首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondria exert important control over plasma membrane (PM) Orai1 channels mediating store-operated Ca2+ entry (SOCE). Although the sensing of endoplasmic reticulum (ER) Ca2+ stores by STIM proteins and coupling to Orai1 channels is well understood, how mitochondria communicate with Orai1 channels to regulate SOCE activation remains elusive. Here, we reveal that SOCE is accompanied by a rise in cytosolic Na+ that is critical in activating the mitochondrial Na+/Ca2+ exchanger (NCLX) causing enhanced mitochondrial Na+ uptake and Ca2+ efflux. Omission of extracellular Na+ prevents the cytosolic Na+ rise, inhibits NCLX activity, and impairs SOCE and Orai1 channel current. We show further that SOCE activates a mitochondrial redox transient which is dependent on NCLX and is required for preventing Orai1 inactivation through oxidation of a critical cysteine (Cys195) in the third transmembrane helix of Orai1. We show that mitochondrial targeting of catalase is sufficient to rescue redox transients, SOCE, and Orai1 currents in NCLX-deficient cells. Our findings identify a hitherto unknown NCLX-mediated pathway that coordinates Na+ and Ca2+ signals to effect mitochondrial redox control over SOCE.  相似文献   

2.
3.
Distal symmetrical sensory neuropathy in diabetes involves the dying back of axons, and the pathology equates with axonal dystrophy generated under conditions of aberrant Ca2+ signalling. Previous work has described abnormalities in Ca2+ homoeostasis in sensory and dorsal horn neurons acutely isolated from diabetic rodents. We extended this work by testing the hypothesis that sensory neurons exposed to long-term Type 1 diabetes in vivo would exhibit abnormal axonal Ca2+ homoeostasis and focused on the role of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase). DRG (dorsal root ganglia) sensory neurons from age-matched normal and 3–5-month-old STZ (streptozotocin)-diabetic rats (an experimental model of Type 1 diabetes) were cultured. At 1–2 days in vitro an array of parameters were measured to investigate Ca2+ homoeostasis including (i) axonal levels of intracellular Ca2+, (ii) Ca2+ uptake by the ER (endoplasmic reticulum), (iii) assessment of Ca2+ signalling following a long-term thapsigargin-induced blockade of SERCA and (iv) determination of expression of ER mass and stress markers using immunocytochemistry and Western blotting. KCl- and caffeine-induced Ca2+ transients in axons were 2-fold lower in cultures of diabetic neurons compared with normal neurons indicative of reduced ER calcium loading. The rate of uptake of Ca2+ into the ER was reduced by 2-fold (P<0.05) in diabetic neurons, while markers for ER mass and ER stress were unchanged. Abnormalities in Ca2+ homoeostasis in diabetic neurons could be mimicked via long-term inhibition of SERCA in normal neurons. In summary, axons of neurons from diabetic rats exhibited aberrant Ca2+ homoeo<1?show=[fo]?>stasis possibly triggered by sub-optimal SERCA activity that could contribute to the distal axonopathy observed in diabetes.  相似文献   

4.
5.
Repetitive oscillations in cytoplasmic Ca2+ due to periodic Ca2+ release from the endoplasmic reticulum (ER) drive mammalian embryo development following fertilization. Influx of extracellular Ca2+ to support the refilling of ER stores is required for sustained Ca2+ oscillations, but the mechanisms underlying this Ca2+ influx are controversial. Although store-operated Ca2+ entry (SOCE) is an appealing candidate mechanism, several groups have arrived at contradictory conclusions regarding the importance of SOCE in oocytes and eggs. To definitively address this question, Ca2+ influx was assessed in oocytes and eggs lacking the major components of SOCE, the ER Ca2+ sensor STIM proteins, and the plasma membrane Ca2+ channel ORAI1. We generated oocyte-specific conditional knockout (cKO) mice for Stim1 and Stim2, and also generated Stim1/2 double cKO mice. Females lacking one or both STIM proteins were fertile and their ovulated eggs displayed normal patterns of Ca2+ oscillations following fertilization. In addition, no impairment was observed in ER Ca2+ stores or Ca2+ influx following store depletion. Similar studies were performed on eggs from mice globally lacking ORAI1; no abnormalities were observed. Furthermore, spontaneous Ca2+ influx was normal in oocytes from Stim1/2 cKO and ORAI1-null mice. Finally, we tested if TRPM7-like channels could support spontaneous Ca2+ influx, and found that it was largely prevented by NS8593, a TRPM7-specific inhibitor. Fertilization-induced Ca2+ oscillations were also impaired by NS8593. Combined, these data robustly show that SOCE is not required to support appropriate Ca2+ signaling in mouse oocytes and eggs, and that TRPM7-like channels may contribute to Ca2+ influx that was previously attributed to SOCE.  相似文献   

