首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Analysis of pollen grains reveals valuable information on biology, ecology, forensics, climate change, insect migration, food sources and aeroallergens. Vibrational (infrared and Raman) spectroscopies offer chemical characterization of pollen via identifiable spectral features without any sample pretreatment. We have compared the level of chemical information that can be obtained by different multiscale vibrational spectroscopic techniques.

Methodology

Pollen from 15 different species of Pinales (conifers) were measured by seven infrared and Raman methodologies. In order to obtain infrared spectra, both reflectance and transmission measurements were performed on ground and intact pollen grains (bulk measurements), in addition, infrared spectra were obtained by microspectroscopy of multigrain and single pollen grain measurements. For Raman microspectroscopy measurements, spectra were obtained from the same pollen grains by focusing two different substructures of pollen grain. The spectral data from the seven methodologies were integrated into one data model by the Consensus Principal Component Analysis, in order to obtain the relations between the molecular signatures traced by different techniques.

Results

The vibrational spectroscopy enabled biochemical characterization of pollen and detection of phylogenetic variation. The spectral differences were clearly connected to specific chemical constituents, such as lipids, carbohydrates, carotenoids and sporopollenins. The extensive differences between pollen of Cedrus and the rest of Pinaceae family were unambiguously connected with molecular composition of sporopollenins in pollen grain wall, while pollen of Picea has apparently higher concentration of carotenoids than the rest of the family. It is shown that vibrational methodologies have great potential for systematic collection of data on ecosystems and that the obtained phylogenetic variation can be well explained by the biochemical composition of pollen. Out of the seven tested methodologies, the best taxonomical differentiation of pollen was obtained by infrared measurements on bulk samples, as well as by Raman microspectroscopy measurements of the corpus region of the pollen grain. Raman microspectroscopy measurements indicate that measurement area, as well as the depth of focus, can have crucial influence on the obtained data.  相似文献   

2.

Background

It is imperative to have reliable and timely methodologies for analysis and monitoring of seed plants in order to determine climate-related plant processes. Moreover, impact of environment on plant fitness is predominantly based on studies of female functions, while the contribution of male gametophytes is mostly ignored due to missing data on pollen quality. We explored the use of infrared spectroscopy of pollen for an inexpensive and rapid characterization of plants.

Methodology

The study was based on measurement of pollen samples by two Fourier transform infrared techniques: single reflectance attenuated total reflectance and transmission measurement of sample pellets. The experimental set, with a total of 813 samples, included five pollination seasons and 300 different plant species belonging to all principal spermatophyte clades (conifers, monocotyledons, eudicots, and magnoliids).

Results

The spectroscopic-based methodology enables detection of phylogenetic variations, including the separation of confamiliar and congeneric species. Furthermore, the methodology enables measurement of phenotypic plasticity by the detection of inter-annual variations within the populations. The spectral differences related to environment and taxonomy are interpreted biochemically, specifically variations of pollen lipids, proteins, carbohydrates, and sporopollenins. The study shows large variations of absolute content of nutrients for congenital species pollinating in the same environmental conditions. Moreover, clear correlation between carbohydrate-to-protein ratio and pollination strategy has been detected. Infrared spectral database with respect to biochemical variation among the range of species, climate and biogeography will significantly improve comprehension of plant-environment interactions, including impact of global climate change on plant communities.  相似文献   

3.

Background

Spore discharge in the majority of the 30,000 described species of Basidiomycota is powered by the rapid motion of a fluid droplet, called Buller''s drop, over the spore surface. In basidiomycete yeasts, and phytopathogenic rusts and smuts, spores are discharged directly into the airflow around the fungal colony. Maximum discharge distances of 1–2 mm have been reported for these fungi. In mushroom-forming species, however, spores are propelled over much shorter ranges. In gilled mushrooms, for example, discharge distances of <0.1 mm ensure that spores do not collide with opposing gill surfaces. The way in which the range of the mechanism is controlled has not been studied previously.

Methodology/Principal Findings

In this study, we report high-speed video analysis of spore discharge in selected basidiomycetes ranging from yeasts to wood-decay fungi with poroid fruiting bodies. Analysis of these video data and mathematical modeling show that discharge distance is determined by both spore size and the size of the Buller''s drop. Furthermore, because the size of Buller''s drop is controlled by spore shape, these experiments suggest that seemingly minor changes in spore morphology exert major effects upon discharge distance.

