首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Removal of astringency by endogenously formed acetaldehyde, achieved by postharvest anaerobic treatment, is of critical importance for many types of persimmon fruit. Although an anaerobic environment accelerates de‐astringency, it also has the deleterious effect of promoting excessive softening, reducing shelf life and marketability. Some hypoxia‐responsive ethylene response factors (ERFs) participate in anaerobic de‐astringency, but their role in accelerated softening was unclear. Undesirable rapid softening induced by high CO2 (95%) was ameliorated by adding the ethylene inhibitor 1‐MCP (1 μL/L), resulting in reduced astringency while maintaining firmness, suggesting that CO2‐induced softening involves ethylene signalling. Among the hypoxia‐responsive genes, expression of eight involved in fruit cell wall metabolism (Dkβ‐gal1/4, DkEGase1, DkPE1/2, DkPG1, DkXTH9/10) and three ethylene response factor genes (DkERF8/16/19) showed significant correlations with postdeastringency fruit softening. Dual‐luciferase assay indicated that DkERF8/16/19 could trans‐activate the DkXTH9 promoter and this interaction was abolished by a mutation introduced into the C‐repeat/dehydration‐responsive element of the DkXTH9 promoter, supporting the conclusion that these DkERFs bind directly to the DkXTH9 promoter and regulate this gene, which encodes an important cell wall metabolism enzyme. Some hypoxia‐responsive ERF genes are involved in deastringency and softening, and this linkage was uncoupled by 1‐MCP. Fruit of the Japanese cultivar ‘Tonewase’ provide a model for altered anaerobic response, as they lost astringency yet maintained firmness after CO2 treatment without 1‐MCP and changes in cell wall enzymes and ERFs did not occur.  相似文献   

2.
Redgwell RJ  Fry SC 《Plant physiology》1993,103(4):1399-1406
The activity of xyloglucan endotransglycosylase (XET) was as-sayed in three tissue zones of kiwifruit (Actinidia deliciosa [A. Chev.] C.F. Liang et A.R. Ferguson var deliciosa cv Hayward) at harvest and at several softening stages following a postharvest ethylene treatment. At harvest, extractable XET activity per unit fresh weight in the inner pericarp (IP) and core tissue was 4.5 and 42 times higher, respectively, than in the outer pericarp (OP). Within 24 h of ethylene treatment there was an increase in the activity and specific activity of XET in all tissues that continued throughout softening. Activity increased most in the OP, where it showed a 12-fold rise 6 d after ethylene treatment compared with 4.5- and 2.5-fold increases in the IP and core tissues, respectively. Visible swelling of the cell wall in each tissue was observed 24 h after the first detectable rise in XET activity and was most pronounced in the OP, which showed the greatest percentage increase in XET activity. Xyloglucan, galactoglucomannan, and cell wall materials isolated and purified from kiwifruit OP were tested as donor substrates for kiwifruit XET. The enzyme showed activity against xyloglucan but was inactive against galactoglucomannan. XET was active against cell wall materials from unripe and ripe fruit, with swollen walls from the latter being the better substrate. The results indicate that XET may have a key role early in fruit ripening, loosening the cell wall in preparation for further modification by other cell wall-associated enzymes.  相似文献   

3.
It has been proposed that cell wall loosening during plant cell growth may be mediated by the endotransglycosylation of load-bearing polymers, specifically of xyloglucans, within the cell wall. A xyloglucan endotransglycosylase (XET) with such activity has recently been identified in several plant species. Two cell wall proteins capable of inducing the extension of plant cell walls have also recently been identified in cucumber hypocotyls. In this report we examine three questions: (1) Does XET induce the extension of isolated cell walls? (2) Do the extension-inducing proteins possess XET activity? (3) Is the activity of the extension-inducing proteins modulated by a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2)? We found that the soluble proteins from growing cucumber (cucumis sativum L.) hypocotyls contained high XET activity but did not induce wall extension. Highly purified wall-protein fractions from the same tissue had high extension-inducing activity but little or no XET activity. The XET activity was higher at pH 5.5 than at pH 4.5, while extension activity showed the opposite sensitivity to pH. Reconstituted wall extension was unaffected by the presence of a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2), an oligosaccharide previously shown to accelerate growth in pea stems and hypothesized to facilitate growth through an effect on XET-induced cell wall loosening. We conclude that XET activity alone is neither sufficient nor necessary for extension of isolated walls from cucumber hypocotyls.  相似文献   

