首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Non‐alcoholic fatty liver disease (NAFLD) is associated with obesity and lifestyle, while exercise is beneficial for NAFLD. Dysregulated microRNAs (miRs) control the pathogenesis of NAFLD. However, whether exercise could prevent NAFLD via targeting microRNA is unknown. In this study, normal or high‐fat diet (HF) mice were either subjected to a 16‐week running program or kept sedentary. Exercise attenuated liver steatosis in HF mice. MicroRNA array and qRT‐PCR demonstrated that miR‐212 was overexpressed in HF liver, while reduced by exercise. Next, we investigated the role of miR‐212 in lipogenesis using HepG2 cells with/without long‐chain fatty acid treatment (±FFA). FFA increased miR‐212 in HepG2 cells. Moreover, miR‐212 promoted lipogenesis in HepG2 cells (±FFA). Fibroblast growth factor (FGF)‐21, a key regulator for lipid metabolism, was negatively regulated by miR‐212 at protein level in HepG2 cells. Meanwhile, FFA downregulated FGF‐21 both at mRNA and protein levels in HepG2 cells. Also, FGF‐21 protein level was reduced in HF liver, while reversed by exercise in vivo. Furthermore, siRNA‐FGF‐21 abolished the lipogenesis‐reducing effect of miR‐212 inhibitor in HepG2 cells (±FFA), validating FGF‐21 as a target gene of miR‐212. These data link the benefit of exercise and miR‐212 downregulation in preventing NAFLD via targeting FGF‐21.  相似文献   

5.
6.
7.
8.
Fibroblast growth factor-21 (FGF21) has therapeutic potential for metabolic syndrome due to positive effects on fatty acid metabolism in liver and white adipose tissue. FGF21 also improves pancreatic islet survival in excess palmitate; however, much less is known about FGF21-induced metabolism in this tissue. We first confirmed FGF21-dependent activity in islets by identifying expression of the cognate coreceptor Klothoβ, and by measuring a ligand-stimulated decrease in acetyl-CoA carboxylase expression. To further reveal the effect of FGF21 on metabolism, we employed a unique combination of two-photon and confocal autofluorescence imaging of the NAD(P)H and mitochondrial NADH responses while holding living islets stationary in a microfluidic device. These responses were further correlated to mitochondrial membrane potential and insulin secretion. Glucose-stimulated responses were relatively unchanged by FGF21. In contrast, responses to glucose in the presence of palmitate were significantly reduced compared to controls showing diminished NAD(P)H, mitochondrial NADH, mitochondrial membrane potential, and insulin secretion. Consistent with the glucose-stimulated responses being smaller due to continued fatty acid oxidation, mitochondrial membrane potential was increased in FGF21-treated islets by using the fatty acid transport inhibitor etomoxir. Citrate-stimulated NADPH responses were also significantly larger in FGF21-treated islets suggesting preference for citrate cycling rather than acetyl-CoA carboxylase-dependent fatty acid synthesis. Overall, these data show a reduction in palmitate-induced potentiation of glucose-stimulated metabolism and insulin secretion in FGF21-treated islets, and establish the use of autofluorescence imaging and microfluidic devices to investigate cell metabolism in a limited amount of living tissue.  相似文献   

9.
10.
11.
12.
Fibroblast growth factor 21 (FGF21) exhibits a circadian oscillation, and its induction is critical during fasting. When secreted by liver and skeletal muscle, FGF21 enhances thermogenic activity in brown adipose tissue (BAT) by utilizing uncoupling protein 1 (UCP1) to dissipate energy as heat. Recently, it has been reported that UCP1 is not required for FGF21-mediated reduction in body weight or improvements in glucose homeostasis. As the relationship between FGF21 and UCP1 induction in tissues other than BAT is less clear, we tested the effect of restricted feeding (RF) and high dietary fat on FGF21 circadian expression and its correlation with UCP1 expression in liver and white adipose tissue (WAT). High dietary fat disrupted Fgf21 mRNA circadian oscillation but increased its levels in WAT. RF led to increased liver FGF21 protein levels, whereas those of UCP1 decreased. In contrast, WAT FGF21 protein levels increased under high-fat diet, whereas those of UCP1 decreased under RF. In summary, FGF21 exhibits circadian oscillation, which is disrupted with increased dietary fat. The relationship between FGF21 and UCP1 levels depends on the tissue and the cellular energy status.  相似文献   

13.
14.

Objectives

Circulating Fibroblast Growth Factor 21 (FGF21) levels are increased in insulin resistant states such as obesity, type 2 diabetes mellitus and gestational diabetes mellitus (GDM). In addition, GDM is associated with serious maternal and fetal complications. We sought to study human cerebrospinal fluid (CSF) and corresponding circulating FGF21 levels in women with gestational diabetes mellitus (GDM) and in age and BMI matched control subjects. We also assessed FGF21 secretion from GDM and control human placental explants.

Design

CSF and corresponding plasma FGF21 levels of 24 women were measured by ELISA [12 GDM (age: 26–47 years, BMI: 24.3–36.3 kg/m2) and 12 controls (age: 22–40 years, BMI: 30.1–37.0 kg/m2)]. FGF21 levels in conditioned media were secretion from GDM and control human placental explants were also measured by ELISA.