Conclusions/Significance

This biomechanical analysis of spore discharge mechanisms in mushroom-forming fungi and their relatives is the first of its kind and provides a novel view of the incredible variety of spore morphology that has been catalogued by traditional taxonomists for more than 200 years. Rather than representing non-selected variations in micromorphology, the new experiments show that changes in spore architecture have adaptive significance because they control the distance that the spores are shot through air. For this reason, evolutionary modifications to fruiting body architecture, including changes in gill separation and tube diameter in mushrooms, must be tightly linked to alterations in spore morphology.  相似文献   

4.

Background

High-throughput sequencing has enabled detailed insights into complex microbial environments, including the human gut microbiota. The accuracy of the sequencing data however, is reliant upon appropriate storage of the samples prior to DNA extraction. The aim of this study was to conduct the first MiSeq sequencing investigation into the effects of faecal storage on the microbiota, compared to fresh samples. Culture-based analysis was also completed.

Methods

Seven faecal samples were collected from healthy adults. Samples were separated into fresh (DNA extracted immediately), snap frozen on dry ice and frozen for 7 days at -80°C prior to DNA extraction or samples frozen at -80°C for 7 days before DNA extraction. Sequencing was completed on the Illumina MiSeq platform. Culturing of total aerobes, anaerobes and bifidobacteria was also completed.

Results

No significant differences at phylum or family levels between the treatment groups occurred. At genus level only Faecalibacterium and Leuconostoc were significantly different in the fresh samples compared to the snap frozen group (p = 0.0298; p = 0.0330 respectively). Diversity analysis indicated that samples clustered based on the individual donor, rather than by storage group. No significant differences occurred in the culture-based analysis between the fresh, snap or -80°C frozen samples.

Conclusions

Using the MiSeq platform coupled with culture-based analysis, this study highlighted that limited significant changes in microbiota occur following rapid freezing of faecal samples prior to DNA extraction. Thus, rapid freezing of samples prior to DNA extraction and culturing, preserves the integrity of the microbiota.  相似文献   

5.
6.

Background and Aims

Initial release height and settling speed of diaspores are biologically controlled components which are key to modelling wind dispersal. Most Sphagnum (peat moss) species have explosive spore liberation. In this study, how capsule and spore sizes affect the height to which spores are propelled were measured, and how spore size and spore number of discharged particles relate to settling speed in the aspherical Sphagnum spores.

Methods

Spore discharge and spore cloud development were filmed in a closed chamber (nine species). Measurements were taken from snapshots at three stages of cloud development. Settling speed of spores (14 species) and clusters were timed in a glass tube.

Key Results

The maximum discharge speed measured was 3·6 m s−1. Spores reached a maximum height of 20 cm (average: 15 cm) above the capsule. The cloud dimensions at all stages were related positively to capsule size (R2 = 0·58–0·65). Thus species with large shoots (because they have large capsules) have a dispersal advantage. Half of the spores were released as singles and the rest as clusters (usually two to four spores). Single spores settled at 0·84–1·86 cm s−1, about 52 % slower than expected for spherical spores with the same diameters. Settling speed displayed a positive curvilinear relationship with spore size, close to predictions by Stokes'' law for spherical spores with 68 % of the actual diameters. Light-coloured spores settled slower than dark spores. Settling speed of spore clusters agrees with earlier studies. Effective spore discharge and small, slowly settling spores appear particularly important for species in forested habitats.

Conclusions

The spore discharge heights in Sphagnum are among the greatest for small, wind-dispersed propagules. The discharge heights and the slow settling of spores affect dispersal distances positively and may help to explain the wide distribution of most boreal Sphagnum species.  相似文献   

7.

Purpose

To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects.

Methods

High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval.

Results

In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars.

Conclusions

Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR.  相似文献   

8.

Background

Grass pollen, in particular from Lolium multiflorum is a major allergen source in temperate climate zones of Southern Brazil. The IgE sensitization profile of Brazilian grass pollen allergic patients to individual allergen molecules has not been analyzed yet.

Objective

To analyze the IgE sensitization profile of a Brazilian grass pollen allergic population using individual allergen molecules.