4.
Depolymerization of cell wall xyloglucan has been proposed to be involved in tomato fruit softening, along with the xyloglucan modifying enzymes. Xyloglucan endotransglucosylase/hydrolases (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151) have been proposed to have a dual role integrating newly secreted xyloglucan chains into an existing wall-bound xyloglucan, or restructuring the existing cell wall material by catalyzing transglucosylation between previously wall-bound xyloglucan molecules. Here, 10 tomato (Solanum lycopersicum) SlXTHs were studied and grouped into three phylogenetic groups to determine which members of each family were expressed during fruit growth and fruit ripening, and the ways in which the expression of different SlXTHs contributed to the total XET and XEH activities. Our results showed that all of the SlXTHs studied were expressed during fruit growth and ripening, and that the expression of all the SlXTHs in Group 1 was clearly related to fruit growth, as were SlXTH12 in Group 2 and SlXTH6 in Group 3-B. Only the expression of SlXTH5 and SlXTH8 from Group 3-A was clearly associated with fruit ripening, although all 10 of the different SlXTHs were expressed at the red ripe stage. Both total XET and XEH activities were higher during fruit growth, and decreased during fruit ripening. Ethylene production during tomato fruit growth was low and experienced a significant increase during fruit ripening, which was not correlated either with SlXTH expression or with XET and XEH activities. We suggest that the role of XTH during fruit development could be related to the maintenance of the structural integrity of the cell wall, and the decrease in XTHs expression, and the subsequent decrease in activity during ripening may contribute to fruit softening, with this process being regulated through different XTH genes.  相似文献   

5.
6.
7.
A tissue print followed by a xyloglucan endotransglycosylase assay revealed that XET activity is present at sites of cell elongation in both roots and shoots of the lycopodiophyte Selaginella kraussiana. This paper provides the first report and analysis of a xyloglucan endotransglycosylase/hydrolase (XTH) cDNA sequence, isolated from a club moss. In silico analysis of the deduced amino acid sequence revealed a strong conservation of the XET-domain described in higher plants. The catalytic site (DEIDLEFLG) varies in only one amino acid compared with the consensus sequence and was shown to be functional after recombinant expression of Sk-XTH1 in Pichia pastoris. Sk-XTH1 displays xyloglucan endotransglycosylase activity over a broad pH (4.5-7.5) and temperature range (4-30 degrees C), but it shows no hydrolase activity. The catalytic site is followed by a consensus sequence for N-linked glycosylation. Four terminal cysteines were shown to stabilize a putative XET-C terminal extension region, which includes conserved amino acids, involved in the recognition and binding of the substrates. The N-linked sugar interactions as well as the disulphide bridges were shown to be necessary to perform XET activity. The presence of a highly conserved XTH sequence and function in a microphyllophyte suggests that XTHs were present before the divergence of lycopodiophytes and euphyllophytes. It also points to a possible key role for XTHs in the production of a cell wall that allowed the further evolution of land plants.  相似文献   

8.
Xyloglucan endotransglycosylase (XET) activity was measured in apple (Malus domestica Borkh. cv. Braeburn) pericarp and kiwifruit (Actinidia deliciosa [A. Chev.] C. F. Liang et A. R. Ferguson var. deliciosa cv. Hayward) outer pericarp and core tissues in order to establish whether a correlation exists between the activity of the enzyme and different stages of fruit development Whereas the growth rate of kiwifruit paralleled changes in XET activity throughout fruit growth, that of apple did not. Both fruits showed the highest XET activity, on a fresh weight basis, in the first two weeks after anthesis when cell division was at its highest. XET activity then decreased sharply, but as the fruit increased in size (4–8 weeks after anthesis) there was a concomitant increase in XET activity in both fruits. In the latter stage of fruit development (16–26 weeks after anthesis) XET activity increased to peak at harvest in apple fruit. During this time there was relatively little increase in fruit size and presumably therefore minimal cell expansion. XET activity then declined as fruit softened after harvest. In core tissue from kiwifruit, XET activity increased throughout the later stages of fruit growth to harvest maturity in a similar manner to apple, but continued to increase after harvest until fruit were ripe. In contrast, XET activity in the outer pericarp of kiwifruit did not increase until ripening after harvest. In apple tissue up to 30% of the XET activity was cell wall bound and could not be solubilised, even in buffer containing 2 M NaCl. The results implicate XET in cell wall assembly during cell division and expansion early in apple and kiwifruit growth. However, the disparity between apple and kiwifruit with respect to XET activity late in fruit development and ripening and the different affinities of the enzyme for the cell wall in each fruit, suggest that XET has several roles in plant development, not all of which are related to cell wall loosening during periods of accelerated growth.  相似文献   

