首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 320 毫秒
1.
2.
The complex of factor VIIa (FVIIa) with tissue factor (TF) triggers coagulation by recognizing its macromolecular substrate factors IX (FIX) and X (FX) predominantly through extended exosite interactions. In addition, TF mediates unique cell-signaling properties in cancer, angiogenesis, and inflammation that involve proteolytic cleavage of protease-activated receptor 2 (PAR2). PAR2 is cleaved by FVIIa in the binary TF·FVIIa complex and by FXa in the ternary TF·FVIIa·FXa complex, but physiological roles of these signaling complexes are incompletely understood. In a screen of FVIIa protease domain mutants, three variants (Q40A, Q143N, and T151S) activated macromolecular coagulation substrates and supported signaling of the ternary TF·FVIIa-Xa complex normally but were severely impaired in binary TF·FVIIa·PAR2 signaling. The residues identified were located in the model-predicted S2′ pocket of FVIIa, and complementary PAR2 P2′ Leu-38 replacements demonstrated that the P2′ side chain was indeed crucial for PAR2 cleavage by TF·FVIIa. In addition, PAR2 was activated more efficiently by FVIIa T99Y, consistent with further contributions from the S2 subsite. The P2 residue preference of FVIIa and FXa predicted additional PAR2 mutants that were efficiently activated by TF·FVIIa but resistant to cleavage by the alternative PAR2 activator FXa. Thus, contrary to the paradigm of exosite-assisted cleavage of PAR1 by thrombin, the cofactor-associated protease FVIIa recognizes PAR2 predominantly by catalytic cleft interactions. Furthermore, the delineated molecular details of this substrate interaction enabled protein engineering of protease-selective PAR2 receptors that will aid further studies to dissect the roles of TF signaling complexes in vivo.  相似文献   

3.
4.
Abstract

Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of lig-ands such as EGF or transforming growth factor alpha (TGF-α) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10–16, 36–37, 40–47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-α which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.  相似文献   

5.
Eubacterial and eukaryotic translation initiation systems have very little in common, and therefore the evolutionary events that gave rise to these two disparate systems are difficult to ascertain. One common feature is the presence of initiation, elongation, and release factors belonging to a large GTPase superfamily. One of these initiation factors, the γ subunit of initiation factor 2 (eIF-2γ), is found only in eukaryotes and archaebacteria. We have sequenced eIF-2γ gene fragments from representative diplomonads, parabasalia, and microsporidia and used these new sequences together with new archaebacterial homologues to examine the phylogenetic position of eIF-2γ within the GTPase superfamily. The archaebacterial and eukaryotic eIF-2γ proteins are found to be very closely related, and are in turn related to SELB, the selenocysteine-specific elongation factor from eubacteria. The overall topology of the GTPase tree further suggests that the eIF-2γ/SELB group may represent an ancient subfamily of GTPases that diverged prior to the last common ancestor of extant life. Received: 2 January 1998 / Accepted: 1 June 1998  相似文献   

6.
Nuclear transport factor 2 (NTF2) facilitates protein transport into the nucleus and interacts with both the small Ras-like GTPase Ran and nucleoporin p62. We have determined the structure of bacterially expressed rat NTF2 at 1.6 Å resolution using X-ray crystallography. The NTF2 polypeptide chain forms an α + β barrel that opens at one end to form a distinctive hydrophobic cavity and its fold is homologous to that of scytalone dehydratase. The NTF2 hydrophobic cavity is a candidate for a potential binding site for other proteins involved in nuclear import such as Ran and nucleoporin p62. In addition, the hydrophobic cavity contains a putative catalytic Asp-His pair, which raises the possibility of an unanticipated enzymatic activity of the molecule that may have implications for the molecular mechanism of nuclear protein import.  相似文献   

7.
8.
AKT2 is one of the three isoforms of the protein kinase AKT being involved in the modulation of cellular metabolism. Since protein-protein interactions are one possibility to convey specificity in signal transduction, we performed AKT2-protein interaction analysis to elucidate their relevance for AKT2-dependent cellular functions. We identified heat shock protein 90 kDa (HSP90), Cdc37, heat shock protein 70 kDa (HSP70), 78 kDa glucose regulated protein (GRP78), tubulin, GAPDH, α-enolase and elongation factor 2 (EF2) as AKT2-interacting proteins by a combination of tandem affinity purification and mass spectrometry in HEK293T cells. Quantitative MS-analysis using stable isotope labeling by amino acids in cell culture (SILAC) revealed that only HSP90 and Cdc37 interact stably with AKT2, whereas the other proteins interact with low affinity with AKT2. The interactions of AKT2 with α-enolase and EF2 were further analyzed in order to uncover the functional relevance of these newly discovered binding partners. Despite the interaction of AKT2 and α-enolase, which was additionally validated by proximity ligation assay (PLA), no significant impact of AKT on α-enolase activity was detected in activity measurements. AKT stimulation via insulin and/or inhibition with the ATP-competitive inhibitor CCT128930 did not alter enzymatic activity of α-enolase. Interestingly, the direct interaction of AKT2 and EF2 was found to be dynamically regulated in embryonic rat cardiomyocytes. Treatment with the PI3-kinase inhibitor LY294002 before stimulation with several hormones stabilized the complex, whereas stimulation alone led to complex dissociation which was analyzed in situ with PLA. Taken together, these findings point to new aspects of AKT2-mediated signal transduction in protein synthesis and glucose metabolism.  相似文献   

