed that by this technique substructures within proteoglycan molecules can be identified by Protein A-gold labelling after the use of specific monoclonal or polyclonal antibodies.  相似文献   

8.
Proteoglycan monomer (D1) and aggregate (A1) preparations were isolated from 4 M guanidinium chloride extracts of the Swarm rat chondrosarcoma. When EDTA, 6-aminohexanoic acid, and benzamidine were present in the solutions, the D1 preparation contained a single component (SO = 23 S), and the A1 preparation contained 30% monomer (SO = 23 S) and 70 percent aggregate (SO = 111 S). In the absence of EDTA, 6-aminohexanoic acid, and benzamidine, the A1 preparations contained only small proteoglycan fragments, indicating that extensive enzymatic degradation had occurred. The composition of the proteoglycan monomer was different from that of proteoglycan monomer preparations from normal hyaline cartilages in that it did not contain keratan sulfate and chondroitin 6-sulfate; only chondroitin 4-sulfate was found. The A1 preparation from the chondrosarcoma contained only one link protein, which was like the smaller (molecular weight of 40,000) of the two link proteins present in A1 preparations from bovine nasal cartilage. When the A1 preparation from the chondrosarcoma was treated with chondroitinase ABC and trypsin and the digest was chromatographed on Sepharose 2B, a complex was isolated which contained the link protein and the segments of the protein core from the hyaluronic acid-binding region of the proteoglycan molecules.  相似文献   

9.
《Carbohydrate research》1987,161(1):113-126
An l-arabino-d-galactan and an l-arabino-d-galactan-containing proteoglycan were isolated from hot phosphate-buffered saline extracts of radish seeds by ethanol fractionation, ion-exchange chromatography, and gel filtration, and found homogeneous by ultracentrifuge analysis and high-voltage electrophoresis. The proteoglycan consisted of 86% of a polysacchraide component containing β-l-arabinose and d-galactose as major sugar constituents, together with small proportions of d-xylose, d-glucose, and uronic acids, and 9% of a hydroxyproline-containing protein. Methylation analysis, periodate oxidation, and enzymic degradations indicated a backbone chain of (1å3)-linked β-dgalactosyl residues with side chains at O-6 of (1å6)-linked β-d-galactosyl residues and uronosyl groups. The α-l-arabinofuranosyl residues were located mainly in the outer regions as nonreducing groups, as well as O-2- or -5-linked inner chain residues, and O-2,5- or -3,5-linked branching residues. Reductive, alkaline degradation of the proteoglycan indicated that the polysaccharide chains were partly linked through O-glycosyl linkages to the threonine residues of the polypeptide chains. The proteoglycans from radish leaves and seeds appeared to share common antigenic determinant(s). The radish-seed arabinogalactan had a high content (81%) of l-arabinose and its basic structure seemed to be similar to that of the polysaccharide component of the proteoglycan.  相似文献   

10.
The characteristics of cell-associated proteoglycans were studied and compared with those from the medium in suspension cultures of calf articular-cartilage chondrocytes. By including hyaluronic acid or proteoglycan in the medium during [35S]sulphate labelling the proportion of cell-surface-associated proteoglycans could be decreased from 34% to about 15% of all incorporated label. A pulse-chase experiment indicated that this decrease was probably due to blocking of the reassociation with the cells of proteoglycans exported to the medium. Three peaks of [35S]sulphate-labelled proteoglycans from cell extracts and two from the medium were isolated by gel chromatography on Sephacryl S-500. These were characterized by agarose/polyacrylamide-gel electrophoresis, by SDS/polyacrylamide-gel electrophoresis of core proteins, by glycosaminoglycan composition and chain size as well as by distribution of glycosaminoglycans in proteolytic fragments. The results showed that associated with the cells were (a) large proteoglycans, typical for cartilage, apparently bound to hyaluronic acid at the cell surface, (b) an intermediate-size proteoglycan with chondroitin sulphate side chains (this proteoglycan, which had a large core protein, was only found associated with the cells and is apparently not related to the large proteoglycans), (c) a small proteoglycan with dermatan sulphate side chains with a low degree of epimerization, and (d) a somewhat smaller proteoglycan containing heparan sulphate side chains. The medium contained a large aggregating proteoglycan of similar nature to the large cell-associated proteoglycan and small proteoglycans with dermatan sulphate side chains with a higher degree of epimerization than those of the cells, i.e. containing some 20% iduronic acid.  相似文献   

