首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Properties of a plasmalemma phosphatase of the maize scutellum, tentatively identified as an ATPase in a previous paper, were investigated. Fresh and frozen-thawed scutellum slices, that had been treated with 10 mM HCl to destroy acid phosphatases, were used as a source of enzyme. With the exceptions of the Na+, K+ and dinitrophenol experiments, the two kinds of slices gave similar results. ATP and CTP were the best substrates for the enzyme followed by TTP, UTP, CDP, ADP and GTP. UDP, nucleoside monophosphates, sugar phosphates, inorganic pyrophosphate and p-nitrophenyl phosphate were relatively ineffective as substrates. The Km's for ATP and ADP were 0.65 and 5 mM, respectively, but the two substrates gave the same Vmax (49.8 μmol Pi/hr/g slices). Previously, it was shown that the products of ATP hydrolysis are ADP, AMP and Pi. Using these previous results and from the time courses of ATP disappearance from the bathing solution and the appearance of Pi and ADP, it was concluded that ATP and ADP were hydrolysed by the same enzyme. The ATPase was not inhibited by oligomycin. N-N′-Dicyclohexylcarbodiimide (DCCD) was a poor inhibitor, and a water soluble analog of DCCD, 1-ethyl-3 (3 dimethyl-aminopropyl)-carbodiimide, gave only 33% inhibition. The relative effectiveness of divalent cations for stimulating ATPase activity was Mn2+ > Mg2+ ? Ca2+ > Co2+ · Na+ and K+ gave a small additional stimulation in the presence of Mg2+. However, Na+ and K+ gave a much greater stimulation when no divalent cation was added, and this occurred only when fresh slices were used. Dinitrophenol also increased ATPase activity only when fresh slices were used. Since it is likely that both the uptake of Na+ and K+ and the action of dinitrophenol would lower the electrochemical gradient of protons across the plasmalemma, the different results obtained with fresh slices indicate that the ATPase in these slices was under the constraint of a proton gradient.  相似文献   

2.
When maize scutellum slices were incubated in solutions of sucrose or maltose, there was a release of glucose into the bathing solution. The pH optima for glucose release were 2.5 for sucrose and 3.5 for maltose. From measurement of rates of glucose uptake into slices in the presence or absence of sucrose, it is calculated that glucose uptake will introduce errors of 3–9%, depending on the sucrose concentration, in estimates of free-space sucrose-hydrolase activity at pH 2.5. At their respective pH optima, maltose was hydrolysed at a rate 2.5 times that of sucrose. When frozen-thawed slices were used the same pH optima were obtained, but rates of hydrolysis were increased. Raffinose and melezitose also were hydrolysed with pH optima of 2.5 and 3.5, respectively. α-Methyl glucose was not hydrolysed. A 60-min HCl treatment (pH 2) of scutellum slices destroyed 69% of the sucrose-hydrolase activity and 100% of the maltose-hydrolase activity. In contrast, sucrose uptake and sucrose synthesis from exogenous fructose were not affected by HCl treatment. It is concluded that there are two hydrolases, acid invertase and maltase; that they are either on or outside the plasmalemma (in the free space); and that they are not necessary to the disaccharide uptake processes either by supplying exogenous hexose or by acting as transporters.  相似文献   

3.
Sucrose efflux from maize scutellum slices was promoted by high pH and by K+, Na+ or Rb+. Incubation in mannose (which drastically reduces the ATP level) caused high rates of sucrose efflux only when KCl was present at pH 8. The effects of triphenylmethylphosphonium ion (TPMP+, a lipid soluble cation) on sucrose efflux were similar to those of mannose plus KCl. Mannose and TPMP+ caused release of stored sucrose into the cytoplasm, but pH8 and KCl (mannose) or pH 8 (TPMP+) in the bathing solution were necessary for rapid efflux of sucrose. Rb+ uptake took place during sucrose efflux. In mannose, rates of Rb+ uptake and sucrose efflux were low at pH 5.6 and high at pH 8.0, although the time courses for uptake and efflux were different. It is concluded that sucrose efflux is electrogenic and that it occurs as sucrose-H+ symport. A scheme for sucrose transport across plasmalemma and tonoplast is presented.  相似文献   

