首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biocatalytic hydrocarbon oxyfunctionalizations are typically accomplished using oxygenases in living bacteria as biocatalysts. These processes are often limited by either oxygen mass transfer, cofactor regeneration, and/or enzyme instabilities due to the formation of reactive oxygen species. Here, we discuss an alternative approach based on molybdenum (Mo)-containing dehydrogenases, which produce, rather than consume, reducing equivalents in the course of substrate hydroxylation and use water as the oxygen donor. Mo-containing dehydrogenases have a high potential for overcoming limitations encountered with oxygenases. In order to evaluate the suitability and efficiency of a Mo-containing dehydrogenase-based biocatalyst, we investigated quinaldine 4-oxidase (Qox)-containing Pseudomonas strains and the conversion of quinaldine to 4-hydroxyquinaldine. Host strain and carbon source selection proved to be crucial factors influencing biocatalyst efficiency. Resting P. putida KT2440 (pKP1) cells, grown on and induced with benzoate, showed the highest Qox activity and were used for process development. To circumvent substrate and product toxicity/inhibition, a two-liquid phase approach was chosen. Without active aeration and with 1-dodecanol as organic carrier solvent a productivity of 0.4 g l (tot) (-1) h(-1) was achieved, leading to the accumulation of 2.1 g l (tot) (-1) 4-hydroxyquinaldine in 6 h. The process efficiency compares well with values reported for academic and industrially applied biocatalytic oxyfunctionalization processes emphasizing the potential and feasibility of the Qox-containing recombinant cells for heteroaromatic carbon oxyfunctionalizations without the necessity for active aeration.  相似文献   

2.
Quinaldine 4-oxidase (Qox), which catalyzes the hydroxylation of quinaldine to 1H-4-oxoquinaldine, is a heterotrimeric (LMS)2 molybdo-iron/sulfur flavoprotein belonging to the xanthine oxidase family. Variants of Qox were generated by site-directed mutagenesis. Replacement in the large subunit at E736, which is presumed to be located close to the molybdenum, by aspartate (QoxLE736D) resulted in a marked decrease in kcat app for quinaldine, while Km app was largely unaffected. Although a minor reduction of the glutamine substituted variant QoxLE736Q by quinaldine occurred, its activity was below detection, indicating that the carboxylate group of E736 is crucial for catalysis. Replacement of cysteine ligands C40, C45, or C60 (FeSII) and of the C120 or C154 ligands to FeSI in the small subunit of Qox by serine led to decreased iron contents of the protein preparations. Substitutions C40S and C45S (Fe1 of FeSII) suppressed the characteristic FeSII EPR signals and significantly reduced catalytic activity. In QoxSC154S (Fe1 of FeSI), the g-factor components of FeSI were drastically changed. In contrast, Qox proteins with substitutions of C48 and C60 (Fe2 of FeSII), and of the C120 ligand at Fe2 of FeSI, retained considerable activity and showed less pronounced changes in their EPR parameters. Taken together, the properties of the Qox variants suggest that Fe1 of both FeSI and FeSII are the reducible iron sites, whereas the Fe2 ions remain in the ferric state. The location of the reducible iron sites of FeSI and FeSII appears to be conserved in enzymes of the xanthine oxidase family.  相似文献   

3.
The biphenyl and salicylate metabolic pathways in Pseudomonas putida KF715 are chromosomally encoded. The bph gene cluster coding for the conversion of biphenyl to benzoic acid and the sal gene cluster coding for the salicylate meta-pathway were obtained from the KF715 genomic cosmid libraries. These two gene clusters were separated by 10-kb DNA and were highly prone to deletion when KF715 was grown in nutrient medium. Two types of deletions took place at the region including only the bph genes (ca. 40 kb) or at the region including both the bph and sal genes (ca. 70 kb). A 90-kb DNA region, including both the bph and sal genes (termed the bph-sal element), was transferred by conjugation from KF715 to P. putida AC30. Such transconjugants gained the ability to grow on biphenyl and salicylate as the sole sources of carbon. The bph and sal element was located on the chromosome of the recipient. The bph-sal element in strain AC30 was also highly prone to deletion; however, it could be mobilized to the chromosome of P. putida KT2440 and the two deletion mutants of KF715.  相似文献   

4.
Quinaldine catabolism was investigated with the bacterial strain Arthrobacter sp., which is able to grow aerobically in a mineral salt medium with quinaldine as sole source of carbon, nitrogen and energy. The following degradation products of quinaldine were isolated from the culture fluid and identified: 1H-4-oxoquinaldine, N-acetylisatic acid, N-acetylanthranilic acid, anthranilic acid, 3-hydroxy-N-acetylanthranilic acid and catechol. 3-Hydroxy-N-acetylanthranilic acid was not further metabolized by this organism. A degradation pathway is proposed.  相似文献   

