首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Cancer spread to other organs is the main cause of death of oncological patients. Migration of cancer cells from a primary tumour is the crucial step in the complex process of metastasis, therefore blocking this process is currently the main treatment strategy. Metastasis inhibitors derived from natural products, such as, migrastatin, are very promising anticancer agents. Thus, the aim of our study was to investigate the effect of six migrastatin analogues (MGSTA-1 to 6) on migration and invasion of canine mammary adenocarcinoma cell lines isolated from primary tumours and their metastases to the lungs. Canine mammary tumours constitute a valuable tool for studying multiple aspect of human cancer.

Results

Our results showed that two of six fully synthetic analogues of migrastatin: MGSTA-5 and MGSTA-6 were potent inhibitors of canine mammary cancer cells migration and invasion. These data were obtained using the wound healing test, as well as trans-well migration and invasion assays. Furthermore, the treatment of cancer cells with the most effective compound (MGSTA-6) disturbed binding between filamentous F-actin and fascin1. Confocal microscopy analyses revealed that treatment with MGSTA-6 increased the presence of unbound fascin1 and reduced co-localization of F-actin and fascin1 in canine cancer cells. Most likely, actin filaments were not cross-linked by fascin1 and did not generate the typical filopodial architecture of actin filaments in response to the activity of MGSTA-6. Thus, administration of MGSTA-6 results in decreased formation of filopodia protrusions and stress fibres in canine mammary cancer cells, causing inhibition of cancer migration and invasion.

Conclusion

Two synthetic migrastatin analogues (MGSTA-5 and MGSTA-6) were shown to be promising compounds for inhibition of cancer metastasis. They may have beneficial therapeutic effects in cancer therapy in dogs, especially in combination with other anticancer drugs. However, further in vivo studies are required to verify this hypothesis.  相似文献   

2.
3.
4.
Canine inflammatory mammary cancer (IMC) shares epidemiologic, histopathological and clinical characteristics with the disease in humans and has been proposed as a natural model for human inflammatory breast cancer (IBC). The aim of this study was to characterize a new cell line from IMC (IPC-366) for the comparative study of both IMC and IBC. Tumors cells from a female dog with clinical IMC were collected. The cells were grown under adherent conditions. The growth, cytological, ultrastructural and immunohistochemical (IHC) characteristics of IPC-366 were evaluated. Ten female Balb/SCID mice were inoculated with IPC-366 cells to assess their tumorigenicity and metastatic potential. Chromosome aberration test and Karyotype revealed the presence of structural aberration, numerical and neutral rearrangements, demonstrating a chromosomal instability. Microscopic examination of tumor revealed an epithelial morphology with marked anysocytosis. Cytological and histological examination of smears and ultrathin sections by electron microscopy revealed that IPC-366 is formed by highly malignant large round or polygonal cells characterized by marked atypia and prominent nucleoli and frequent multinucleated cells. Some cells had cytoplasmic empty spaces covered by cytoplasmic membrane resembling capillary endothelial cells, a phenomenon that has been related to s vasculogenic mimicry. IHC characterization of IPC-366 was basal-like: epithelial cells (AE1/AE3+, CK14+, vimentin+, actin-, p63-, ER-, PR-, HER-2, E-cadherin, overexpressed COX-2 and high Ki-67 proliferation index (87.15 %). At 2 weeks after inoculating the IPC-366 cells, a tumor mass was found in 100 % of mice. At 4 weeks metastases in lung and lymph nodes were found. Xenograph tumors maintained the original IHC characteristics of the female dog tumor. In summary, the cell line IPC-366 is a fast growing malignant triple negative cell line model of inflammatory mammary carcinoma that can be used for the comparative study of both IMC and IBC.  相似文献   