11.
Keratan sulfate proteoglycan in rabbit compact bone is bone sialoprotein II   总被引:4,自引:0,他引:4  
A keratan sulfate proteoglycan was isolated under denaturing conditions from the mineral compartment of rabbit cortical bone. This small proteoglycan (Kd = 0.39 on Superose 6, Mr approximately 20,000 on sodium dodecyl sulfate gels) contained small keratan sulfate chains that were distinctly bimodal in size. The keratanase and endo-beta-galactosidase digestible glycosaminoglycan chains were O-linked to a core protein of Mr approximately 80,000. This core protein had several properties in common with the bone sialoprotein II molecule of bovine and human bone including: a closely spaced doublet band on sodium dodecyl sulfate electrophoresis gels; a high staining intensity with Stains All that was greatly diminished by neuraminidase; a significant amount of small O-linked oligosaccharides; and an amino-terminal amino acid sequence that was nearly identical to human bone sialoprotein II. (In contrast, bone sialoprotein II in human, bovine, and rat bone does not appear to have any keratan sulfate chains.) Antiserum made against the keratan sulfate proteoglycan reacted with its core protein on electrotransfers from sodium dodecyl sulfate-polyacrylamide gels.  相似文献   

12.
A small cell-binding proteoglycan for which we propose the name osteoadherin was extracted from bovine bone with guanidine hydrochloride–containing EDTA. It was purified to homogeneity using a combination of ion-exchange chromatography, hydroxyapatite chromatography, and gel filtration. The Mr of the proteoglycan was 85,000 as determined by SDS-PAGE. The protein is rich in aspartic acid, glutamic acid, and leucine. Two internal octapeptides from the proteoglycan contained the sequences Glu-Ile-Asn-Leu-Ser-His-Asn-Lys and Arg-Asp-Leu-Tyr-Phe-Asn-Lys-Ile. These sequences are not previously described, and support the notion that osteoadherin belongs to the family of leucine-rich repeat proteins. A monospecific antiserum was raised in rabbits. An enzyme-linked immunosorbent assay was developed, and showed the osteoadherin content of bone extracts to be 0.4 mg/g of tissue wet weight, whereas none was found in extracts of various other bovine tissues. Metabolic labeling of primary bovine osteoblasts followed by immunoprecipitation showed the cells to synthesize and secrete the proteoglycan. Digesting the immunoprecipitated osteoadherin with N-glycosidase reduced its apparent size to 47 kD, thus showing the presence of several N-linked oligosaccharides. Digestion with keratanase indicated some of the oligosaccharides to be extended to keratan sulfate chains. In immunohistochemical studies of the bovine fetal rib growth plate, osteoadherin was exclusively identified in the primary bone spongiosa. Osteoadherin binds to hydroxyapatite. A potential function of this proteoglycan is to bind cells, since we showed it to be as efficient as fibronectin in promoting osteoblast attachment in vitro. The binding appears to be mediated by the integrin αvβ3, since this was the only integrin isolated by osteoadherin affinity chromatography of surface-iodinated osteoblast extracts.  相似文献   

13.
Phosphate uptake by the blue-green alga Oscillatoria limnetica Lemmerman is stimulated by micromolar concentrations of Ca2+. The calmodulin antagonists 4-(3-[2(trifluoromethyl)phenylthiazin-10-yl]propyl)-1-piperazine ethanol-HCl and its monofluoro-analog inhibit orthophosphate uptake of Oscillatoria limnetica by over 97% implying involvement of calmodulin in this process. A calmodulin-like protein was quantitated in cell-free extracts from O. limnetica by radioimmunoassay.  相似文献   