5.
In this work, we explore the potential use of the Pseudomonas putida KT2440 strain for bioremediation of naphthalene-polluted soils. Pseudomonas putida strain KT2440 thrives in naphthalene-saturated medium, establishing a complex response that activates genes coding for extrusion pumps and cellular damage repair enzymes, as well as genes involved in the oxidative stress response. The transfer of the NAH7 plasmid enables naphthalene degradation by P. putida KT2440 while alleviating the cellular stress brought about by this toxic compound, without affecting key functions necessary for survival and colonization of the rhizosphere. Pseudomonas putida KT2440(NAH7) efficiently expresses the Nah catabolic pathway in vitro and in situ, leading to the complete mineralization of [(14)C]naphthalene, measured as the evolution of (14)CO(2), while the rate of mineralization was at least 2-fold higher in the rhizosphere than in bulk soil.  相似文献   

6.
7.
8.
One rhamnolipid-producing bacterial strain named Pseudomonas aeruginosa BSFD5 was isolated and characterized. Its rhlABRI cassette including necessary genes for rhamnolipid synthesis was cloned and transformed into the chromosome of P. putida KT2440 by a new random transposon vector without introducing antibiotic-resistance marker, generating a genetically engineered microorganism named P. putida KT2440-rhlABRI, which could stably express the rhlABRI cassette and produce rhamnolipid at a yield of 1.68?g?l(-1). In experiments using natural soil, it was shown that P. putida KT2440-rhlABRI could increase the dissolution of pyrene and thus promote its degradation by indigenous microorganisms. P. putida KT2440-rhlABRI thus demonstrated potential for enhancing the remediation of soils contaminated with polycyclic aromatic hydrocarbons.  相似文献   

9.
The availability of a system for the functional expression of genes coding for molybdenum hydroxylases is a prerequisite for the construction of enzyme variants by mutagenesis. For the expression cloning of quinoline 2-oxidoreductase (Qor) from Pseudomonas putida 86--that contains the molybdopterin cytosine dinucleotide molybdenum cofactor (Mo-MCD), two distinct [2Fe-2S] clusters and FAD--the qorMSL genes were inserted into the broad host range vector, pJB653, generating pUF1. P. putida KT2440 and P. putida 86-1 deltaqor were used as recipients for pUF1. Whereas Qor from the wild-type strain showed a specific activity of 19-23 U x mg(-1), the specific activity of Qor purified from P. putida KT2440 pUF1 was only 0.8-2.5 U x mg(-1), and its apparent k(cat) (quinoline) was about ninefold lower than that of wild-type Qor. The apparent Km values for quinoline were similar for both proteins. UV/visible and EPR spectroscopy indicated the presence of the full set of [2Fe-2S] clusters and FAD in Qor from P. putida KT2440 pUF1, however, the very low intensity of the Mo(V)-rapid signal, that occurs in the presence of quinoline, as well as metal analysis indicated a deficiency of the molybdenum center. In contrast, the metal content, and the spectroscopic and catalytic properties of Qor produced by P. putida 86-1 deltaqor pUF1 were essentially like those of wild-type Qor. Release of CMP upon acidic hydrolysis of the Qor proteins suggested the presence of the MCD form of the pyranopterin cofactor; the CMP contents of the three enzymes were similar.  相似文献   

10.
We report a study of the role of putative exopolysaccharide gene clusters in the formation and stability of Pseudomonas putida KT2440 biofilm. Two novel putative exopolysaccharide gene clusters, pea and peb, were identified, and evidence is provided that they encode products that stabilize P. putida KT2440 biofilm. The gene clusters alg and bcs, which code for proteins mediating alginate and cellulose biosynthesis, were found to play minor roles in P. putida KT2440 biofilm formation and stability under the conditions tested. A P. putida KT2440 derivative devoid of any identifiable exopolysaccharide genes was found to form biofilm with a structure similar to wild-type biofilm, but with a stability lower than that of wild-type biofilm. Based on our data, we suggest that the formation of structured P. putida KT2440 biofilm can occur in the absence of exopolysaccharides; however, exopolysaccharides play a role as structural stabilizers.  相似文献   

