首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: It is known that the visibility of patterns presented through stationary multiple slits is significantly improved by pattern movements. This study investigated whether this spatiotemporal pattern interpolation is supported by motion mechanisms, as opposed to the general belief that the human visual cortex initially analyses spatial patterns independent of their movements. RESULTS: Psychophysical experiments showed that multislit viewing could not be ascribed to such motion-irrelevant factors as retinal painting by tracking eye movements or an increase in the number of views by pattern movements. Pattern perception was more strongly impaired by the masking noise moving in the same direction than by the noise moving in the opposite direction, which indicates the direction selectivity of the pattern interpolation mechanism. A direction-selective impairment of pattern perception by motion adaptation also indicates the direction selectivity of the interpolation mechanism. Finally, the map of effective spatial frequencies, estimated by a reverse-correlation technique, indicates observers' perception of higher spatial frequencies, the recovery of which is theoretically impossible without the aid of motion information. CONCLUSIONS: These results provide clear evidence against the notion of separate analysis of pattern and motion. The visual system uses motion mechanisms to integrate spatial pattern information along the trajectory of pattern movement in order to obtain clear perception of moving patterns. The pattern integration mechanism is likely to be direction-selective filtering by V1 simple cells, but the integration of the local pattern information into a global figure should be guided by a higher-order motion mechanism such as MT pattern cells.  相似文献   

2.
Motor imagery, i.e., a mental state during which an individual internally represents an action without any overt motor output, is a potential tool to investigate action representation during development. Here, we took advantage of the inertial anisotropy phenomenon to investigate whether children can generate accurate motor predictions for movements with varying dynamics. Children (9 and 11 years), adolescents (14 years) and young adults (21 years) carried-out actual and mental arm movements in two different directions in the horizontal plane: rightwards (low inertia) and leftwards (high inertia). We recorded and compared actual and mental movement times. We found that actual movement times were greater for leftward than rightward arm movements in all groups. For mental movements, differences between leftward versus rightward movements were observed in the adults and adolescents, but not among the children. Furthermore, significant differences between actual and mental times were found at 9 and 11 years of age in the leftward direction. The ratio R/L (rightward direction/leftward direction), which indicates temporal differences between low inertia and high inertia movements, was inferior to 1 at all ages, except for the mental movements at 9 years of age, indicating than actual and mental movements were shorter for the rightward than leftward direction. Interestingly, while the ratio R/L of actual movements was constant across ages, it gradually decreased with age for mental movements. The ratio A/M (actual movement/mental movement), which indicates temporal differences between actual and mental movements, was near to 1 in the adults'' groups, denoting accurate mental timing. In children and adolescents, an underestimation of mental movement times appeared for the leftward movements only. However, this overestimation gradually decreased with age. Our results showed a refinement in the motor imagery ability during development. Action representation reached maturation at adolescence, during which mental actions were tightly related to their actual production.  相似文献   

3.
Acoustic telemetry was used to examine the size of daily activity space, small-scale movement patterns, and water quality preferences of juvenile bull sharks in the Caloosahatchee River, Florida. Movement pattern analysis included rate of movement, swimming depth, linearity, direction, tidal influence, diel pattern, and correlation with environmental variables. Manual tacking occurred before and after a large freshwater influx which divided the sharks into two groups based on movement patterns. The first group displayed increased rate of movement, distance traveled, and space utilization at night, and movements correlated with salinity, temperature, and dissolved oxygen. The second group had an increased rate of movement, distance traveled, and space utilization during the day, and movements correlated with temperature, dissolved oxygen, turbidity and pH. These juvenile bull sharks displayed distinct diel movement patterns that were influenced by physical factors, which may account for the distribution of this top-level predator in the Caloosahatchee River.  相似文献   

4.
Animal movements have been related to optimal foraging strategies where self-similar trajectories are central. Most of the experimental studies done so far have focused mainly on fitting statistical models to data in order to test for movement patterns described by power-laws. Here we show by analyzing over half a million movement displacements that isolated termite workers actually exhibit a range of very interesting dynamical properties –including Lévy flights– in their exploratory behaviour. Going beyond the current trend of statistical model fitting alone, our study analyses anomalous diffusion and structure functions to estimate values of the scaling exponents describing displacement statistics. We evince the fractal nature of the movement patterns and show how the scaling exponents describing termite space exploration intriguingly comply with mathematical relations found in the physics of transport phenomena. By doing this, we rescue a rich variety of physical and biological phenomenology that can be potentially important and meaningful for the study of complex animal behavior and, in particular, for the study of how patterns of exploratory behaviour of individual social insects may impact not only their feeding demands but also nestmate encounter patterns and, hence, their dynamics at the social scale.  相似文献   