9.
木葡聚糖内糖基转移酶(Xyloglucan endotransglycosylase,XET)通过分解细胞壁半纤维素多糖的主要成分--木葡聚糖而参与果实软化.为了阐明香蕉(Musa acuminata.Colla cv.GrandNain)果实成熟过程中的软化与细胞壁代谢酶XET基因表达模式的关系,采用RT-PCR和RACE-PCR方法,首次从成熟香蕉果实果肉中分离了编码XT基因的全长cDNA(MA-XET1,全长1 095 bp).序列分析表明,MA-XET1的5'端和3'端的非翻译区分别为66 bp和1 89bp,该片段含有一个完整的开放读码框,编码280个氨基酸,推导的MA-XET1蛋白质中存在XET蛋白的催化活性部位DEIDFEFL.Southern杂交表明,MA-XET1在香蕉基因组中由多拷贝基因编码.Northern分析显示,跃变前期的果肉中,不能检测MA-XET1基因的表达,跃变期的果实果肉中MA-XET1表达增加,跃变后期该基因表达略有减弱;在跃变前期的果实果皮中,MA-XET1的积累较低,跃变期的果实果皮中积累大幅增加,而后迅速下降.Propylene(丙烯,乙烯的类似物)处理降低香蕉果实果皮和果肉的硬度,而且propylene促进MA-XET1在果皮和果肉中的积累.这些结果表明,MA-XET1参与香蕉果实成熟过程中的果皮和果肉软化,并且,MA-XET1的表达在转录水平上受乙烯调控.  相似文献   

10.
Five forms of xyloglucan endotransglycosylase/hydrolase (XTH) differing in their isoelectric points (pI) were detected in crude extracts from germinating nasturtium seeds. Without further fractionation, all five forms behaved as typical endotransglycosylases since they exhibited only transglycosylating (XET) activity and no xyloglucan-hydrolysing (XEH) activity. They all were glycoproteins with identical molecular mass, and deglycosylation led to a decrease in molecular mass from approximately 29 to 26.5 kDa. The major enzyme form having pI 6.3, temporarily designated as TmXET(6.3), was isolated and characterized. Molecular and biochemical properties of TmXET(6.3) confirmed its distinction from the XTHs described previously from nasturtium. The enzyme exhibited broad substrate specificity by transferring xyloglucan or hydroxyethylcellulose fragments not only to oligoxyloglucosides and cello-oligosaccharides but also to oligosaccharides derived from β-(1,4)-d-glucuronoxylan, β-(1,6)-d-glucan, mixed-linkage β-(1,3; 1,4)-d-glucan and at a relatively low rate also to β-(1,3)-gluco-oligosaccharides. The transglycosylating activity with xyloglucan as donor and cello-oligosaccharides as acceptors represented 4.6%, with laminarioligosaccharides 0.23%, with mixed-linkage β-(1,3; 1,4)-d-gluco-oligosaccharides 2.06%, with β-(1,4)-d-glucuronoxylo-oligosaccharides 0.31% and with β-(1,6)-d-gluco-oligosaccharides 0.69% of that determined with xyloglucan oligosaccharides as acceptors. Based on the sequence homology of tryptic fragments with the sequences of known XTHs, the TmXET(6.3) was classified into group II of the XTH phylogeny of glycoside hydrolase family GH16.  相似文献   