6.
The process of store-operated calcium entry (SOCE), whereby the release of intracellular Ca2+ from endoplasmic reticulum (ER) activates Ca2+ influx channels in the plasma membrane, has been demonstrated to impact a diverse range of cell functions. In the present study, we investigated the potential protective effect of SOCE inhibition against 1-methyl-4-phenylpyridinium (MPP+) injury by using pharmacological antagonists or specific small interfering RNA (siRNA) in PC12 cells. The results showed that both antagonists (15 μM MRS-1845 and 50 μM ML-9) and stromal interacting molecule-1 (STIM1) targeted siRNA (Si-STIM1) significantly increased cell viability, decreased apoptotic cell death and reduced intracellular reactive oxygen species (ROS) production and lipid peroxidation in MPP+ injured PC12 cells. SOCE inhibition also prevented MPP+ induced mitochondrial dysfunction and activation of mitochondrial related apoptotic factors, while had no effect on mitochondrial biogenesis. Moreover, inhibition of SOCE by antagonists and siRNA increased the expression levels of Homer1a mRNA and protein, and knockdown of Homer1a expression by specific siRNA partly reversed the protective effects induced by SOCE inhibition in PC12 cells. All these results indicated that SOCE inhibition protected PC12 cells against MPP+ insult through upregulation of Homer1a expression, and SOCE might be an ideal target for investigating therapeutic strategy against neuronal injury in PD patients.  相似文献   

7.
《Free radical research》2013,47(7):758-768
Abstract

Stromal interaction molecule (STIM) proteins are parts of elaborate eukaryotic Ca2+ signaling systems and are considered to be important players in regulating neuronal Ca2+ homeostasis under normal ageing and pathological conditions. Here, we investigated the potential role of STIM1 in 6-hydroxydopamine (6-OHDA)-induced toxicity in undifferentiated PC12 cell lines. Cells exposed to 6-OHDA demonstrated alterations in the generation of reactive oxygen species (ROS) in a Ca2+-dependent manner. Downregulation of STIM1 expression by specific small interfering RNA (siRNA) attenuated apoptotic cell death, reduced intracellular ROS production, and partially prevented the impaired endogenous antioxidant enzyme activities after 6-OHDA treatment. Furthermore, STIM1 knockdown significantly attenuated 6-OHDA-induced intracellular Ca2+ overload by inhibiting endogenous store-operated calcium entry (SOCE). The effect of STIM1 siNRA on SOCE was related to orai1 and L-type Ca2+ channels, but not to transient receptor potential canonical type 1 (TRPC1) channel. In addition, silencing of STIM1 increased the Ca2+ buffering capacity of the endoplasmic reticulum (ER) in 6-OHDA-injured cells. ER vacuoles formed from the destruction of ER structural integrity and activation of ER-related apoptotic factors (CHOP and Caspase-12) were partially prevented by STIM1 knockdown. Moreover, STIM1 knockdown attenuated 6-OHDA-induced mitochondrial Ca2+ uptake and mitochondrial dysfunction, including the collapse of mitochondrial membrane potential (MMP) and the decrease of ATP generation. Taken together, our data provide the first evidence that inhibition of STIM1-meditated intracellular Ca2+ dyshomeostasis protects undifferentiated PC12 cells against 6-OHDA toxicity and indicate that STIM1 may be responsible for neuronal oxidative stress induced by ER stress and mitochondrial dysfunction in PD.  相似文献   