5.
The study of butterfly movements has focused on dispersal behaviour in the framework of population persistence in heterogeneous landscapes. The ecological significance of routine movements has received less attention. These movements may be influenced by structural attributes of habitat patches or may reflect the distribution of food, mates, host plants or ecological interactions. The relative influence of structural and functional factors on flight patterns is poorly understood, partly because butterfly movements are often described by simplified representations of actual trajectories. Using high-resolution GPS tracking we obtained accurate trajectories of routine movements of Plebejus argus in a heterogeneous natural landscape. Habitat quality in patches was ranked according to the abundance of host and nectar plants as well as the abundance of nests of its mutualistic ant Lasius niger. Movements were slow and winding in high quality habitats whereas faster, straighter flights were observed in poor habitats. At edges, butterflies often crossed without any exploratory behaviour towards patches of better quality, suggesting they may use cues to detect resources at some distance. Conversely, individuals usually stayed in the patch after exploring edges with other patches of lower quality. However, scanning also preceded exits towards clearly unsuitable habitat, compatible with transfers to distant high-quality patches. We conclude that patterns of movement in P. argus were explained by spatial heterogeneity defined by functional rather than structural criteria. We also show that inexpensive handheld GPS receivers allow depicting detailed flying trajectories in open flat terrain revealing complex behavioural patterns.  相似文献   

6.
To form an accurate internal representation of visual space, the brain must accurately account for movements of the eyes, head or body. Updating of internal representations in response to these movements is especially important when remembering spatial information, such as the location of an object, since the brain must rely on non-visual extra-retinal signals to compensate for self-generated movements. We investigated the computations underlying spatial updating by constructing a recurrent neural network model to store and update a spatial location based on a gaze shift signal, and to do so flexibly based on a contextual cue. We observed a striking similarity between the patterns of behaviour produced by the model and monkeys trained to perform the same task, as well as between the hidden units of the model and neurons in the lateral intraparietal area (LIP). In this report, we describe the similarities between the model and single unit physiology to illustrate the usefulness of neural networks as a tool for understanding specific computations performed by the brain.  相似文献   

7.
Ryu YU  Buchanan JJ 《PloS one》2012,7(6):e38537
Visuomotor tracking tasks have been used to elucidate the underlying mechanisms that allow for the coordination of a movement to an environmental event. The main purpose of the present study was to examine the relationship between accuracy and stability of tracking performance and the amount of corrective movements that emerge for various coordination patterns in a unimanual visuomotor tracking task. Participants (N = 6) produced rhythmic elbow flexion-extension motions and were required to track an external sinusoidal signal at five different relative phases, 0°, 45°, 90°, 135°, and 180°. Differential accuracy and stability were found among the five tracking patterns with the 0° relative phase pattern being the most accurate and stable pattern. Corrective movements were correlated with changes in accuracy only for the 0° relative phase pattern, with more corrections emerging for less accurate performance. The amount of corrective movements decreased as the stability of tracking performance increased for the 0°, 45°, and 135° patterns. For the 90° and 180° tracking patterns, the amount of corrective movements was not correlated with pattern accuracy or pattern stability. The results demonstrate that corrective behaviors are an important motor process in maintaining the stability of stable perception-action coordination patterns, while offering little benefit for unstable perception-action patterns.  相似文献   