4.
Between pH 4–10, basal ATPase activity, measured in the absence of mineral ions, was 10 to 100 times higher in the final cytoplasmic supernatant from potato tuber homogenates than in the membraneous fractions (purified plasmalemma, purified mitochondria and microsomes). The soluble ATPase was slightly inhibited, whereas the membrane-bound ATPases were all stimulated by Mg2+ ions. A further stimulation by Na+ or K+ ions was only observed in purified plasmalemma or mitochondria, at alkaline pH (7.5–9.5). At a fixed (Na++ K+) concentrations (80 mM), this last stimulation was much greater in purified mitochondria (350%) than in plasmalemma (33%); it also increased with (Na++ K+) concentrations up to 200 mM in mitochondria whereas, in plasmalemma, it was roughly constant for monovalent ion concentrations between 20 and 200 mM. General properties of the plasma membrane-bound ATPase have been determined, i.e. substrate specificity, activity variations with quantity of substrate, temperature, pH, etc. Divalent cations stimulated strongly the ATPase in the following order: Mn2+ > Mg2+ > Ca2+. The maximum ATP hydrolysis velocity for that part of ATPase activity which is strictly dependent on Mg2+ ions was 3.85 μmol × mg?1 protein × h?1. This plasma membrane ATPase was not sensitive to ouabaïn or to oligomycin.  相似文献   

5.
Summary The hydrolysis of ATP, AMP and glycerophosphate (GP) at alkaline pH in mineralizing bone and teeth of young mice has been studied histochemically. The substrates were visibly hydrolyzed to the same degree in osteoblasts, cells of stratum intermedium, odontoblasts and subodontoblasts at Ca2+ concentrations ranging from 10 mM to 600 mM. In the ameloblasts, however, only ATP was hydrolyzed. The ATPase activities gradually decreased at increasing Mg2+/Ca2+ ratios. The AMPase and GPase activities, on the other hand, were visibly unaffected. Marked cellular staining, including the nuclei was seen with AMP and GP as substrates when only Mg2+ ions were added. No ATPase activity at all could be recorded in media containing Mg2+ but no Ca2+ ions. The different phosphatase activities in cells involved in hard tissue formation were identically affected by preincubations with solutions containing various concentrations of Ca2+ or Mg2+ ions. The ATPase activity in striated muscle fibres and blood vessel walls, however, was affected differently by the same procedure.The results indicate that the phosphatase activities recorded in osteoblasts, cells of stratum intermedium, odontoblasts and subodontoblasts at alkaline pH belong to one single enzyme. The results also imply that CaATP is the preferred substrate in the enzymatic hydrolysis of ATP in hard-tissue-forming cells.  相似文献   

6.
Abstract The kinetics of sucrose uptake into maize scutellum slices showed that the uptake mechanism had a saturable component with a Km of l.5mol m?3 sucrose. Nevertheless, uptake rate was constant (zero order) over extended periods of time until the bathing solution was nearly depleted of sucrose. It is concluded that these anomalous uptake kinetics reflect sucrose influx across the plasmalemma because of the following results: (a) Efflux of sucrose into buffer was negligible compared with uptake rate, (b) When slices were incubated in fructose, sucrose was synthesized and there was a net release of sucrose to the bathing solution until a steady-state was reached when influx and efflux were equal in magnitude. After the steady-state was reached, efflux of sucrose from the slices was nearly the same in magnitude as the estimated rate of uptake that would have occurred from bathing solutions initially containing the steady-state sucrose concentration, (c) Exchange of sucrose between bathing solution and slices was negligible compared with uptake rate, (d) Pretreatment of slices with uranyl nitrate abolished sucrose uptake, but uptake rate was re-established in these slices after treatment with HCl (pH 2). Uptake rate was set by the initial sucrose concentration of the bathing solution, and was not influenced by the level of endogenous sucrose or by the rate at which the sucrose concentration of the bathing solution declined. Abrupt increases in sucrose concentration during the uptake period increased the rate of uptake only if the concentration was increased above that at the start of the uptake period. Following abrupt decreases in sucrose concentration, there was a lag of about 30 min before uptake rate decreased greatly. If slices were washed and replaced in a fresh sucrose solution during the uptake period, a new uptake rate was set to correspond to the new initial sucrose concentration. It is suggested that the sucrose carrier has a transport site with a relatively low Km (much below 1.5mol m?3) and that the measured Km (1.5mol m?3) is that of a site that binds sucrose and thereby controls the rate of uptake. The low Km suggested for the transport site would explain the zero order kinetics but a model of the uptake mechanism that includes the control site cannot, as yet, be constructed from the data.  相似文献   