9.
10.
11.
12.
Eukaryotic translation initiation factor 2B (eIF2B) is the heteropentameric guanine-nucleotide exchange factor specific for eukaryotic initiation factor 2 (eIF2). Under stressed conditions, guanine-nucleotide exchange is strongly inhibited by the tight binding of phosphorylated eIF2 to eIF2B. Here, we report the crystal structure of the α subunit of human eIF2B at 2.65 Å resolution. The eIF2Bα structure consists of the N-terminal α-helical domain and the C-terminal Rossmann-fold-like domain. A positively charged pocket, whose entrance is about 15-17 Å in diameter, resides at the boundary between the two domains. A sulfate ion is located at the bottom of the pocket (about 16 Å in depth). The residues comprising the sulfate-ion-binding site are strictly conserved in eIF2Bα. Since this deep, wide pocket with the sulfate-ion-binding site is not conserved in distant homologues, including 5-methylthioribose 1-phosphate isomerases, these characteristics may be distinctive of eIF2Bα. Interestingly, the yeast eIF2Bα missense mutations that reduce the eIF2B sensitivity to phosphorylated eIF2 are mapped on the other side of the pocket. One of the three human eIF2Bα missense mutations that induce the lethal brain disorder vanishing white matter or childhood ataxia with central nervous system hypomyelination is mapped inside the pocket. The β and δ subunits of eIF2B are homologous to eIF2Bα and may have tertiary structures similar to the present eIF2Bα structure. The sulfate-ion-binding residues of eIF2Bα are well conserved in eIF2Bβ/δ. The abovementioned yeast and human missense mutations of eIF2Bβ/δ were also mapped on the eIF2Bα structure, which revealed that the human mutations are clustered on the same side as the pocket, while the yeast mutations reside on the opposite side. As most of the mutated residues are exposed on the surface of the eIF2B subunit structure, these exposed residues are likely to be involved in either the subunit interactions or the interaction with eIF2.  相似文献   

13.
14.
15.
Transforming growth factor β (TGF-β) is a potent growth regulator and tumor suppressor in normal intestinal epithelium. Likewise, epithelial cell growth is controlled by rapid decay of growth-related mRNAs mediated through 3′ untranslated region (UTR) AU-rich element (ARE) motifs. We demonstrate that treatment of nontransformed intestinal epithelial cells with TGF-β inhibited ARE-mRNA expression. This effect of TGF-β was promoted through increased assembly of cytoplasmic RNA processing (P) bodies where ARE-mRNA localization was observed. P-body formation was dependent on TGF-β/Smad signaling, as Smad3 deletion abrogated P-body formation. In concert with increased P-body formation, TGF-β induced expression of the ARE-binding protein tristetraprolin (TTP), which colocalized to P bodies. TTP expression was necessary for TGF-β-dependent P-body formation and promoted growth inhibition by TGF-β. The significance of this was observed in vivo, where colonic epithelium deficient in TGF-β/Smad signaling or TTP expression showed attenuated P-body levels. These results provide new insight into TGF-β''s antiproliferative properties and identify TGF-β as a novel mRNA stability regulator in intestinal epithelium through its ability to promote TTP expression and subsequent P-body formation.  相似文献   

16.
Histone deacetylase 3 (HDAC3) plays a critical role in the maintenance of endothelial integrity and other physiological processes. In this study, we demonstrated that HDAC3 undergoes unconventional splicing during stem cell differentiation. Four different splicing variants have been identified, designated as HD3α, -β, -γ, and -δ, respectively. HD3α was confirmed in stem cell differentiation by specific antibody against the sequences from intron 12. Immunofluorescence staining indicated that the HD3α isoform co-localized with CD31-positive or α-smooth muscle actin-positive cells at different developmental stages of mouse embryos. Overexpression of HD3α reprogrammed human aortic endothelial cells into mesenchymal cells featuring an endothelial-to-mesenchymal transition (EndMT) phenotype. HD3α directly interacts with HDAC3 and Akt1 and selectively activates transforming growth factor β2 (TGFβ2) secretion and cleavage. TGFβ2 functioned as an autocrine and/or paracrine EndMT factor. The HD3α-induced EndMT was both PI3K/Akt- and TGFβ2-dependent. This study provides the first evidence of the role of HDAC3 splicing in the maintenance of endothelial integrity.  相似文献   