8.
Aim To demonstrate how the interrelations of individual movements form large‐scale population‐level movement patterns and how these patterns are associated with the underlying landscape dynamics by comparing ungulate movements across species. Locations Arctic tundra in Alaska and Canada, temperate forests in Massachusetts, Patagonian Steppes in Argentina, Eastern Steppes in Mongolia. Methods We used relocation data from four ungulate species (barren‐ground caribou, Mongolian gazelle, guanaco and moose) to examine individual movements and the interrelation of movements among individuals. We applied and developed a suite of spatial metrics that measure variation in movement among individuals as population dispersion, movement coordination and realized mobility. Taken together, these metrics allowed us to quantify and distinguish among different large‐scale population‐level movement patterns such as migration, range residency and nomadism. We then related the population‐level movement patterns to the underlying landscape vegetation dynamics via long‐term remote sensing measurements of the temporal variability, spatial variability and unpredictability of vegetation productivity. Results Moose, which remained in sedentary home ranges, and guanacos, which were partially migratory, exhibited relatively short annual movements associated with landscapes having very little broad‐scale variability in vegetation. Caribou and gazelle performed extreme long‐distance movements that were associated with broad‐scale variability in vegetation productivity during the peak of the growing season. Caribou exhibited regular seasonal migration in which individuals were clustered for most of the year and exhibited coordinated movements. In contrast, gazelle were nomadic, as individuals were independently distributed and moved in an uncoordinated manner that relates to the comparatively unpredictable (yet broad‐scale) vegetation dynamics of their landscape. Main conclusions We show how broad‐scale landscape unpredictability may lead to nomadism, an understudied type of long‐distance movement. In contrast to classical migration where landscapes may vary at broad scales but in a predictable manner, long‐distance movements of nomadic individuals are uncoordinated and independent from other such individuals. Landscapes with little broad‐scale variability in vegetation productivity feature smaller‐scale movements and allow for range residency. Nomadism requires distinct integrative conservation strategies that facilitate long‐distance movements across the entire landscape and are not limited to certain migration corridors.  相似文献   

9.

Background

The United Kingdom (UK) government has been recording the births, deaths, and movements of cattle for the last decade. Despite reservations about the accuracy of these data, they represent a large and valuable body of information about the demographics of the UK cattle herd and its contact structure. In this article, a range of demographic data about UK cattle, and particularly their movements, are presented, as well as yearly trends in the patterns of movements.

Results

A clear seasonal pattern is evident in the number of movements of cattle, as are the reductions in movement volume due to foot and mouth disease outbreaks in 2001 and 2007. The distribution of ages of cattle at their time of death is multimodal, and the impact of the over thirty months rule is marked. Most movements occur between agricultural holdings, markets, and slaughterhouses, and there is a non-random pattern to the types of holdings movements occur between. Most animals move only a short distance and a few times in their life. Most movements between any given pair of holdings only occurred once in the last 10 years, but about a third occurred between 2 and 10 times in that period. There is no clear trend to movement patterns in the UK since 2002.

Conclusions

Despite a substantial number of regulatory interventions during the last decade, movement patterns show no clear trend since 2002. The observed patterns in the repeatability of movements, the types of holdings involved in movements, the distances and frequencies of cattle movements, and the batch sizes involved give an insight into the structure of the UK cattle industry, and could act as the basis for a predictive model of livestock movements in the UK.  相似文献   

10.
There has long been a problem concerning the presence in the visual cortex of binocularly activated cells that are selective for vertical stimulus disparities because it is generally believed that only horizontal disparities contribute to stereoscopic depth perception. The accepted view is that stereoscopic depth estimates are only relative to the fixation point and that independent information from an extraretinal source is needed to scale for absolute or egocentric distance. Recently, however, theoretical computations have shown that egocentric distance can be estimated directly from vertical disparities without recourse to extraretinal sources. There has been little impetus to follow up these computations with experimental observations, because the vertical disparities that normally occur between the images in the two eyes have always been regarded as being too small to be of significance for visual perception and because experiments have consistently shown that our conscious appreciation of egocentric distance is rather crude and unreliable. Nevertheless, the veridicality of stereoscopic depth constancy indicates that accurate distance information is available to the visual system and that the information about egocentric distance and horizontal disparity are processed together so as to continually recalibrate the horizontal disparity values for different absolute distances. Computations show that the recalibration can be based directly on vertical disparities without the need for any intervening estimates of absolute distance. This may partly explain the relative crudity of our conscious appreciation of egocentric distance. From published data it has been possible to calculate the magnitude of the vertical disparities that the human visual system must be able to discriminate in order for depth constancy to have the observed level of veridicality. From published data on the induced effect it has also been possible to calculate the threshold values for the detection of vertical disparities by the visual system. These threshold values are smaller than those needed to provide for the recalibration of the horizontal disparities in the interests of veridical depth constancy. An outline is given of the known properties of the binocularly activated cells in the striate cortex that are able to discriminate and assess the vertical disparities. Experiments are proposed that should validate, or otherwise, the concepts put forward in this paper.  相似文献   