7.
Microsomal fractions from wheat tissues exhibit a higher level of ATP hydrolytic activity in the presence of Ca2+ than Mg2+. Here we characterise the Ca2+-dependent activity from roots of Triticum aestivum lev. Troy) and investigate its possible function. Ca2+-dependent ATP hydrolysis in the microsomal fraction occurs over a wide pH range with two slight optima at pH 5.5 and 7.5. At these pHs the activity co-migrates with the major peak of nitrate-inhibited Mg2+. Cl-ATPase on continuous sucrose gradients indicating that it is associated with the vacuolar membrane. Ca2+-dependent ATP hydrolysis can be distinguished from an inhibitory effect of Ca2+ on the plasma membrane K+, Mg2+-ATPase following microsomal membrane separation using aqueous polymer two phase partitioning. The Ca2+-dependent activity is stimulated by free Ca2+ with a Km of 8.1 μM in the absence of Mg2+ ([CaATP] = 0.8 mM). Vacuoiar membrane vacuolar preparations contain a higher Ca2+-dependent than Mg2+-dependent ATP hydrolysis, although the two activities are not directly additive. The nucleotide specificity of the divalent ion-dependent activities in vacuolar membrane-enriched fractions was low. hydrolysis of CTP and UTP being greater than ATP hydrolysis with both Ca2+ and Mg2+ The Ca2+-dependent activity did discriminate against dinucleotides, and mononucleotides. and failed to hydrolyse phosphatase substrates. Despite low nucleotide specificity the Mg2+-dependent activity functioned as a bafilomycin sensitive H+-pump in vacuolar membrane vesicles. Ca2+-dependent ATP hydrolysis was not inhibited by the V-, P-, or F-type ATPase inhibitors bafilomycin. vanadate and azide, respectively. nor by the phosphatase inhibitor molybdate, but was inhibited 20% at pH 7.5 by K+. Possible functions of Ca2+-dependent hydrolysis as a H+-pump or a Ca2+-pump was investigated using vacuolar membrane vesicles. No H+ or Ca2+ translocating activity was observed under conditions when the Ca2+-dependent ATP hydrolysis was active.  相似文献   

8.
Sucrose accumulated in the cytoplasm of mesophyll, parenchyma cells when maize scutella (whole or sliced) were put in concentrated (e.g. 1·0 M) fructose solutions. This accumulated cytoplasmic sucrose leaked from the tissue when the fructose solution was replaced with water or with a more dilute hexitol solution. The amount of leakage was proportional to the concentration difference between the fructose solution bathing the scutellum slices during the sucrose accumulation period and the hexitol solution bathing the slices during the leakage period. Only small amounts of cytoplasmic sucrose leaked from the whole scutellum into water until the root-shoot axis was removed. Other substances also leaked, with sucrose, from the scutellum. Sucrose, nitrogenous compounds, K+ and phosphorous compounds leaked in greatest amounts. The results presented are consistent with the ideas of the mass flow hypothesis. In the scutellum system a pressure flow of solution originates in the mesophyll cells, flows from cell to cell through plasmodesmata, into and through the phloem sieve tubes, and, finally, into the bathing solution.  相似文献   

9.
Since hexoses readily diffuse from maize scutellum cells, it should be possible to detect them if they are produced during sucrose transport at the tonoplast or the plasmalemma. To test this idea, scutellum slices were placed in dinitrophenol (DNP) (which inhibits hexose utilization while greatly increasing utilization of vacuolar sucrose), and the utilization, uptake and leakage of sugars were measured. Only negligible amounts of hexose appeared in the DNP solution during a 5-hr incubation during which the slices metabolized 72μmol of sucrose. Glucose and fructose, added at a concentration of 2 mM, were taken up by the slices at rates 33% and 14% (respectively) of the rate of vacuolar sucrose utilization. It is suggested, therefore, that sucrose transport at the tonoplast does not release free hexose into the cytoplasm. Sucrose transport at the plasmalemma was studied using DNP- and mannose-treated slices. During incubation of these slices in sucrose, the disappearance of sucrose resulted in the appearance of significant quantities of glucose and fructose in the bathing solution. Evidence is presented that sucrose is split into glucose and fructose during transport across the plasmalemma. It is concluded that free hexose is not normally a product of this splitting but is a result of an uncoupling in the transport system caused by the DNP or mannose treatments.  相似文献   