11.
12.
Abstract Genes responsible for the utilization of benzoate, anthranilate or catechol ( ben, ant, cat ) of Pseudomonas aeruginosa PAO were mapped precisely using a cosmid clone carrying all these genes. Genes were localized either by subcloning and complementation or by Tn 5 mutagenesis and mapping of the Tn 5 insertion. To achieve this, a novel Tn 5 mutagenesis procedure was developed by constructing a Tn 5 insertion derivative of the Escherichia coli strain S17-1. Preliminary mapping of the ben cat genes of P. putida PPN was accomplished by complementation using a PPN cosmid bank. Sequence homology was demonstrated by Southern hybridization between the ben regions of both P. aeruginosa and P. putida , implying an evolutionary relationship of this chromosomal region of these two pseudomonads.  相似文献   

13.
A surface anchor system derived from the ice-nucleation protein (INP) from Pseudomonas syringe was used to localize organophosphorus hydrolase (OPH) onto the surface of Pseudomonas putida KT2440. Cells harboring the shuttle vector pPNCO33 coding for the INP-OPH fusion were capable of targeting OPH onto the cell surface as demonstrated by whole cell ELISA. The whole cell activity of P. putida KT2440 was shown to be 10 times higher than those of previous efforts expressing the same fusion protein in Escherichia coli. The capability of expressing enzymes on the surface of a robust and environmentally benign P. putida KT2440 should open up new avenues for a wide range of applications such as in situ bioremediation.  相似文献   

14.
To identify genes essential to biofilm formation in Pseudomonas putida KT2440, 12 mutants defective in oxidative stress-related or metabolic pathway-related genes were evaluated. Of them, only the dsbA mutant lacking the disulfide bond isomerase exhibited significantly increased attachment to the polystyrene surface. Visual evaluation by extracellular matrix staining and scanning electron microscopy indicated that the KT2440-Δ dsbA strain displays enhanced extracellular matrix production, rugose colony morphology on agar plates and floating pellicles in static culture. Accordingly, we propose that deletion of the dsbA gene may stimulate production of the extracellular matrix, resulting in those phenotypes. In addition, the lack of detectable fluorescence in the KT2440-Δ dsbA under UV light as well as in both the wild type and the KT2440-Δ dsbA when grown on Luria–Bertani plates containing ferrous iron suggests that the fluorescent molecule may be a fluorescent siderophore with its synthesis/secretion controlled by DsbA in KT2440. These phenotypic defects observed in the dsbA mutant were complemented by the full-length KT2440 and Escherichia coli dsbA genes. In contrast to the role of DsbA in other bacteria, our results provide the first evidence that disruption of P. putida KT2440 dsbA gene overproduces the extracellular matrix and thus promotes biofilm formation.  相似文献   

15.
Isolated from Pseudomonas resinovorans CA10, pCAR1 is a 199-kb plasmid that carries genes involved in the degradation of carbazole and dioxin. The nucleotide sequence of pCAR1 has been determined previously. In this study, we characterized pCAR1 in terms of its replication, maintenance, and conjugation. By constructing miniplasmids of pCAR1 and testing their establishment in Pseudomonas putida DS1, we show that pCAR1 replication is due to the repA gene and its upstream DNA region. The repA gene and putative oriV region could be separated in P. putida DS1, and the oriV region was determined to be located within the 345-bp region between the repA and parW genes. Incompatibility testing using the minireplicon of pCAR1 and IncP plasmids indicated that pCAR1 belongs to the IncP-7 group. Monitoring of the maintenance properties of serial miniplasmids in nonselective medium, and mutation and complementation analyses of the parWABC genes, showed that the stability of pCAR1 is attributable to the products of the parWAB genes. In mating assays, the transfer of pCAR1 from CA10 was detected in a CA10 derivative that was cured of pCAR1 (CA10dm4) and in P. putida KT2440 at frequencies of 3 x 10(-1) and 3 x 10(-3) per donor strain, respectively. This is the first report of the characterization of this completely sequenced IncP-7 plasmid.  相似文献   

16.
Isoquinoline 1-oxidoreductase (Ior) from Brevundimonas diminuta 7, encoded by iorAB, is a molybdenum hydroxylase containing a molybdopterin cytosine dinucleotide molybdenum cofactor (Mo-MCD) and two distinct [2Fe2S] clusters. The iorAB genes were inserted into pJB653, generating pIL1. Pseudomonas putida KT2440, and P. putida 86 which produces a Mo-MCD-containing quinoline 2-oxidoreductase when grown on quinoline, were used as recipients for pIL1. Upon induction of gene expression, both clones produced Ior protein, but Ior activity was not detectable in P. putida KT2440 pIL1. In P. putida 86 pIL1, formation of catalytically active Ior required the presence of quinoline, suggesting that accessory gene(s) encoding product(s) essential for the assembly of catalytically competent Ior is (are) part of the quinoline regulon in P. putida 86.  相似文献   