11.
Xyloglucan endotransglucosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, has been proposed to have a role during tomato and apple fruit ripening by loosening the cell wall. Since the ripening of climacteric fruits is controlled by endogenous ethylene biosynthesis, we wanted to study whether XET activity was ethylene-regulated, and if so, which specific genes encoding ripening-regulated XTH genes were indeed ethylene-regulated. XET specific activity in tomato and apple fruits was significantly increased by the ethylene treatment, as compared with the control fruits, suggesting an increase in the XTH gene expression induced by ethylene. The 25 SlXTH protein sequences of tomato and the 11 sequences MdXTH of apple were phylogenetically analyzed and grouped into three major clades. The SlXTHs genes with highest expression during ripening were SlXTH5 and SlXTH8 from Group III-B, and in apple MdXTH2, from Group II, and MdXTH10, and MdXTH11 from Group III-B. Ethylene was involved in the regulation of the expression of different SlXTH and MdXTH genes during ripening. In tomato fruit fifteen different SlXTH genes showed an increase in expression after ethylene treatment, and the SlXTHs that were ripening associated were also ethylene dependent, and belong to Group III-B (SlXTH5 and SlXTH8). In apple fruit, three MdXTH showed an increase in expression after the ethylene treatment and the only MdXTH that was ripening associated and ethylene dependent was MdXTH10 from Group III-B. The results indicate that XTH may play an important role in fruit ripening and a possible relationship between XTHs from Group III-B and fruit ripening, and ethylene regulation is suggested.  相似文献   

12.
13.
The paper describes a sensitive and rapid zymogram technique for detection of transglycosylating activity (XET) of xyloglucan endotransglycosylase/hydrolase (XTH; EC 2.4.1.207) in polyacrylamide isoelectric focusing gels. After the electrophoresis, the separating gel was overlaid and incubated with an agarose detection gel containing XET substrates: tamarind-seed xyloglucan as the glycosyl donor and sulphorhodamine-labeled xyloglucan-derived oligosaccharides (XGO-SRs) as the glycosyl acceptors. The transglycosylation catalyzed by XTH caused incorporation of the fluorescent label into the high-M(r) polysaccharide. Selective removal of unreacted XGO-SRs from the agarose replicas by washing with organic solvents revealed the zones corresponding to XET activity as bright pink fluorescent spots under UV-light. The method appears suitable for a number of purposes such as analysis of the isoenzyme composition of XTHs with XET activity in crude extracts from various plants and plant organs, monitoring the enzyme expression at various stages of plant development and/or for checking enzyme purity in the course of its isolation procedure.  相似文献   

14.

Background and Aims

Although xyloglucans are ubiquitous in land plants, they are less abundant in Poales species than in eudicotyledons. Poales cell walls contain higher levels of β-1,3/1,4 mixed-linked glucans and arabinoxylans than xyloglucans. Despite the relatively low level of xyloglucans in Poales, the xyloglucan endotransglucosylase/hydrolase (XTH) gene family in rice (Oryza sativa) is comparable in size to that of the eudicotyledon Arabidopsis thaliana. This raises the question of whether xyloglucan is a substrate for rice XTH gene products, whose enzyme activity remains largely uncharacterized.

Methods

This study focused on OsXTH19 (which belongs to Group IIIA of the XTH family and is specifically expressed in growing tissues of rice shoots), and two other XTHs, OsXTH11 (Group I/II) and OsXTH20 (Group IIIA), for reference, and measurements were made of the enzymatic activities of three recombinant rice XTHs, i.e. OsXTH11, OsXTH20 and OsXTH19.

Key Results

All three OsXTH gene products have xyloglucan endohydrolase (XEH, EC 3·2·1·151) activity, and OsXTH11 has both XEH and xyloglucan endotransglycosylase (XET, EC 2·4·1207) activities. However, these proteins had neither hydrolase nor transglucosylase activity when glucuronoarabinoxylan or mixed-linkage glucan was used as the substrate. These results are consistent with histological observations demonstrating that pOsXTH19::GUS is expressed specifically in the vicinity of tissues where xyloglucan immunoreactivity is present. Transgenic rice lines over-expressing OsXTH19 (harbouring a Cauliflower Mosaic Virus 35S promoter::OsXTH19 cDNA construct) or with suppressed OsXTH19 expression (harbouring a pOsXTH19 RNAi construct) did not show dramatic phenotypic changes, suggesting functional redundancy and collaboration among XTH family members, as was observed in A. thaliana.