10.
Summary Microsomal fractions from wheat coleoptiles and pea stems contain a microsomal ATPase activity that requires divalent cations (Ca2+ is more effective than Mg2+) and shows further stimulation by KCl. The effects of added indoleacetic acid were inconclusive. Cytochemical studies on both species showed most pronounced staining for ATPase in the plasmalemma at pH 7.0. However, at pH 5.5, the coleoptile cells showed heaviest staining for ATPase in the endoplasmic reticulum and dictyosomes. The results are discussed with regard to the postulated role of ATPase activity in relation to proton pumping and plant cell elongation.  相似文献   

11.
Plant cells frequently and rapidly have to respond to environmental changes for survival. Regulation of transport and other energy-requiring processes in the plasmalemma of root cells is therefore one important aspect of the ecological adaptation of plants. Wheat (Triticum aestivum L. cv. Drabant) was grown hydroponically, with or without 50 nM benzyladenine in the medium, and plasma membranes from root cells of 8-day-old plants were prepared by aqueous polymer two-phase partitioning. The influence of Ca2+ and Mg2+ on the plasmalemma ATPase activities was investigated. The presence of benzyladenine during growth increased the ATPase activity, that dependent upon Ca2+ more than that elicited by Mg2+. As a general characteristic, ATP was the preferred substrate, but all nucleotide tri- and diphosphates could be accepted with activities in plasma membranes from control plants of 7-36% (Mg2+) and 40-86% (Ca2+) and in plasma membranes from benzyladenine-treated plants of 12-47% (Mg2+) and 53-102% (Ca2+) as compared with activities obtained with ATP. Nucleotidemonophosphates were not hydrolyzed by the preparations. In preparations from benzyladenine-treated plants one peak of Ca2+-ATPase at pH 5.2–5.6, with a tail from pH 6 and upwards, and one peak of Mg2+-ATPase at pH 6.0–6.5 were observed in the presence of EDTA in the assay media. In preparations from control plants, the addition of EDTA to the assays resulted in a wide optimum between pH 6 and 7 for Mg2+-ATPase and low Ca2+-ATPase activity with no influence of pH in the range 4.5 to 8. Analysis of the pH dependence in the presence of both Ca2+ and Mg2+ indicates that the control plants mainly contain Mg2+-ATPase corresponding to the proton pump. Preparations from benzyladenine-treated wheat roots show, in addition, activation by Ca2+, which, in the slightly alkaline pH range may correspond to a Ca2+-extruding (Ca2++ Mg2+)-ATPase. In the acidic range, the responses are more complicated: the Mg2+-ATPase is inhibited by vanadate, while the Ca2+-ATPase is insensitive, and benzyladenine added during growth influences the interaction between Ca2+ and Mg2+ in a way that parallels the effect of high salt medium.  相似文献   

12.
The turnip (Brassica rapa L.) microsome fraction contains both a Mg2+-inhibited acid phosphatase and a salt-stimulated Mg2+-activated ATPase. However, as the pH optimum of the ATPase was 8.0 to 8.5, the acid phosphatase activity could be eliminated by assaying at or above pH 7.8. The ATPase was concentrated in a fraction equivalent to the smooth microsomal membranes and was not due to fragments of mitochondria. The salt-stimulated activity showed specificity for anions rather than cations. The activity was further stimulated by carbonyl cyanide m-chloro-phenylhydrazone (CCCP), 2,4-dinitrophenol, valinomycin, nigericin, and NH4Cl. There was a synergistic effect between CCCP and valinomycin. Activity was insensitive to oligomycin phlorizin, ouabain, and atractylate. Based on similarity to the chloroplast ATPase, it was proposed that this ATPase was situated on the outside of the vesicle.  相似文献   

13.
Some aspects of theEscherichia coli Lon protease ATPase function were studied around the optimum pH value. It was revealed that in the absence of the protein substrate the maximum ATPase activity of the enzyme is observed at an equimolar ratio of ATP and Mg2+ ions in the area of their millimolar concentrations. Free components of the substrate complex (ATP-Mg)2− inhibit the enzyme ATPase activity. It is hypothesized that the effector activity of free Mg2+ ions is caused by the formation of the “ADP-Mg-form” of ATPase centers. It was shown that the activation of ATP hydrolysis in the presence of the protein substrate is accompanied by an increase in the affinity of the (ATP-Mg)2− complex to the enzyme, by an elimination of the inhibiting action of free Mg2+ ions without altering the efficiency of catalysis of ATP hydrolysis (based on thek cat value), and by a change in the type of inhibition of ATP hydrolysis by the (ADP-Mg) complex (without changing theK i value). Interaction of the Lon protease protein substrate with the enzyme area located outside the peptide hydrolase center was demonstrated by a direct experiment.  相似文献   