8.
Mutations in GDAP1 lead to severe forms of the peripheral motor and sensory neuropathy, Charcot-Marie-Tooth disease (CMT), which is characterized by heterogeneous phenotypes, including pronounced axonal damage and demyelination. We show that neurons and Schwann cells express ganglioside-induced differentiation associated protein 1 (GDAP1), which suggest that both cell types may contribute to the mixed features of the disease. GDAP1 is located in the mitochondrial outer membrane and regulates the mitochondrial network. Overexpression of GDAP1 induces fragmentation of mitochondria without inducing apoptosis, affecting overall mitochondrial activity, or interfering with mitochondrial fusion. The mitochondrial fusion proteins, mitofusin 1 and 2 and Drp1(K38A), can counterbalance the GDAP1-dependent fission. GDAP1-specific knockdown by RNA interference results in a tubular mitochondrial morphology. GDAP1 truncations that are found in patients who have CMT are not targeted to mitochondria and have lost mitochondrial fragmentation activity. The latter activity also is reduced strongly for disease-associated GDAP1 point mutations. Our data indicate that an exquisitely tight control of mitochondrial dynamics, regulated by GDAP1, is crucial for the proper function of myelinated peripheral nerves.  相似文献   

9.
The salivary acinar cells have unique Ca2+ signaling machinery that ensures an extensive secretion. The agonist-induced secretion is governed by Ca2+ signals originated from the endoplasmic reticulum (ER) followed by a store-operated Ca2+ entry (SOCE). During tasting and chewing food a frequency of parasympathetic stimulation increases up to ten fold, entailing cells to adapt its Ca2+ machinery to promote ER refilling and ensure sustained SOCE by yet unknown mechanism. By employing a combination of fluorescent Ca2+ imaging in the cytoplasm and inside cellular organelles (ER and mitochondria) we described the role of mitochondria in adjustment of Ca2+ signaling regime and ER refilling according to a pattern of agonist stimulation. Under the sustained stimulation, SOCE is increased proportionally to the degree of ER depletion. Cell adapts its Ca2+ handling system directing more Ca2+ into mitochondria via microdomains of high [Ca2+] providing positive feedback on SOCE while intra-mitochondrial tunneling provides adequate ER refilling. In the absence of an agonist, the bulk of ER refilling occurs through Ca2+-ATPase-mediated Ca2+ uptake within subplasmalemmal space. In conclusion, mitochondria play a key role in the maintenance of sustained SOCE and adequate ER refilling by regulating Ca2+ fluxes within the cell that may represent an intrinsic adaptation mechanism to ensure a long-lasting secretion.  相似文献   

10.

Background

Oxidative stress increases the cytosolic content of calcium in the cytoplasm through a combination of effects on calcium pumps, exchangers, channels and binding proteins. In this study, oxidative stress was produced by exposure to tert-butyl hydroperoxide (tBHP); cell viability was assessed using a dye reduction assay; receptor binding was characterized using [3H]N-methylscopolamine ([3H]MS); and cytosolic and luminal endoplasmic reticulum (ER) calcium concentrations ([Ca2+]i and [Ca2+]L, respectively) were measured by fluorescent imaging.

Results

Activation of M3 muscarinic receptors induced a biphasic increase in [Ca2+]i: an initial, inositol trisphosphate (IP3)-mediated release of Ca2+ from endoplasmic reticulum (ER) stores followed by a sustained phase of Ca2+ entry (i.e., store-operated calcium entry; SOCE). Under non-cytotoxic conditions, tBHP increased resting [Ca2+]i; a 90 minute exposure to tBHP (0.5-10 mM ) increased [Ca2+]i from 26 to up to 127 nM and decreased [Ca2+]L by 55%. The initial response to 10 μM carbamylcholine was depressed by tBHP in the absence, but not the presence, of extracellular calcium. SOCE, however, was depressed in both the presence and absence of extracellular calcium. Acute exposure to tBHP did not block calcium influx through open SOCE channels. Activation of SOCE following thapsigargin-induced depletion of ER calcium was depressed by tBHP exposure. In calcium-free media, tBHP depressed both SOCE and the extent of thapsigargin-induced release of Ca2+ from the ER. M3 receptor binding parameters (ligand affinity, guanine nucleotide sensitivity, allosteric modulation) were not affected by exposure to tBHP.