17.
18.
Vascular smooth muscle cells (VSMC) exhibit phenotypic plasticity and change from a quiescent contractile phenotype to a proliferative synthetic phenotype during physiological arteriogenesis and pathological conditions such as atherosclerosis and restenosis. Platelet-derived growth factor (PDGF)-BB is a potent inducer of the VSMC synthetic phenotype; however, much less is known about the role of fibroblast growth factor-2 (FGF2) in this process. Here, we show using signal transduction mutants of FGF receptor 1 (FGFR1) expressed in rat VSMC that the adaptor protein FRS2 is essential for FGFR1-mediated phenotypic modulation and down-regulation of VSMC smooth muscle α-actin (SMA) gene expression. In addition, we show that PDGF-BB and FGF2 act synergistically to induce cell proliferation and down-regulate SMA and SM22α in VSMC. Furthermore, we show that PDGF-BB induces tyrosine phosphorylation of FGFR1 and that this phosphorylation is mediated by PDGF receptor-β (PDGFRβ), but not c-Src. We demonstrate that FRS2 co-immunoprecipitates with PDGFRβ in a complex that requires FGFR1 and that both the extracellular and the intracellular domains of FGFR1 are required for association with PDGFRβ, whereas the cytoplasmic domain of FGFR1 is required for FRS2 association with the FGFR1-PDGFRβ complex. Knockdown of FRS2 in VSMC by RNA interference inhibited PDGF-BB-mediated down-regulation of SMA and SM22α without affecting PDGF-BB mediated cell proliferation or ERK activation. Together, these data support the notion that PDGFRβ down-regulates SMA and SM22α through formation of a complex that requires FGFR1 and FRS2 and prove novel insight into VSMC phenotypic plasticity.Phenotypic modulation of vascular smooth muscle cells (VSMC)3 is an important step in the development of several pathophysiological processes including atherosclerosis, restenosis, and vascular remodeling (1, 2). During these processes VSMC change from a contractile phenotype to a synthetic phenotype characterized by increased proliferation, migration, increased extracellular matrix production, and decreased expression of contractile proteins, including smooth muscle α-actin (SMA), SM22α, calponin, and myosin heavy chain. Several growth factors including platelet-derived growth factor-BB (PDGF-BB), fibroblast growth factor 2 (FGF2), and thrombin have been implicated in the induction of the synthetic phenotype (3). These growth factors bind cell surface receptors and activate intracellular signaling pathways that result in changes in gene expression and cellular phenotype. Understanding the interactions between these pathways may provide insights into mechanisms of phenotypic modulation of VSMC and provide new targets for therapeutic intervention in vascular disease.Experimental evidence using various in vitro and in vivo models points to a role for FGF-FGFR in the phenotypic modulation of VSMC. FGFs and FGFRs are expressed in VSMC and are up-regulated during vascular injury and in atherosclerotic plaque formation (46). Balloon injury of rat arteries led to an increase in FGFR expression in VSMC. The up-regulation of FGF and FGFR suggests that they contribute to the pathogenesis of vascular disease. In support of this hypothesis, administration of anti-FGF2 antibodies and FGFR tyrosine kinase inhibitors results in decreased VSMC proliferation, migration, and attenuated neointimal thickening (7).PDGF-BB binds to PDGFRβ and activates several intracellular signaling pathways including ERK, phosphatidylinositol 3-kinase/Akt, and mammalian target of rapamycin (mTOR) (8). Studies have indicated that PDGF-BB induces the release of FGF2 and activation FGFR1, resulting in sustained ERK activation and proliferation of human VSMC (9). When FGFR1 expression was inhibited by RNA interference, PDGF-BB induced transient but not sustained ERK activation.Binding of FGF2 to FGFR1 activates the ERK and phosphatidylinositol 3-kinase/Akt pathways via the adaptor protein FRS2 (10, 11). Upon FGF2 binding, FGFR1 phosphorylates FRS2 on six tyrosine residues that function as docking sites for the SH2 domain-containing proteins Grb2 and SHP2 (12, 13). Grb2 binds Gab1 leading to activation of phosphatidylinositol 3-kinase/Akt, whereas SHP2 activates the Ras-Raf-ERK pathway. FRS2 binds to FGFR1 via a Val-Thr dipeptide in the juxtamembrane region of FGFR1 (14, 15). Deletion of these two amino acids abrogates binding of FRS2 to FGFR1. To determine the role of FRS2 in FGFR1-mediated VSMC phenotypic modulation and to determine the interaction of PDGFRβ with the FGFR1 signaling pathway, we developed a set of FGFR1 signaling pathway deficient mutants and stably expressed them in rat VSMC. In this study we report that PDGFRβ, FGFR1, and FRS2 form a multi-protein complex that is essential for VSMC phenotypic modulation and that stable knockdown of FRS2 inhibits PDGF-BB-mediated down-regulation of VSMC marker gene expression but not PDGF-BB-mediated VSMC proliferation.  相似文献   

19.
20.
正We are delighted to announce that JIPB's 2-year SCI impact factor(IF)has reached 3.962(8%increase as compared to last year,Fig.1),and 5-year IF is 3.956,according to 2016 Journal Citation Report.Among 211 SCI-indexed Plant Science journals in the world,JIPB ranks 24th(top 9.95%,Q1 category).The total citations of JIPB in 2016 are 3,773(12%increase as compared  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号