14.
A chicken pectoralis muscle membrane fraction enriched in a Mg2+- or Ca2+-activated (‘basic’) ATPase was obtained by sucrose gradient centrifugation. Enzymatic properties of the ‘basic’ ATPase were determined and used to localize its enzymatic activity in situ by ultrastructural cytochemistry. The enzyme was activated by Mg2+ or Ca2+ but not by Sr2+, Ba2+, Co2+, Ni2+ or Pb2+. It was present in a membranous fraction with a buoyant density of 1.10-1.12 (24–27.5% (ww) sucrose). ‘Basic’ ATPase activity had a sedimentation pattern similar to the putative plasma membrane enzymes, 5′-nucleotidase and leucyl β-naphthylamidase, but different from that of sarcoplasmic reticulum Ca2+ ATPase. Also unlike sarcoplasmic reticulum Ca2+ ATPase, ‘basic’ ATPase was resistant to N-ethylmaleimide and aldehyde fixatives, was active in a medium containing a high Ca2+ concentration (3 mM), and was lost when exposed to Triton X-100 or deoxycholate. In cytochemical studies, a low Pb2+ concentration was used to capture the enzymatically released phosphate ions. Under conditions which eliminated interfering (Na+ + K+) ATPase and sarcoplasmic reticulum Ca2+ ATPase activities, electron-dense lead precipitates were present at the plasmalemma and T-system membranes. These studies suggest that ‘basic’ ATPase activity is associated with plasmalemma and T-system membranes of skeletal muscle.  相似文献   

15.
A chicken pectoralis muscle membrane fraction enriched in a Mg2+- or Ca2+-activated (‘basic’) ATPase was obtained by sucrose gradient centrifugation. Enzymatic properties of the ‘basic’ ATPase were determined and used to localize its enzymatic activity in situ by ultrastructural cytochemistry. The enzyme was activated by Mg2+ or Ca2+ but not by Sr2+, Ba2+, Co2+, Ni2+ or Pb2+. It was present in a membranous fraction with a buoyant density of 1.10-1.12 (24–27.5% (w/w) sucrose). ‘Basic’ ATPase activity had a sedimentation pattern similar to the putative plasma membrane enzymes, 5′-nucleotidase and leucyl β-naphthylamidase, but different from that of sarcoplasmic reticulum Ca2+ ATPase. Also unlike sarcoplasmic reticulum Ca2+ ATPase, ‘basic’ ATPase was resistant to N-ethylmaleimide and aldehyde fixatives, was active in a medium containing a high Ca2+ concentration (3 mM), and was lost when exposed to Triton X-100 or deoxycholate. In cytochemical studies, a low Pb2+ concentration was used to capture the enzymatically released phosphate ions. Under conditions which eliminated interfering (Na+ + K+) ATPase and sarcoplasmic reticulum Ca2+ ATPase activities, electron-dense lead precipitates were present at the plasmalemma and T-system membranes. These studies suggest that ‘basic’ ATPase activity is associated with plasmalemma and T-system membranes of skeletal muscle.  相似文献   

16.
Chaffey, N. J. and Harris, N. 1985. Localization of ATPase activityon the plasmalemma of scutellar epithelial cells of germinatingbarley (Hordeum vulgare L.).—J. exp. Bot 36: 1612–1619. ATPase activity has been localized at an ultrastructural levelin the absorptive region of the scutella of germinating barley(Hordeum vulgare L.). The enzyme is localized on the plasmalemmaof the epithelial cells. Using the Gomori reaction the depositionof reaction product on the plasmalemma, which is dependent uponthe presence of supplied ATP, was precluded or reduced by theinhibitors orthovanadate, mercuric chloride and DCCD, whilstß-glycerophosphate would not act as an alternativesubstrate. The mitochondria demonstrated phosphatase activitywith both ATP and ß-glycerophosphate as substrate.The results are discussed in relation to the active uptake ofmetabolites by the scutellum during germination and the structuralmodification of the plasmalemma of the epithelial cells to formplasmatubules. Key words: ATPase, Hordeum vulgare L., localization (ultrastructural)  相似文献   