Methods

We analyzed sera from 78 grass pollen allergic patients for the presence of IgE antibodies specific for 103 purified micro-arrayed natural and recombinant allergens by chip technology. IgE-ELISA inhibition experiments with Lolium multiflorum, Phleum pratense extracts and a recombinant fusion protein consisting of Phl p 1, Phl p 2, Phl p 5 and Phl p 6 were performed to investigate cross-reactivities.

Results

Within the Brazilian grass pollen allergic patients, the most frequently recognized allergens were Phl p 1 (95%), Phl p 5 (82%), Phl p 2 (76%) followed by Phl p 4 (64%), Phl p 6 (45%), Phl p 11 (18%) and Phl p 12 (18%). Most patients were sensitized only to grass pollen allergens but not to allergens from other sources. A high degree of IgE cross-reactivity between Phleum pratense, Lolium multiflorum and the recombinant timothy grass fusion protein was found.

Conclusions

Component-resolved analysis of sera from Brazilian grass pollen allergic patients reveals an IgE recognition profile compatible with a typical Pooideae sensitization. The high degree of cross-reactivity between Phleum pratense and Lolium multiflorum allergens suggests that diagnosis and immunotherapy can be achieved with timothy grass pollen allergens in the studied population.  相似文献   

9.

Background

In Schistosoma mansoni infection, diagnosis and control after treatment mainly rely on parasitological stool investigations which are laborious and have limited sensitivity. PCR methods have shown equal or superior sensitivity but preservation and storage methods limit their use in the field. Therefore, the use of occult blood detection cards (fecal cards) for easy sampling and storage of fecal samples for further PCR testing was evaluated in a pilot study.

Methodology

Stool specimens were collected in a highly endemic area for S. mansoni in Ethiopia and submitted in an investigator-blinded fashion to microscopic examination by Kato-Katz thick smear as well as to real-time PCR using either fresh frozen stool samples or stool smears on fecal cards which have been stored at ambient temperature for up to ten months.

Principal Findings

Out of 55 stool samples, 35 were positive by microscopy, 33 and 32 were positive by PCR of frozen samples and of fecal card samples, respectively. When microscopy was used as diagnostic “gold standard”, the sensitivity of PCR on fresh stool was 94.3% (95%-CI: 86.6; 100) and on fecal cards 91.4% (95%-CI: 82.2; 100).

Conclusions

The use of fecal cards proved to be a simple and useful method for stool collection and prolonged storage prior to PCR based diagnosis of S. mansoni infection. This technique may be a valuable approach for large scale surveillance and post treatment assessments  相似文献   

10.

Background

Respiratory allergy triggered by pollen allergens is increasing at an alarming rate worldwide. Sunflower pollen is thought to be an important source of inhalant allergens. Present study aims to identify the prevalence of sunflower pollinosis among the Indian allergic population and characterizes the pollen allergens using immuno-proteomic tools.

Methodology

Clinico-immunological tests were performed to understand the prevalence of sensitivity towards sunflower pollen among the atopic population. Sera from selected sunflower positive patients were used as probe to detect the IgE-reactive proteins from the one and two dimensional electrophoretic separated proteome of sunflower pollen. The antigenic nature of the sugar moiety of the glycoallergens was studied by meta-periodate modification of IgE-immunoblot. Finally, these allergens were identified by mass-spectrometry.

Results

Prevalence of sunflower pollen sensitization was observed among 21% of the pollen allergic population and associated with elevated level of specific IgE and histamine in the sera of these patients. Immunoscreening of sunflower pollen proteome with patient sera detected seven IgE-reactive proteins with varying molecular weight and pI. Hierarchical clustering of 2D-immunoblot data highlighted three allergens characterized by a more frequent immuno-reactivity and increased levels of IgE antibodies in the sera of susceptible patients. These allergens were considered as the major allergens of sunflower pollen and were found to have their glycan moiety critical for inducing IgE response. Homology driven search of MS/MS data of these IgE-reactive proteins identified seven previously unreported allergens from sunflower pollen. Three major allergenic proteins were identified as two pectate lyases and a cysteine protease.