Results

Glucose, HOMA-IR and circulating NEFA levels were significantly higher in women with GDM compared to control subjects. Plasma FGF21 levels were significantly higher in women with GDM compared to control subjects [234.3 (150.2–352.7) vs. 115.5 (60.5–188.7) pg/ml; P<0.05]. However, there was no significant difference in CSF FGF21 levels in women with GDM compared to control subjects. Interestingly, CSF/Plasma FGF21 ratio was significantly lower in women with GDM compared to control subjects [0.4 (0.3–0.6) vs. 0.8 (0.5–1.6); P<0.05]. FGF21 secretion into conditioned media was significantly lower in human placental explants from women with GDM compared to control subjects (P<0.05).

Conclusions

The central actions of FGF21 in GDM subjects maybe pivotal in the pathogenesis of insulin resistance in GDM subjects. The significance of FGF21 produced by the placenta remains uncharted and maybe crucial in our understanding of the patho-physiology of GDM and its associated maternal and fetal complications. Future research should seek to elucidate these points.  相似文献   

15.
Fibroblast growth factor 21 is a critical circulating adipokine involving in metabolic disorders and various liver diseases. This study was performed to investigate whether FGF21 is also associated with the pathophysiology of biliary atresia. Serum FGF21 levels were measured in 57 BA patients and 20 age matched healthy controls. We also examined hepatic FGF21 mRNA expression and FGF21 protein levels in liver tissues obtained from 15 BA patients undergoing liver transplantation and 5 cases of pediatric donation after cardiac death donor without liver diseases by RT-PCR and Western blotting. Patients with BA showed significantly higher serum FGF21 levels than those without BA (554.7 pg/mL [83–2300] vs. 124.5 pg/mL [66–270], P < 0.05). Patients with BA also had significantly higher FGF21 mRNA and protein levels in hepatic tissues than control subjects. Serum FGF21 expression increased corresponding to the severity of liver fibrosis. Furthermore, serum FGF21 levels dropped significantly in BA patients within 6 months after liver transplantation and approached baseline in healthy controls (P > 0.05). In vivo, FXR knockout could significantly abrogate cholestasis induced FGF21 expression. FGF21 levels in serum and liver tissue increased significantly in BA patients. In vivo, cholestasis could induce FGF21 expression in FXR dependent manner.  相似文献   

16.
17.
18.
Mesenchymal stem cells (MSCs) have been investigated to treat liver diseases, but the efficiency of MSCs to treat chronic liver diseases is conflicting. FGF21 can reduce inflammation and fibrosis. We established FGF21‐secreting adipose derived stem cells (FGF21_ADSCs) to enhance the effects of ADSCs and transplanted them into thioacetamide (TAA)‐induced liver fibrosis mice via the tail vein. Transplantation of FGF21_ADSCs significantly improved liver fibrosis by decreasing serum hyaluronic acid and reducing the expression of fibrosis‐related factors such as α‐smooth muscle actin (α‐SMA), collagen and tissue inhibitor of metalloproteinase‐1 (TIMP‐1) compared with the Empty_ADSCs by inhibition of p‐JNK, NF‐κB and p‐Smad2/3 signalling. α‐lactoalbumin (LA) and lactotransferrin (LTF), secretory factors produced from FGF21_ADSCs inhibited TGF‐β1‐induced expression of α‐SMA and collagen in LX‐2 cells. These results suggest that transplantation of FGF21_ADSCs inhibited liver fibrosis more effectively than Empty_ADSCs, possibly via secretion of α‐LA and LTF.  相似文献   

19.
Non‐alcoholic fatty liver disease (NAFLD), a lipid metabolism disorder characterized by the accumulation of intrahepatic fat, has emerged as a global public health problem. However, its underlying molecular mechanism remains unclear. We previously have found that miR‐149 was elevated in NAFLD induced by high‐fat diet mice model, whereas decreased by a 16‐week running programme. Here, we reported that miR‐149 was increased in HepG2 cells treated with long‐chain fatty acid (FFA). In addition, miR‐149 was able to promote lipogenesis in HepG2 cells in the absence of FFA treatment. Moreover, inhibition of miR‐149 was capable of inhibiting lipogenesis in HepG2 cells in the presence of FFA treatment. Meanwhile, fibroblast growth factor‐21 (FGF‐21) was identified as a target gene of miR‐149, which was demonstrated by the fact that miR‐149 could negatively regulate the protein expression level of FGF‐21, and FGF‐21 was also responsible for the effect of miR‐149 inhibitor in decreasing lipogenesis in HepG2 cells in the presence of FFA treatment. These data implicate that miR‐149 might be a novel therapeutic target for NAFLD.  相似文献   

20.
Lipogenic gene expression in liver is repressed in mice upon leucine deprivation. The hormone fibroblast growth factor 21 (FGF21), which is critical to the adaptive metabolic response to starvation, is also induced under amino acid deprivation. Upon leucine deprivation, we found that FGF21 is needed to repress expression of lipogenic genes in liver and white adipose tissue, and stimulate phosphorylation of hormone-sensitive lipase in white adipose tissue. The increased expression of Ucp1 in brown adipose tissue under these circumstances is also impaired in FGF21-deficient mice. Our results demonstrate the important role of FGF21 in the regulation of lipid metabolism during amino acid starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号