Conclusions

Oxidative stress induced by tBHP affected several aspects of M3 receptor signaling pathway in CHO cells, including resting [Ca2+]i, [Ca2+]L, IP3 receptor mediated release of calcium from the ER, and calcium entry through the SOCE. tBHP had little effect on M3 receptor binding or G protein coupling. Thus, oxidative stress affects multiple aspects of calcium homeostasis and calcium dependent signaling.  相似文献   

11.
Mitochondria and peroxisomes can be fragmented by the process of fission. The fission machineries of both organelles share a set of proteins. GDAP1 is a tail‐anchored protein of mitochondria and induces mitochondrial fragmentation. Mutations in GDAP1 lead to Charcot‐Marie‐Tooth disease (CMT), an inherited peripheral neuropathy, and affect mitochondrial dynamics. Here, we show that GDAP1 is also targeted to peroxisomes mediated by the import receptor Pex19. Knockdown of GDAP1 leads to peroxisomal elongation that can be rescued by re‐expressing GDAP1 and by missense mutated forms found in CMT patients. GDAP1‐induced peroxisomal fission is dependent on the integrity of its hydrophobic domain 1, and on Drp1 and Mff, as is mitochondrial fission. Thus, GDAP1 regulates mitochondrial and peroxisomal fission by a similar mechanism. However, our results reveal also a more critical role of the amino‐terminal GDAP1 domains, carrying most CMT‐causing mutations, in the regulation of mitochondrial compared to peroxisomal fission.  相似文献   

12.
Store-operated calcium entry (SOCE) is the flow of calcium ions (Ca2+) into cells in response to the depletion of intracellular Ca2+ stores that reside predominantly in the endoplasmic reticulum (ER). The role of SOCE has been relatively well understood for non-excitable cells. It is mediated mostly by the ER Ca2+ sensor STIM1 and plasma membrane Ca2+ channel Orai1 and serves to sustain Ca2+ signaling and refill ER Ca2+ stores. In contrast, because of the complexity of Ca2+ influx mechanisms that are present in excitable cells, our knowledge about the function of neuronal SOCE (nSOCE) is still nascent. This review summarizes the available data on the molecular components of nSOCE and their relevance to neuronal signaling. We also present evidence of disturbances of nSOCE in neurodegenerative diseases (namely Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease) and traumatic brain injury. The emerging important role of nSOCE in neuronal physiology and pathology makes it a possible clinical target.  相似文献   

13.
Tubular aggregates are regular arrays of membrane tubules accumulating in muscle with age. They are found as secondary features in several muscle disorders, including alcohol- and drug-induced myopathies, exercise-induced cramps, and inherited myasthenia, but also exist as a pure genetic form characterized by slowly progressive muscle weakness. We identified dominant STIM1 mutations as a genetic cause of tubular-aggregate myopathy (TAM). Stromal interaction molecule 1 (STIM1) is the main Ca2+ sensor in the endoplasmic reticulum, and all mutations were found in the highly conserved intraluminal Ca2+-binding EF hands. Ca2+ stores are refilled through a process called store-operated Ca2+ entry (SOCE). Upon Ca2+-store depletion, wild-type STIM1 oligomerizes and thereby triggers extracellular Ca2+ entry. In contrast, the missense mutations found in our four TAM-affected families induced constitutive STIM1 clustering, indicating that Ca2+ sensing was impaired. By monitoring the calcium response of TAM myoblasts to SOCE, we found a significantly higher basal Ca2+ level in TAM cells and a dysregulation of intracellular Ca2+ homeostasis. Because recessive STIM1 loss-of-function mutations were associated with immunodeficiency, we conclude that the tissue-specific impact of STIM1 loss or constitutive activation is different and that a tight regulation of STIM1-dependent SOCE is fundamental for normal skeletal-muscle structure and function.  相似文献   