17.
A model originally developed for transport of neutral substrates in bacterial systems was tested for its suitability for depicting sucrose transport across the plasmalemma of the maize scutellum cell. The model contains a sucrose—proton symporter, a negatively-charged free carrier and a neutral sucrose—proton—carrier complex. Sucrose transport is driven by the sucrose gradient and by a proton electrochemical gradient set up by a proton-translocating ATPase. The results of experiments on sucrose uptake in scutellum slices are in accord with predictions based on the model. Evidence was obtained for an electrogenic proton pump in the plasmalemma, for sucrose—proton symport and for a sucrose transport mechanism driven by both electrical potential and pH gradients. It was found that treatments (dinitrophenol, N-ethylmaleimide or HCl) causing a net proton influx into the slices also caused an efflux of sucrose. Interpretations of these results compatible with the model are given.  相似文献   

18.
Studies were conducted to characterize ATPase activity associated with purified chloroplast inner envelope preparations from spinach (Spinacea oleracea L.) plants. Comparison of free Mg2+ and Mg·ATP complex effects on ATPase activity revealed that any Mg2+ stimulation of activity was likely a function of the use of the Mg·ATP complex as a substrate by the enzyme; free Mg2+ may be inhibitory. In contrast, a marked (one- to twofold) stimulation of ATPase activity was noted in the presence of K+. This stimulation had a pH optimum of approximately pH 8.0, the same pH optimum found for enzyme activity in the absence of K+. K+ stimulation of enzyme activity did not follow simple Michaelis-Menton kinetics. Rather, K+ effects were consistent with a negative cooperativity-type binding of the cation to the enzyme, with the Km increasing at increasing substrate. Of the total ATPase activity associated with the chloroplast inner envelope, the K+-stimulated component was most sensitive to the inhibitors oligomycin and vanadate. It was concluded that K+ effects on this chloroplast envelope ATPase were similar to this cation's effects on other transport ATPases (such as the plasmalemma H+-ATPase). Such ATPases are thought to be indirectly involved in active K+ uptake, which can be facilitated by ATPase-dependent generation of an electrical driving force. Thus, K+ effects on the chloroplast enzyme in vitro were found to be consistent with the hypothesized role of this envelope ATPase in facilitating active cation transport in vivo.  相似文献   

19.
Maltose transport in slices of the maize scutellum was demonstrated despite the presence of an active maltase situated at the cell surface. The maltase could be inhibited or destroyed by treatments (neutral pH during uptake, pretreatment in Tris buffer at pH 7·5, or in 0·01 N HCl) that allowed appreciable rates of maltose uptake to occur. Using Tris- and HCl-treated slices, it was found that at disaccharide concentrations of 50 and 100 mM, maltose and sucrose were taken up at very nearly the same rates. At sugar concentrations below 50 mM, sucrose was taken up at greater rates than maltose. The maltose content of the slices was directly proportional to the maltose concentration of the bathing solution, and about 4 hr were required for equilibration. From this, it is concluded that one way maltose enters the slices is by free or facilitated diffusion. However, endogenous maltose is utilized by the slices at rates that are much too low to account for the net rates of maltose uptake. Although the slices contain a high level of surface maltase activity, only a low level of endogenous maltase activity was found. This probably accounts for the slow utilization of endogenous maltose. Therefore, the existence of a specific maltose transport system is proposed; a system that contains a carrier saturable with maltose, but one that does not release free maltose into the cytoplasm.  相似文献   

20.
Abstract During incubation of maize scutellum slices in fructose, there was an efflux of sucrose. Efflux was constant for at least 4 h at fructose concentrations of 70 or 100 mol m?3. Efflux was increased by EDTA, and decreased by Ca2+. Efflux was independent of pH after EDTA treatment, but increased from untreated slices when the pH was lowered from 7 to 4. Uranyl ion and PCMBS (p-chloro-mercuribenzenesulfonic acid) abolished sucrose uptake, but were only weak inhibitors of sucrose efflux. These results are consistent with efflux occurring by simple diffusion through aqueous pores, but they do not rule out facilitated diffusion. Rates of sucrose export from the scutellum to the root shoot axis were estimated from measurements of axis respiration and dry weight gain. Sucrose efflux from scutellum slices was only 14-22% of the export rate. Sucrose efflux from the whole scutellum was only 3-4% of the export rate. It is concluded that the observed efflux is from leaky cells and does not represent sucrose on the way to the phloem along a path that includes the apoplast. These results support the idea that the path for sucrose from parenchyma cell to sieve tube in the maize scutellum is entirely symplastic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号