Conclusion

Novelty of the present report is the identification of a panel of seven sunflower pollen allergens for the first time at immuno-biochemical and proteomic level, which substantiated the clinical evidence of sunflower allergy. Further purification and recombinant expression of these allergens will improve component-resolved diagnosis and therapy of pollen allergy.  相似文献   

11.

Background

Chlorhexidine is a broad-spectrum antimicrobial commonly used to disinfect the skin of patients to reduce the risk of healthcare-associated infections. Because chlorhexidine is not sporicidal, it is not anticipated that it would have an impact on skin contamination with Clostridium difficile, the most important cause of healthcare-associated diarrhea. However, although chlorhexidine is not sporicidal as it is used in healthcare settings, it has been reported to kill spores of Bacillus species under altered physical and chemical conditions that disrupt the spore’s protective barriers (e.g., heat, ultrasonication, alcohol, or elevated pH). Here, we tested the hypothesis that similarly altered physical and chemical conditions result in enhanced sporicidal activity of chlorhexidine against C. difficile spores.

Principal Findings

C. difficile spores became susceptible to heat killing at 80°C within 15 minutes in the presence of chlorhexidine, as opposed to spores suspended in water which remained viable. The extent to which the spores were reduced was directly proportional to the concentration of chlorhexidine in solution, with no viable spores recovered after 15 minutes of incubation in 0.04%–0.0004% w/v chlorhexidine solutions at 80°C. Reduction of spores exposed to 4% w/v chlorhexidine solutions at moderate temperatures (37°C and 55°C) was enhanced by the presence of 70% ethanol. However, complete elimination of spores was not achieved until 3 hours of incubation at 55°C. Elevating the pH to ≥9.5 significantly enhanced the killing of spores in either aqueous or alcoholic chlorhexidine solutions.

Conclusions

Physical and chemical conditions that alter the protective barriers of C. difficile spores convey sporicidal activity to chlorhexidine. Further studies are necessary to identify additional agents that may allow chlorhexidine to reach its target within the spore.  相似文献   

12.

Background

Targeted Next Generation Sequencing (NGS) offers a way to implement testing of multiple genetic aberrations in diagnostic pathology practice, which is necessary for personalized cancer treatment. However, no standards regarding input material have been defined. This study therefore aimed to determine the effect of the type of input material (e.g. formalin fixed paraffin embedded (FFPE) versus fresh frozen (FF) tissue) on NGS derived results. Moreover, this study aimed to explore a standardized analysis pipeline to support consistent clinical decision-making.

Method

We used the Ion Torrent PGM sequencing platform in combination with the Ion AmpliSeq Cancer Hotspot Panel v2 to sequence frequently mutated regions in 50 cancer related genes, and validated the NGS detected variants in 250 FFPE samples using standard diagnostic assays. Next, 386 tumour samples were sequenced to explore the effect of input material on variant detection variables. For variant calling, Ion Torrent analysis software was supplemented with additional variant annotation and filtering.

Results

Both FFPE and FF tissue could be sequenced reliably with a sensitivity of 99.1%. Validation showed a 98.5% concordance between NGS and conventional sequencing techniques, where NGS provided both the advantage of low input DNA concentration and the detection of low-frequency variants. The reliability of mutation analysis could be further improved with manual inspection of sequence data.

Conclusion

Targeted NGS can be reliably implemented in cancer diagnostics using both FFPE and FF tissue when using appropriate analysis settings, even with low input DNA.  相似文献   

13.

Background and Aims

Callose involvement in spore development is a plesiomorphic feature of land plants. Correlated light, fluorescence and immuno-electron microscopy was conducted on the developing spores of Physcomitrella patens to probe for callose. Using a bioinformatic approach, the callose synthase (PpCalS) genes were annotated and PpCalS and AtCalS gene families compared, testing the hypothesis that an exine development orthologue is present in P. patens based on deduced polypeptide similarity with AtCalS5, a known exine development gene.

Methods

Spores were stained with aniline blue fluorescent dye. Capsules were prepared for immuno-light and immuno-electron microscopy by gold labelling callose epitopes with monoclonal antibody. BLAST searches were conducted using the AtCalS5 sequence as a query against the P. patens genome. Phylogenomic analysis of the CalS gene family was conducted using PAUP (v.4·1b10).