Conclusions

OsXTH20 and OsXTH19 act as hydrolases exclusively on xyloglucan, while OsXTH11 exhibits both hydrolase and XET activities exclusively on xyloglucans. Phenotypic analysis of transgenic lines with altered expression of OsXTH19 suggests that OsXTH19 and related XTH(s) play redundant roles in rice growth.  相似文献   

15.
Wu Y  Jeong BR  Fry SC  Boyer JS 《Planta》2005,220(4):593-601
In dark-grown soybean (Glycine max [L.] Merr.) seedlings, exposing the roots to water-deficient vermiculite (w=–0.36 MPa) inhibited hypocotyl (stem) elongation. The inhibition was associated with decreased extensibility of the cell walls in the elongation zone. A detailed spatial analysis showed xyloglucan endotransglucosylase (XET; EC 2.4.1.207) activity on the basis of unit cell wall dry weight was decreased in the elongation region after seedlings were transplanted to low w. The decrease in XET activity was at least partially due to an accumulation of cell wall mass. Since cell number was only slightly altered, wall mass had increased per cell and probably led to increased wall thickness and decreased cell wall extensibility. Alternatively, an increase in cell wall mass may represent a mechanism for regulating enzyme activity in cell walls, XET in this case, and therefore cell wall extensibility. Hypocotyl elongation was partially recovered after seedlings were grown in low-w vermiculate for about 80 h. The partial recovery of hypocotyl elongation was associated with a partial recovery of cell wall extensibility and an enhancement of XET activity in the hypocotyl elongation zone. Our results indicate XTH proteins may play an important role in regulating cell wall extensibility and thus cell elongation in soybean hypocotyls. Our results also showed an imperfect correlation of spatial elongation and XET activity along the hypocotyls. Other potential functions of XTH and their regulation in soybean hypocotyl growth are discussed.  相似文献   

16.
Heteroxylans in the plant cell wall have been proposed to have a role analogous to that of xyloglucans or heteromannans, forming growth-restraining networks by interlocking cellulose microfibrils. A xylan endotransglycosylase has been identified that can transglycosylate heteroxylan polysaccharides in the presence of xylan-derived oligosaccharides. High activity was detected in ripe fruit of papaya (Carica papaya), but activity was also found in a range of other fruits, imbibed seeds and rapidly growing seedlings of cereals. Xylan endotransglycosylase from ripe papaya fruit used a range of heteroxylans, such as wheat arabinoxylan, birchwood glucuronoxylan and various heteroxylans from dicotyledonous primary cell walls purified from tomato and papaya fruit, as donor molecules. As acceptor molecules, the enzyme preferentially used xylopentaitol over xylohexaitol or shorter-length acceptors. Xylan endotransglycosylase was active over a broad pH range and could perform transglycosylation reactions up to 55 °C. Xylan endotransglycosylase activity was purified from ripe papaya fruit by ultrafiltration and cation exchange chromatography. Highest endotransglycosylase activity was identified in fractions that also contained high xylan hydrolase activity and correlated with the presence of the endoxylanase CpaEXY1. Recombinant CpaEXY1 protein transiently over-expressed in Nicotiana benthamiana leaves showed both endoxylanase and xylan endotransglycosylase activities in vitro, suggesting that CpaEXY1 is a single enzyme with dual activity in planta. Purified native CpaEXY1 showed two- to fourfold higher endoxylanase than endotransglycosylase activity, suggesting that CpaEXY1 may act primarily as a hydrolase. We propose that xylan endotransglycosylase activity (like xyloglucan and mannan endotransglycosylase activities) could be involved in remodelling or re-arrangement of heteroxylans of the cellulose-non-cellulosic cell wall framework.  相似文献   

17.
Xyloglucan endo-transglycosylases (XETs) encoded by xyloglucan endo-transglycosylases/hydrolase (XTH) genes modify the xyloglucan-cellulose framework of plant cell walls, thereby regulating their expansion and strength. To evaluate the importance of XET in wood development, we studied xyloglucan dynamics and XTH gene expression in developing wood and modified XET activity in hybrid aspen (Populus tremula × tremuloides) by overexpressing PtxtXET16-34. We show that developmental modifications during xylem differentiation include changes from loosely to tightly bound forms of xyloglucan and increases in the abundance of fucosylated xyloglucan epitope recognized by the CCRC-M1 antibody. We found that at least 16 Populus XTH genes, all likely encoding XETs, are expressed in developing wood. Five genes were highly and ubiquitously expressed, whereas PtxtXET16-34 was expressed more weakly but specifically in developing wood. Transgenic up-regulation of XET activity induced changes in cell wall xyloglucan, but its effects were dependent on developmental stage. For instance, XET overexpression increased abundance of the CCRC-M1 epitope in cambial cells and xylem cells in early stages of differentiation but not in mature xylem. Correspondingly, an increase in tightly bound xyloglucan content was observed in primary-walled xylem but a decrease was seen in secondary-walled xylem. Thus, in young xylem cells, XET activity limits xyloglucan incorporation into the tightly bound wall network but removes it from cell walls in older cells. XET overexpression promoted vessel element growth but not fiber expansion. We suggest that the amount of nascent xyloglucan relative to XET is an important determinant of whether XET strengthens or loosens the cell wall.  相似文献   