11.
Long‐distance seed dispersal influences many critical ecological processes by improving chances of gene flow and maintaining genetic diversity among plant populations. Accordingly, large‐scale movements by frugivores may have important conservation implications as they provide an opportunity for long‐distance seed dispersal. We studied movement patterns, resource tracking, and potential long‐distance seed dispersal by two species of Ceratogymna hornbills, the black‐casqued hornbill C. atrata, and the white‐thighed hornbill C. cylindricus, in lowland tropical forests of Cameroon. We determined fruiting phenology of 24 tree species important in hornbill diet at monthly intervals and compared these patterns to monthly hornbill census data. After capture and radio‐tagging of 16 hornbills, we used radio telemetry by vehicle and fixed wing aircraft to determine the extent of long‐distance movements. Hornbills exhibited up to 20‐fold changes in numbers in response to fruit availability in our 25 km2 study area. Also, hornbills made large‐scale movements up to 290 km, which are larger than any movement previously reported for large avian frugivores. Together, these observations provide direct evidence that hornbills are not resident and that hornbills track available fruit resources. Our results suggest that Ceratogymna hornbills embark on long‐distance movements, potentially dispersing seeds and contributing to rain forest regeneration and diversity.  相似文献   

12.
Stream-dwelling fish populations have long served as important models of animal movement. Populations of adult stream-dwelling fishes are generally composed of a mix of relatively sedentary and mobile individuals. However, we do not know whether this pattern that we typically observe among adults is indicative of patterns of movement that occur throughout the life cycle. Therefore, we do not know whether we can apply these patterns to understanding or predicting processes such as migration and thus the potential for the evolution of genetic differences among populations. We test the general hypothesis that patterns of movement throughout the life cycle are consistent with patterns of movement inferred by indirect genetic methods and, more specifically, that the characteristics of the mobile fraction of the population are consistent with patterns of genetic differentiation. We used parentage analyses to infer the movements of alevin brook charr (Salvelinus fontinalis) in Freshwater River, Newfoundland, Canada, and a capture-recapture study of one cohort in this population to infer movement throughout the rest of the life cycle. We found that alevins move large distances shortly after emergence, primarily in the downstream direction, and that the population is composed of a mix of relatively sedentary and mobile individuals throughout all other intervals of the life cycle. In contrast, when we considered movements of individuals first captured as juveniles and eventually recovered as reproductively mature adults, we found relatively large and uniform distributions of net movement distance. Thus, heterogeneity in individual movement of adults is not representative of patterns of movement throughout the life cycle and therefore may provide only limited inference of population-level processes such as gene flow.  相似文献   

13.
14.
The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips.  相似文献   

15.
Although much insight is to be gained through the comparison of the population genetic structures of parasites and hosts, there are, at present, few studies that take advantage of the information on vertebrate life histories available through the consideration of their parasites. Here, we examined the genetic structure of a colonial seabird, the black-legged kittiwake (Rissa tridactyla) using seven polymorphic microsatellite markers to make inferences about population functioning and intercolony dispersal. We sampled kittiwakes from 22 colonies across the species' range and, at the same time, collected individuals of one of its common ectoparasites, the tick Ixodes uriae. Parasites were genotyped at eight microsatellite markers and the population genetic structure of host and parasite were compared. Kittiwake populations are only genetically structured at large spatial scales and show weak patterns of isolation by distance. This may be due to long-distance dispersal events that erase local patterns of population subdivision. However, important additional information is gained by comparing results with those of the parasite. In particular, tick populations are strongly structured at regional scales and show a stepping-stone pattern of gene flow. Due to the parasite's life history, its population structure is directly linked to the frequency and spatial extent of within-breeding season movements of kittiwakes. The comparison of host and parasite gene flow therefore helps us to disentangle the intercolony movements of birds from that of true dispersal events (movement followed by reproduction). In addition, such data can provide essential elements for predicting the outcome of local co-evolutionary interactions.  相似文献   

16.
17.
Networks are rarely completely observed and prediction of unobserved edges is an important problem, especially in disease spread modeling where networks are used to represent the pattern of contacts. We focus on a partially observed cattle movement network in the U.S. and present a method for scaling up to a full network based on Bayesian inference, with the aim of informing epidemic disease spread models in the United States. The observed network is a 10% state stratified sample of Interstate Certificates of Veterinary Inspection that are required for interstate movement; describing approximately 20,000 movements from 47 of the contiguous states, with origins and destinations aggregated at the county level. We address how to scale up the 10% sample and predict unobserved intrastate movements based on observed movement distances. Edge prediction based on a distance kernel is not straightforward because the probability of movement does not always decline monotonically with distance due to underlying industry infrastructure. Hence, we propose a spatially explicit model where the probability of movement depends on distance, number of premises per county and historical imports of animals. Our model performs well in recapturing overall metrics of the observed network at the node level (U.S. counties), including degree centrality and betweenness; and performs better compared to randomized networks. Kernel generated movement networks also recapture observed global network metrics, including network size, transitivity, reciprocity, and assortativity better than randomized networks. In addition, predicted movements are similar to observed when aggregated at the state level (a broader geographic level relevant for policy) and are concentrated around states where key infrastructures, such as feedlots, are common. We conclude that the method generally performs well in predicting both coarse geographical patterns and network structure and is a promising method to generate full networks that incorporate the uncertainty of sampled and unobserved contacts.  相似文献   