Key Results

Callose is briefly present in the aperture of developing P. patens spores. The PpCalS gene family consists of 12 copies that fall into three distinct clades with AtCalS genes. PpCalS5 is an orthologue to AtCalS5 with highly conserved domains and 64 % similarity of their deduced polypeptides.

Conclusions

This is the first study to identify the presence of callose in moss spores. AtCalS5 was previously shown to be involved in pollen exine development, thus making PpCalS5 a suspect gene involved in moss spore exine development.Key words: Bryophyte, callose, callose synthase, exine development, moss, Physcomitrella patens, spores, sporogenesis  相似文献   

14.

Background

In plants, reproductive success is largely determined by the composition of pollen (i.e., self-pollen and outcross-pollen from near and distant pollen-donors) transported as a result of pollinator foraging behavior (e.g., pollen carryover). However, little evidence is available on how and to what extent the pollen carryover affects the pollen-donor composition and on which insect taxa are effective outcross-pollen transporters under field conditions. In this study, we explored roles of foraging behavior of insect pollinators on pollen-donor composition and subsequent reproductive success in a woody plant.

Methods

We performed paternity analyses based on microsatellite genotyping of individual pollen grains found on diurnal pollinators (i.e., bumblebee, small bee, fly, small beetle, and honeybee) visiting Castanea crenata trees.

Results

The outcross-pollen rate was highest in bumblebees (66%), followed by small bees (35%), flies (31%), and small beetles (18%). The effective number of pollen donors, representing pollen carryover, was greater in bumblebees (9.71) than in flies (3.40), small bees (3.32), and small beetles (3.06). The high percentages of pollen from outside the plot on bumblebees (65.4%) and flies (71.2%) compared to small bees (35.3%) and small beetles (13.5%) demonstrated their longer pollen dispersal distances.

Conclusions

All of the diurnal insects carried outcross-pollen grains for long distances via pollen carryover. This fact suggests that a wide range of insect taxa are potential outcross-pollen transporters for the self-incompatible C. crenata.  相似文献   

15.

Purpose

Tissues and biomaterials used for corneal surface repair require fulfilling specific optical standards prior to implantation in the patient. However, there is not a feasible evaluation method to be applied in clinical or Good Manufacturing Practice settings. In this study, we describe and assess an innovative easy-applied photographic-based method (PBM) for measuring functional optical blurring and transparency in corneal surface grafts.

Methods

Plastic compressed collagen scaffolds (PCCS) and multilayered amniotic membranes (AM) samples were optically and histologically evaluated. Transparency and image blurring measures were obtained by PBM, analyzing photographic images of a standardized band pattern taken through the samples. These measures were compared and correlated to those obtained applying the Inverse Adding-Doubling (IAD) technique, which is the gold standard method.

Results

All the samples used for optical evaluation by PBM or IAD were histological suitable. PCCS samples presented transmittance values higher than 60%, values that increased with increasing wavelength as determined by IAD. The PBM indicated that PCCS had a transparency ratio (TR) value of 80.3±2.8%, with a blurring index (BI) of 50.6±4.2%. TR and BI obtained from the PBM showed a high correlation (ρ>|0.6|) with the diffuse transmittance and the diffuse reflectance, both determined using the IAD (p<0.005). The AM optical properties showed that there was a largely linear relationship between the blurring and the number of amnion layers, with more layers producing greater blurring.

Conclusions

This innovative proposed method represents an easy-applied technique for evaluating transparency and blurriness of tissues and biomaterials used for corneal surface repair.  相似文献   

16.

Background

Flavonoids have shown to exert multiple beneficial effects on human health, being also appreciated by both food and pharmaceutical industries. Citrus fruits are a key source of flavonoids, thus promoting studies to obtain them. Characteristics of these studies are the discrepancies among sample pretreatments and among extraction methods, and also the scant number of comparative studies developed so far.

Objective

Evaluate the effect of both the sample pretreatment and the extraction method on the profile of flavonoids isolated from lemon.