5.
6.
7.
RBP2 has been found to actively participate in cancer progression. It inhibits the senescence of cancer cells, mediates cancer cell proliferation and promotes cancer metastasis. It is also essential to drug tolerance. However, the effects of RBP2 on epithelial-mesenchymal transition are still unknown. In this study, we analyzed the effects of RBP2 on epithelial-mesenchymal transition in non-small cell lung cancer. The results showed that RBP2 down-regulated the expression of E-cadherin by inhibiting the promoter activity of E-cadherin and up-regulated the expression of N-cadherin and snail via the activation of Akt signaling, and the overexpression of RBP2 induced epithelial-mesenchymal transition in non-small cell lung cancer cells. Our study further indicated thatRBP2 may be a potential target for anti-lung cancer therapy.  相似文献   

8.
9.
蛋白酶体抑制剂MG132诱导人白血病细胞K562和宫颈癌细胞HeLa凋亡,用3个不同浓度的蛋白酶体抑制剂MG132处理人白血病细胞K562和宫颈癌细胞HeLa,通过MTT检测、annexin Ⅴ/ PI 双染法、流式细胞术、酶标仪和Western 印迹分别检测MG132对K562细胞和HeLa细胞的生长效应、细胞凋亡率、细胞内活性氧(ROS)水平和caspase-3活性变化的影响.蛋白酶体抑制剂MG132诱导K562细胞凋亡明显,对HeLa细胞诱导凋亡不明显.结果表明,蛋白酶体抑制剂MG132特异性诱导不同肿瘤细胞凋亡的程度存在明显差异.  相似文献   

10.
Cell-swelling, induced by a hyposmotic challenge, stimulated the efflux of L-carnitine from a human mammary cancer cell line, MDA-MB-231. The response was dependent upon the extent of the osmotic shock. Hyposmotically-activated L-carnitine efflux was inhibited by the anion transport blocker diiodosalicylate. The efflux of taurine from MDA-MB-231 cells was also stimulated by a hyposmotic shock via a pathway sensitive to diiodosalicylate. L-carnitine efflux from MDA-MB-231 cells was stimulated by isosmotic swelling in a manner which was inhibited by diiodosalicylate. The results suggest that L-carnitine may exit cells via a volume-sensitive pathway: it is possible that L-carnitine efflux may utilize the same pathway as amino acids. The efflux of L-carnitine via this route could have a major effect on the intracellular concentration of L-carnitine and could facilitate transepithelial L-carnitine transport.  相似文献   

11.
Transgelin is a protein reported to be a marker of several cancers. However, previous studies have shown both up‐ and down‐regulation of transgelin in tumors when compared with non‐tumor tissues and the mechanisms whereby transgelin may affect the development of cancer remain largely unknown. Transgelin is especially abundant in smooth muscle cells and is associated with actin stress fibers. These contractile structures participate in cell motility, adhesion, and the maintenance of cell morphology. Here, the role of transgelin in breast cancer is focused on. Initially, the effects of transgelin on cell migration of the breast cancer cell lines, BT 549 and PMC 42, is studied. Interestingly, transgelin silencing increased the migration of PMC 42 cells, but decreased the migration of BT 549 cells. To clarify these contradictory results, the changes in protein abundances after transgelin silencing in these two cell lines are analyzed using quantitative proteomics. The results confirmed the role of transgelin in the migration of BT 549 cells and suggest the involvement of transgelin in apoptosis and small molecule biochemistry in PMC 42 cells. The context‐dependent function of transgelin reflects the different molecular backgrounds of these cell lines, which differ in karyotypes, mutation statuses, and proteome profiles.  相似文献   