18.
Moving objects change their position until signals from the photoreceptors arrive in the visual cortex. Nonetheless, motor responses to moving objects are accurate and do not lag behind the real-world position. The questions are how and where neural delays are compensated for. It was suggested that compensation is achieved within the visual system by extrapolating the position of moving objects. A visual illusion supports this idea: when a briefly flashed object is presented in the same position as a moving object, it appears to lag behind. However, moving objects do not appear ahead of their final or reversal points. We investigated a situation where participants localized the final position of a moving stimulus. Visual perception and short-term memory of the final target position were accurate, but reaching movements were directed toward future positions of the target beyond the vanishing point. Our results show that neuronal latencies are not compensated for at early stages of visual processing, but at a late stage when retinotopic information is transformed into egocentric space used for motor responses. The sensorimotor system extrapolates the position of moving targets to allow for precise localization of moving targets despite neuronal latencies.  相似文献   

19.
In guiding adaptive behavior, efference copy signals or corollary discharge are traditionally considered to serve as predictors of self-generated sensory inputs and by interfering with their central processing are able to counter unwanted consequences of an animal??s own actions. Here, in a speculative reflection on this issue, we consider a different functional role for such intrinsic predictive signaling, namely in stabilizing gaze during locomotion where resultant changes in head orientation in space require online compensatory eye movements in order to prevent retinal image slip. The direct activation of extraocular motoneurons by locomotor-related efference copies offers a prospective substrate for assisting self-motion derived sensory feedback, rather than being subtracted from the sensory signal to eliminate unwanted reafferent information. However, implementing such a feed-forward mechanism would be critically dependent on an appropriate phase coupling between rhythmic propulsive movement and resultant head/visual image displacement. We used video analyzes of actual locomotor behavior and basic theoretical modeling to evaluate head motion during stable locomotion in animals as diverse as Xenopus laevis tadpoles, teleost fish and horses in order to assess the potential suitability of spinal efference copies to the stabilization of gaze during locomotion. In all three species, and therefore regardless of aquatic or terrestrial environment, the head displacements that accompanied locomotor action displayed a strong correlative spatio-temporal relationship in correspondence with a potential predictive value for compensatory eye adjustments. Although spinal central pattern generator-derived efference copies offer appropriately timed commands for extraocular motor control during self-generated motion, it is likely that precise image stabilization requires the additional contributions of sensory feedback signals. Nonetheless, the predictability of the visual consequences of stereotyped locomotion renders intrinsic efference copy signaling an appealing mechanism for offsetting these disturbances, thus questioning the exclusive role traditionally ascribed to sensory-motor transformations in stabilizing gaze during vertebrate locomotion.  相似文献   

20.
Insects carry a pair of actively movable feelers that supply the animal with a range of multimodal information. The antennae of the stick insect Carausius morosus are straight and of nearly the same length as the legs, making them ideal probes for near-range exploration. Indeed, stick insects, like many other insects, use antennal contact information for the adaptive control of locomotion, for example, in climbing. Moreover, the active exploratory movement pattern of the antennae is context-dependent. The first objective of the present study is to reveal the significance of antennal contact information for the efficient initiation of climbing. This is done by means of kinematic analysis of freely walking animals as they undergo a tactually elicited transition from walking to climbing. The main findings are that fast, tactually elicited re-targeting movements may occur during an ongoing swing movement, and that the height of the last antennal contact prior to leg contact largely predicts the height of the first leg contact. The second objective is to understand the context-dependent adaptation of the antennal movement pattern in response to tactile contact. We show that the cycle frequency of both antennal joints increases after obstacle contact. Furthermore, inter-joint coupling switches distinctly upon tactile contact, revealing a simple mechanism for context-dependent adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号