Results

Extracts from fresh, lyophilized and air-dried samples obtained by shaking extraction (SE), ultrasound-assisted extraction (USAE), microwave-assisted extraction (MAE) and superheated liquid extraction (SHLE) were analyzed by LC–QTOF MS/MS, and 32 flavonoids were tentatively identified using MS/MS information. ANOVA applied to the data from fresh and dehydrated samples and from extraction by the different methods revealed that 26 and 32 flavonoids, respectively, were significant (p≤0.01). The pairwise comparison (Tukey HSD; p≤0.01) showed that lyophilized samples are more different from fresh samples than from air-dried samples; also, principal component analysis (PCA) showed a clear discrimination among sample pretreatment strategies and suggested that such differences are mainly created by the abundance of major flavonoids. On the other hand, pairwise comparison of extraction methods revealed that USAE and MAE provided quite similar extracts, being SHLE extracts different from the other two. In this case, PCA showed a clear discrimination among extraction methods, and their position in the scores plot suggests a lower abundance of flavonoids in the extracts from SHLE. In the two PCA the loadings plots revealed a trend to forming groups according to flavonoid aglycones.

Conclusions

The present study shows clear discrimination caused by both sample pretreatments and extraction methods. Under the studied conditions, liophilization provides extracts with higher amounts of flavonoids, and USAE is the best method for isolation of these compounds, followed by MAE and SE. On the contrary, the SHLE method was the less favorable to extract flavonoids from citrus owing to degradation.  相似文献   

17.
18.

Purpose

NCIC Clinical Trials Group PA.3 was a randomized control trial that demonstrated improved overall survival (OS) in patients receiving erlotinib in addition to gemcitabine for locally advanced or metastatic pancreatic cancer. Prior to therapy, patients had plasma samples drawn for future study. We sought to identify biomarkers within these samples.

Experimental Design

Using the proximity ligation assay (PLA), a probe panel was built from commercially available antibodies for 35 key proteins selected from a global genetic analysis of pancreatic cancers, and used to quantify protein levels in 20 uL of patient plasma. To determine if any of these proteins levels independently associated with OS, univariate and mulitbaraible Cox models were used. In addition, we examined the associations between biomarker expression and disease stage at diagnosis using Fisher''s exact test. The correlation between Erlotinib sensitivity and each biomarkers was assessed using a test of interaction between treatment and biomarker.

Results and Conclusion

Of the 569 eligible patients, 480 had samples available for study. Samples were randomly allocated into training (251) and validation sets (229). Among all patients, elevated levels of interleukin-8 (IL-8), carcinoembryonic antigen (CEA), hypoxia-inducible factor 1-alpha (HIF-1 alpha), and interleukin-6 were independently associated with lower OS, while IL-8, CEA, platelet-derived growth factor receptor alpha and mucin-1 were associated with metastatic disease. Patients with elevated levels of receptor tyrosine-protein kinase erbB-2 (HER2) expression had improved OS when treated with erlotinib compared to placebo. In conclusion, PLA is a powerful tool for identifying biomarkers from archived, small volume serum samples. These data may be useful to stratify patient outcomes regardless of therapeutic intervention.

Trial Registration

ClinicalTrials.gov NCT00040183  相似文献   

19.

Background

Photocatalysis of titanium dioxide (TiO2) substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis.

Methodology/Principal Findings

Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components.

Conclusion/Significance

Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host.  相似文献   

20.

Background

Clostridium difficile is the leading cause of antibiotic-associated diarrhoea and pseudo membranous colitis in the developed world. The aim of this study was to explore whether Photodynamic Antimicrobial Chemotherapy (PACT) could be used as a novel approach to treating C. difficile infections.

Methods

PACT utilises the ability of light-activated photosensitisers (PS) to produce reactive oxygen species (ROS) such as free radical species and singlet oxygen, which are lethal to cells. We screened thirteen PS against C. difficile planktonic cells, biofilm and germinating spores in vitro, and cytotoxicity of effective compounds was tested on the colorectal adenocarcinoma cell-line HT-29.

Results

Three PS were able to kill 99.9% of bacteria in both aerobic and anaerobic conditions, both in the planktonic state and in a biofilm, after exposure to red laser light (0.2 J/cm2) without harming model colon cells. The applicability of PACT to eradicate C. difficile germinative spores indirectly was also shown, by first inducing germination with the bile salt taurocholate, followed by PACT.

Conclusion

This innovative and simple approach offers the prospect of a new antimicrobial therapy using light to treat C. difficile infection of the colon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号