14.
T cell activation starts with formation of second messengers that release Ca2+ from the endoplasmic reticulum (ER) and thereby activate store-operated Ca2+ entry (SOCE), one of the essential signals for T cell activation. Recently, the steroidal 2-methoxyestradiol was shown to inhibit nuclear translocation of the nuclear factor of activated T cells (NFAT). We therefore investigated 2-methoxyestradiol for inhibition of Ca2+ entry in T cells, screened a library of 2-methoxyestradiol analogues, and characterized the derivative 2-ethyl-3-sulfamoyloxy-17β-cyanomethylestra-1,3,5(10)-triene (STX564) as a novel, potent and specific SOCE inhibitor. STX564 inhibits Ca2+ entry via SOCE without affecting other ion channels and pumps involved in Ca2+ signaling in T cells. Downstream effects such as cytokine expression and cell proliferation were also inhibited by both 2-methoxyestradiol and STX564, which has potential as a new chemical biology tool.  相似文献   

15.
Three decades ago, James W. Putney Jr. conceptualized the idea of store-operated calcium entry (SOCE) to explain how depletion of endoplasmic reticulum (ER) Ca2+ stores evokes Ca2+ influx across the plasma membrane. Since the publication of this highly influential idea, it is now established that SOCE is universal among non-excitable and probably even many types of excitable cells, and contributes to numerous effector functions impacting immunity, muscle contraction, and brain function. The molecules encoding SOCE, the STIM and Orai proteins, are now known and our understanding of how this pathway is activated in response to ER Ca2+ store depletion has advanced significantly. In this review, we summarize the current knowledge of how Orai1 channels are activated by STIM1, focusing on recent work supporting a hydrophobic gating mechanism for the opening of the Orai1 channel pore.  相似文献   

16.
An increase in the intracellular calcium ion concentration ([Ca2+]) impacts a diverse range of cell functions, including adhesion, motility, gene expression and proliferation. Elevation of intracellular calcium ion (Ca2+) regulates various cellular events after the stimulation of cells. Initial increase in Ca2+ comes from the endoplasmic reticulum (ER), intracellular storage space. However, the continuous influx of extracellular Ca2+ is required to maintain the increased level of Ca2+ inside cells. Store-operated Ca2+ entry (SOCE) manages this process, and STIM1, a newly discovered molecule, has a unique and essential role in SOCE. STIM1 can sense the exhaustion of Ca2+ in the ER, and activate the SOC channel in the plasma membrane, leading to the continuous influx of extracellular Ca2+. STIM1 senses the status of the intracellular Ca2+ stores via a luminal N-terminal Ca2+-binding EF-hand domain. Dissociation of Ca2+ from this domain induces the clustering of STIM1 to regions of the ER that lie close to the plasma membrane, where it regulates the activity of the store-operated Ca2+ channels/entry (calcium-release-activated calcium channels/entry). In this review, we summarize the mechanism by which STIM1 regulates SOCE, and also its role in the control of mast cell functions and allergic responses.  相似文献   

17.
Ca2+ signals through store-operated Ca2+ (SOC) channels, activated by the depletion of Ca2+ from the endoplasmic reticulum, regulate various physiological events. Orai1 is the pore-forming subunit of the Ca2+ release-activated Ca2+ (CRAC) channel, the best characterized SOC channel. Orai1 is activated by stromal interaction molecule (STIM) 1, a Ca2+ sensor located in the endoplasmic reticulum. Orai1 and STIM1 are crucial for SOC channel activation, but the molecular mechanisms regulating Orai1 function are not fully understood. In this study, we demonstrate that protein kinase C (PKC) suppresses store-operated Ca2+ entry (SOCE) by phosphorylation of Orai1. PKC inhibitors and knockdown of PKCβ both resulted in increased Ca2+ influx. Orai1 is strongly phosphorylated by PKC in vitro and in vivo at N-terminal Ser-27 and Ser-30 residues. Consistent with these results, substitution of endogenous Orai1 with an Orai1 S27A/S30A mutant resulted in increased SOCE and CRAC channel currents. We propose that PKC suppresses SOCE and CRAC channel function by phosphorylation of Orai1 at N-terminal serine residues Ser-27 and Ser-30.  相似文献   