18.
Hemicellulosic polysaccharides from persimmon fruit ( Diospyros kaki L.) pericarp were extracted from depectinated cell walls with 0.5, 1 and 4 M KOH at different stages of development: (I) maximal growth corresponding to the first sigmoidal growth phase; (II) cessation of growth corresponding to the lag between the first and the second sigmoidal phases; (III) maximal growth corresponding to the second sigmoidal phase; and (IV) cessation of growth when the fruit had reached its maximum size and the change in colour (green to red) had taken place. During fruit development the amount of total hemicelluloses per unit dry mass cell wall decreased twofold. Xyloglucan was present in the three hemicellulosic fractions, and also decreased with fruit age, although its amount relative to other hemicelluloses increased. The amount of xyloglucan was especially high in the hemicelluloses extracted with 4 M KOH, representing more than 50% at stages III and IV. The average molecular mass of xyloglucan increased from stage I through stage II (0.5 M hemicellulosic fraction) or through stage III (I and 4 M hemicellulosic fractions) and decreased after that. The xyloglucan endotransglycosylase (XET: EC 2.4.1.-) activity was measured as the incorporation of [3H]XXXGol (reduced xyloglucan heptasaccharide labelled at position 1 of the glucitol moiety) into partially purified persimmon fruit xyloglucan. XET specific activity increased greatly between stages I and II. The importance of this enzyme during fruit ripening is discussed.  相似文献   

19.
Regulation of tomato fruit growth by epidermal cell wall enzymes   总被引:12,自引:0,他引:12  
Water relations of tomato fruit and the epidermal and pericarp activities of the putative cell wall loosening and tightening enzymes Xyloglucan endotransglycosylase (XET) and peroxidase were investigated, to determine whether tomato fruit growth is principally regulated in the epidermis or pericarp. Analysis of the fruit water relations and observation of the pattern of expansion of tomato fruit slices in vitro , has shown that the pericarp exerts tissue pressure on the epidermis in tomato fruit, suggesting that the rate of growth of tomato fruit is determined by the physical properties of the epidermal cell walls. The epidermal activities of XET and peroxidase were assayed throughout fruit development. Temporal changes in these enzyme activities were found to correspond well with putative cell wall loosening and stiffening during fruit development. XET activity was found to be proportional to the relative expansion rate of the fruit until growth ceased, and a peroxidase activity weakly bound to the epidermal cell wall appeared shortly before cessation of fruit expansion. No equivalent peroxidase activity was detected in pericarp tissue of any age. It is therefore plausible that the expansion of tomato fruit is regulated by the combined action of these enzyme activities in the fruit epidermis.  相似文献   

20.
BACKGROUND AND AIMS: In angiosperms xyloglucan endotransglucosylase (XET)/hydrolase (XTH) is involved in reorganization of the cell wall during growth and development. The location of oligo-xyloglucan transglucosylation activity and the presence of XTH expressed sequence tags (ESTs) in the earliest diverging extant plants, i.e. in bryophytes and algae, down to the Phaeophyta was examined. The results provide information on the presence of an XET growth mechanism in bryophytes and algae and contribute to the understanding of the evolution of cell wall elongation in general. METHODS: Representatives of the different plant lineages were pressed onto an XET test paper and assayed. XET or XET-related activity was visualized as the incorporation of fluorescent signal. The Physcomitrella genome database was screened for the presence of XTHs. In addition, using the 3' RACE technique searches were made for the presence of possible XTH ESTs in the Charophyta. KEY RESULTS: XET activity was found in the three major divisions of bryophytes at sites corresponding to growing regions. In the Physcomitrella genome two putative XTH-encoding cDNA sequences were identified that contain all domains crucial for XET activity. Furthermore, XET activity was located at the sites of growth in Chara (Charophyta) and Ulva (Chlorophyta) and a putative XTH ancestral enzyme in Chara was identified. No XET activity was identified in the Rhodophyta or Phaeophyta. CONCLUSIONS: XET activity was shown to be present in all major groups of green plants. These data suggest that an XET-related growth mechanism originated before the evolutionary divergence of the Chlorobionta and open new insights in the evolution of the mechanisms of primary cell wall expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号