17.
A consortium comprised of two engineered microorganisms was assembled for biodegradation of the organophosphate insecticide parathion. Escherichia coli SD2 harbored two plasmids, one encoding a gene for parathion hydrolase and a second carrying a green fluorescent protein marker. Pseudomonas putida KT2440 pSB337 contained a p-nitrophenol-inducible plasmid-borne operon encoding the genes for p-nitrophenol mineralization. The co-culture effectively hydrolyzed 500 microM parathion (146 mg l(-1)) and prevented the accumulation of p-nitrophenol in suspended culture. Kinetic analyses were conducted to characterize the growth and substrate utilization of the consortium members. Parathion hydrolysis by E. coli SD2 followed Michaelis-Menten kinetics. p-Nitrophenol mineralization by P. putida KT2440 pSB337 exhibited substrate-inhibition kinetics. The growth of both strains was inhibited by increasing concentrations of p-nitrophenol, with E. coli SD2 completely inhibited by 600 microM p-nitrophenol (83 mg l(-1)) and P. putida KT2440 pSB337 inhibited by 1,000 microM p-nitrophenol (139 mg l(-1)). Cultivation of the consortium as a biofilm indicated that the two species could cohabit as a population of attached cells. Analysis by confocal microscopy showed that the biofilm was predominantly comprised of P. putida KT2440 pSB337 and that the distribution of E. coli SD2 within the biofilm was heterogeneous. The use of biofilms for the construction of degradative consortia may prove beneficial.  相似文献   

18.
1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase (Qdo) from the 1H-4-oxoquinoline utilizing Pseudomonas putida strain 33/1, which catalyzes the cleavage of 1H-3-hydroxy-4-oxoquinoline to carbon monoxide and N-formylanthranilate, is devoid of any transition metal ion or other cofactor and thus represents a novel type of ring-cleavage dioxygenase. Gene qdo was cloned and sequenced. Its overexpression in Escherichia coli yielded recombinant His-tagged Qdo which was catalytically active. Qdo exhibited 36% and 16% amino acid identity to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod) and atropinesterase (a serine hydrolase), respectively. Qdo as well as Hod possesses a SXSHG motif, resembling the motif GXSXG of the serine hydrolases which comprises the active-site nucleophile (X=arbitrary residue).  相似文献   

19.
Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, that is, the protocatechuate (pca genes) and catechol (cat genes) branches of the beta-ketoadipate pathway, the homogentisate pathway (hmg/fah/mai genes) and the phenylacetate pathway (pha genes). Two additional gene clusters that might be involved in the catabolism of N-heterocyclic aromatic compounds (nic cluster) and in a central meta-cleavage pathway (pcm genes) were also identified. Furthermore, the genes encoding the peripheral pathways for the catabolism of p-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and acs), phenylalanine and tyrosine (phh, hpd) and n-phenylalkanoic acids (fad) were mapped in the chromosome of P. putida KT2440. Although a repetitive extragenic palindromic (REP) element is usually associated with the gene clusters, a supraoperonic clustering of catabolic genes that channel different aromatic compounds into a common central pathway (catabolic island) was not observed in P. putida KT2440. The global view on the mineralization of aromatic compounds by P. putida KT2440 will facilitate the rational manipulation of this strain for improving biodegradation/biotransformation processes, and reveals this bacterium as a useful model system for studying biochemical, genetic, evolutionary and ecological aspects of the catabolism of aromatic compounds.  相似文献   

20.
Abstract The utilization of quinaldine (2-methylquinoline) by Arthrobacter sp. Rü61a proceeds via 1 H -4-oxoquinaldine, 1 H -3-hydroxy-4-oxoquinaldine, and N -acetyl-anthranilic acid. By analogy, 1 H -4-oxoquinoline is degraded by Pseudomonas putida 33/1 via 1 H -3-hydroxy-4-oxoquinoline and N -formylanthranilic acid. Using the purified enzymes from both organisms, the mode of N -heterocyclic ring cleavage was investigated. The conversions of 1 H -3-hydroxy-4-oxoquinaldine and 1 H -3-hydroxy-4-oxoquinoline to N -acetyl- and N -formylanthranilic acid, respectively, were both accompanied by the release of carbon monoxide. The enzyme-catalysed transformations were performed in an [18O]O2 atmosphere and resulted in the incorporation of two oxygen atoms into the respective products, N -acetyl- and N -formylanthranilic acid, indicating an oxygenolytic attack at C-2 and C-4 of both 1 H -3-hydroxy-4-oxoquinaldine and 1 H -3-hydroxy-4-oxoquinolone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号