18.
Mutations in the mitochondrial protein GDAP1 are the cause of Charcot-Marie-Tooth type 4A disease (CMT4A), a severe form of peripheral neuropathy associated with either demyelinating, axonal or intermediate phenotypes. GDAP1 is located in the outer mitochondrial membrane and it seems that may be related with the mitochondrial network dynamics. We are interested to define cell expression in the nervous system and the effect of mutations in mitochondrial morphology and pathogenesis of the disease. We investigated GDAP1 expression in the nervous system and dorsal root ganglia (DRG) neuron cultures. GDAP1 is expressed in motor and sensory neurons of the spinal cord and other large neurons such as cerebellar Purkinje neurons, hippocampal pyramidal neurons, mitral neurons of the olfactory bulb and cortical pyramidal neurons. The lack of GDAP1 staining in the white matter and nerve roots suggested that glial cells do not express GDAP1. In DRG cultures satellite cells and Schwann cells were GDAP1-negative. Overexpression of GDAP1-induced fragmentation of mitochondria suggesting a role of GDAP1 in the fission pathway of the mitochondrial dynamics. Missense mutations showed two different patterns: most of them induced mitochondrial fragmentation but the T157P mutation showed an aggregation pattern. Whereas null mutations of GDAP1 should be associated with loss of function of the protein, missense mutations may act through different pathogenic mechanisms including a dominant-negative effect, suggesting that different molecular mechanisms may underlay the pathogenesis of CMT4A.  相似文献   

19.
Acinar cell exocytosis requires spatiotemporal Ca2+ signals regulated through endoplasmic reticulum (ER) stores, Ca2+ATPases, and store-operated Ca2+ entry (SOCE). The secretory pathway Ca2+ATPase 2 (SPCA2) interacts with Orai1, which is involved in SOCE and store independent Ca2+ entry (SICE). However, in the pancreas, only a C-terminally truncated form of SPCA2 (termed SPAC2C) exists. The goal of this study was to determine if SPCA2C effects Ca2+ homeostasis in a similar fashion to the full-length SPCA2.Using epitope-tagged SPCA2C (SPCA2CFLAG) expressed in HEK293A cells and Fura2 imaging, cytosolic [Ca2+] was examined during SICE, SOCE and secretagogue-stimulated signaling. Exogenous SPCA2C expression increased resting cytosolic [Ca2+], Ca2+ release in response to carbachol, ER Ca2+ stores, and store-mediated and independent Ca2+ influx. Co-IP detected Orai1-SPCA2C interaction, which was altered by co-expression of STIM1. Importantly, SPCA2C's effects on store-mediated Ca2+ entry were independent of Orai1. These findings indicate SPCA2C influences Ca2+ homeostasis through multiple mechanisms, some of which are independent of Orai1, suggesting novel and possibly cell-specific Ca2+ regulation.  相似文献   

20.
3,3''-Diindolylmethane (DIM), a natural phytochemicals isolated from cruciferous vegetables, has been reported to inhibit human gastric cancer cells proliferation and induce cells apoptosis as well as autophagy, but its mechanisms are still unclear. Store-operated calcium entry (SOCE) is a main Ca2+ influx pathway in various of cancers, which is activated by the depletion of endoplasmic reticulum (ER) Ca2+ store. Stromal interaction molecular 1 (STIM1) is the necessary component of SOCE. In this study, we focus on to examine the regulatory mechanism of SOCE on DIM-induced death in gastric cancer. After treating the human BGC-823 and SGC-7901 gastric cancer cells with DIM, cellular proliferation was determined by MTT, apoptosis and autophagy were detected by flow cytometry or Hoechst 33342 staining. The expression levels of related proteins were evaluated by Western blotting. Free cytosolilc Ca2+ level was assessed by fluorescence monitoring under a laser scanning confocal microscope. The data have shown that DIM could significantly inhibit proliferation and induce apoptosis as well as autophagy in two gastric cancer cell lines. After DIM treatment, the STIM1-mediated SOCE was activated by upregulating STIM1 and decreasing ER Ca2+ level. Knockdown STIM1 with siRNA or pharmacological inhibition of SOCE attenuated DIM induced apoptosis and autophagy by inhibiting p-AMPK mediated ER stress pathway. Our data highlighted that the potential of SOCE as a promising target for treating cancers. Developing effective and selective activators targeting STIM1-mediated SOCE pathway will facilitate better therapeutic sensitivity of phytochemicals acting on SOCE in gastric cancer. Moreover, more research should be performed to validate the efficacy of combination chemotherapy of anti-cancer drugs targeting SOCE for clinical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号