14.
The addition of retinoic acid to adult bovine articular cartilage cultures produces a concentration-dependent decrease in both proteoglycan synthesis and the proteoglycan content of the tissue. Total protein synthesis was not affected by the presence of retinoic acid, indicating that the inhibition of proteoglycan synthesis was not due to cytotoxicity. The proteoglycans synthesized in the presence of retinoic acid were similar in hydrodynamic size, ability to form aggregates with hyaluronate, and glycosaminoglycan composition to those of control cultures. However, the presence of larger glycosaminoglycan chains suggests that the core protein was substituted with fewer but longer glycosaminoglycan chains. In cultures maintained with retinoic acid, a decreased ratio of the large proteoglycan was synthesized relative to the small proteoglycan compared to that measured in control cultures. In cultures maintained with retinoic acid for 1 day and then switched to medium with 20% (v/v) fetal calf serum, the rate of proteoglycan synthesis and hexuronate contents increased within 5 days to levels near those of control cultures. Within 2 days of switching to medium with 20% (v/v) fetal calf serum, the relative proportions of the proteoglycan species were similar to those produced in cultures maintained in medium with 20% (v/v) fetal calf serum throughout. The rate of proteoglycan synthesis by bovine articular cartilage cultures exhibited an exponential decay following exposure to retinoic acid, with estimated half-lives of 11.5 and 5.3 h for tissue previously maintained in medium alone or containing 20% (v/v) fetal calf serum, respectively. The addition of 1 mM benzyl beta-D-xyloside only partially reversed the retinoic acid-mediated inhibition of proteoglycan synthesis. This indicates that the inhibition of proteoglycan synthesis by retinoic acid was due to both a decreased availability of xylosylated core protein and a decreased capacity of the chondrocytes to synthesize chondroitin sulfate chains.  相似文献   

15.
The influence of transforming growth factor-beta (TGF-beta) on the expression of different forms of small proteoglycans was investigated in human skin fibroblasts and in a human osteosarcoma cell line. TGF-beta was not found to act as a general stimulator of small proteoglycan biosynthesis. In both cell types, an increased expression of the core protein of proteoglycan I was found. However, there was a profound decrease in the expression of a 106 kDa core protein, and either no alteration or a small decrease in the biosynthesis of the collagen-binding small proteoglycan II core protein. These results show that the production of individual members of the small proteoglycan family is differentially regulated.  相似文献   

16.
A low buoyant density fraction (A4) was isolated from human cartilage by CsCl density gradient ultracentrifugation. This fraction contained a hydrodynamically small proteoglycan (Kav, 0.74 on Sepharose CL-2B) that reacted with monoclonal antibody 12/20/1C6 specific for the hyaluronic acid binding region (G1 globe) of the large aggregating high-density proteoglycan isolated from many animal cartilages. Despite the presence of the hyaluronic acid binding region, this small proteoglycan did not form proteoglycan aggregates with hyaluronan, not even in the presence of link protein.  相似文献   

17.
Heparan sulfate-rich proteoglycan is present on the surface of NMuMG mouse mammary epithelial cells. All of this cell surface fraction is lipophilic, assessed by intercalation into lipid vesicles, and requires proteolytic cleavage to be released from the cell surface. No proteoglycan is competitively displaced by heparin. The cell surface lipophilic proteoglycan constitutes 52-55% of the total cellular proteoglycan while the remaining proteoglycan is apparently intracellular, comprising a nonlipophilic fraction (35%) and a small (10-13%) lipophilic fraction. Trypsin or chymotrypsin cleaves a labile site between the region of the cell surface proteoglycan bearing the glycosaminoglycan chains and the cell-associated portion of the core protein, producing a proteoglycan that is nonlipophilic, has an increased bouyant density, and is smaller than the parent molecule. We refer to this proteoglycan as the ectodomain of the cell surface proteoglycan. The correlation between its cell surface location and lipophilic properties suggests that a hydrophobic domain of its core protein may anchor this proteoglycan in the plasma membrane. In vivo, the proteoglycan may be cleaved from this putative anchor, generating nonlipophilic proteoglycan present as a matrix component, or it may remain a membrane component, anchoring the cell directly to the extracellular matrix.  相似文献   

18.
Decorin proteoglycan is comprised of a core protein containing a single O-linked dermatan sulfate/chondroitin sulfate glycosaminoglycan (GAG) chain. Although the sequence of the decorin core protein is determined by the gene encoding its structure, the structure of its GAG chain is determined in the Golgi. The recent application of modern MS to bikunin, a far simpler chondroitin sulfate proteoglycans, suggests that it has a single or small number of defined sequences. On this basis, a similar approach to sequence the decorin of porcine skin much larger and more structurally complex dermatan sulfate/chondroitin sulfate GAG chain was undertaken. This approach resulted in information on the consistency/variability of its linkage region at the reducing end of the GAG chain, its iduronic acid-rich domain, glucuronic acid-rich domain, and non-reducing end. A general motif for the porcine skin decorin GAG chain was established. A single small decorin GAG chain was sequenced using MS/MS analysis. The data obtained in the study suggest that the decorin GAG chain has a small or a limited number of sequences.  相似文献   

19.
Highly viscous extracellular proteoglycan (EPG) has been isolated from culture medium of the unicellular red alga Rhodella grisea (Rhodophyceae) by ethanol precipitation. EPG was composed of xylose (29.3%), 3-O-methyl-xylose (26.0%), uronic acids (17.1%), rhamnose (14.4%), galactose (7.5%), glucose (3.9%), arabinose (1.4%) and mannose (0.4%), and traces of fucose, 4-O-methyl-xylose and 2,3-di-O-methyl-rhamnose or fucose. In addition, the polymer contained proteins (13.1%), sulphates and 13C-CP MAS spectra indicated the presence of acetyl and succinyl groups. The molecular mass was estimated to be 136,000. Ion-exchange chromatography afforded five fractions differing in composition of neutral sugars, uronic acids, and protein content indicating thus the complex structure of the EPG.  相似文献   

20.
The interaction between a small dermatan sulphate proteoglycan isolated from human uterine cervix and collagen type I from human and rat skin was investigated by collagen-fibrillogenesis experiments. Collagen fibrillogenesis was initiated by elevation of temperature and pH after addition of proteoglycan, chondroitinase-digested proteoglycan or isolated side chains, and monitored by turbidimetry. Collagen-associated and unbound proteoglycan was determined by enzyme-linked immunosorbent assay after aggregation was complete. (1) The binding of proteoglycan to collagen could be explained by the presence of two mutually non-interacting binding sites, with Ka1 = 1.3 x 10(8) M-1 and Ka2 = 1.3 x 10(6) M-1. The number of binding sites per tropocollagen molecule was n1 = 0.11 and n2 = 1.1. The 0.1 high-affinity binding site per tropocollagen molecule indicates that the strong interaction between proteoglycan and collagen results from a concerted action of tropocollagen molecules in fibrils. Digestion of the proteoglycan with chondroitinase ABC did not affect these binding characteristics. (2) Proteoglycan did not affect the rate of fibrillogenesis, but increased the steady-state A400 by up to 90%. This increase was directly proportional to the saturation of the high-affinity type of binding sites. Neither isolated core protein nor isolated side chains induced a similar high increase in steady-state A400. (3) Electron micrographs showed that the fibril diameter was affected only to a minor extent, if at all, by the proteoglycan, whereas bundles of laterally aligned fibrils were common in the presence of proteoglycan. (4) Results obtained with human and rat collagen were similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号