12.
Glycogen synthase kinase 3α/β (GSK3α/β) is a constitutively active serine/threonine kinase involved in multiple physiological processes, such as protein synthesis, stem cell maintenance and apoptosis, and acts as a key suppressor of the Wnt-β-catenin pathway. In the present study, we examined the therapeutic potential of a novel GSK3 inhibitor, CG0009, in the breast cancer cell lines, BT549, HS578T, MDA-MB-231, NCI/ADR-RES, T47D, MCF7 and MDA-MB-435, from the NCI-60 cancer cell line panel. Assessment of cytotoxicity, apoptosis and changes in estrogen-signaling proteins was performed using cell viability assays, Western blotting and quantitative real-time PCR. CG0009 enhanced the inactivating phosphorylation of GSK3α at Ser21 and GSK3β at Ser9 and simultaneously decreased activating phosphorylation of GSK3β at Tyr216, and induced caspase-dependent apoptosis independently of estrogen receptor α (ERα) expression status, which was not observed with the other GSK3 inhibitors examined, including SB216763, kenpaullone and LiCl. CG0009 treatment (1 µmol/L) completely ablated cyclin D1 expression in a time-dependent manner in all the cell lines examined, except T47D. CG0009 alone significantly activated p53, leading to relocation of p53 and Bax to the mitochondria. GSK3 inhibition by CG0009 led to slight upregulation of the β-catenin target genes, c-Jun and c-Myc, but not cyclin D1, indicating that CG0009-mediated cyclin D1 depletion overwhelms the pro-survival signal of β-catenin, resulting in cell death. Our findings suggest that the novel GSK3 inhibitor, CG0009, inhibits breast cancer cell growth through cyclin D1 depletion and p53 activation, and may thus offer an innovative therapeutic approach for breast cancers resistant to hormone-based therapy.  相似文献   

13.
L Liu  H Beck  X Wang  HP Hsieh  RP Mason  X Liu 《PloS one》2012,7(8):e43314
BPR0L075, 6-methoxy-3-(3',4',5'-trimethoxy-benzoyl)-1H-indole, is a tubulin-binding agent that inhibits tubulin polymerization by binding to the colchicine-binding site. BPR0L075 has shown antimitotic and antiangiogenic activity in vitro. The current study evaluated the vascular-disrupting activity of BPR0L075 in human breast cancer mammary fat pad xenografts using dynamic bioluminescence imaging. A single dose of BPR0L075 (50 mg/kg, intraperitoneally (i.p.)) induced rapid, temporary tumor vascular shutdown (at 2, 4, and 6 hours); evidenced by rapid and reproducible decrease of light emission from luciferase-expressing orthotopic MCF7 and MDA-MB-231 breast tumors after administration of luciferin substrate. A time-dependent reduction of tumor perfusion after BPR0L075 treatment was confirmed by immunohistological staining of the perfusion marker Hoechst 33342 and tumor vasculature marker CD31. The vasculature showed distinct recovery within 24 hours post therapy. A single i.p. injection of 50 mg/kg of BPR0L075 initially produced plasma concentrations in the micromolar range within 6 hours, but subsequent drug distribution and elimination caused BPR0L075 plasma levels to drop rapidly into the nanomolar range within 24 h. Tests with human umbilical vein endothelial (HUVEC) cells and tumor cells in culture showed that BPR0L075 was cytotoxic to both tumor cells and proliferating endothelial cells, and disrupted pre-established vessels in vitro and ex vivo. In conclusion, BPR0L075 caused rapid, albeit, temporary tumor vascular shutdown and led to reduction of tumor perfusion in orthotopic human breast cancer xenografts, suggesting that this antimitotic agent may be useful as a vascular-disrupting cancer therapy.  相似文献   

14.
15.
为探讨原花青素对人胃癌SGC-7901细胞增殖及凋亡的影响及其可能的作用机制,以体外培养的SGC-7901细胞为研究对象,经一定浓度的原花青素作用后,用MTT法及流式细胞仪检测细胞增殖抑制及凋亡情况,Real-time PCR技术及免疫组化法检测Bcl-2、Bax mRNA和相关蛋白表达的含量。结果表明,不同浓度的原花青素不仅能有效抑制SGC-7901细胞增殖,还可诱导细胞凋亡,且抑制增殖及促进凋亡作用呈浓度和时间依耐性;Real-time PCR及免疫组化试验中显示,随着原花青素浓度的增加,Bcl-2mRNA及相应蛋白表达逐渐减少,Bax mRNA和相关蛋白表达逐渐增加。因此,原花青素对人胃癌SGC-7901细胞具有明显的抑制作用,其作用机制可能与上调Bcl-2蛋白和下调Bax蛋白水平有关。  相似文献   

16.

Background

Cancer metastasis is the main cause leading to disease recurrence and high mortality in cancer patients. Therefore, inhibiting metastasis process or killing metastatic cancer cells by inducing apoptosis is of clinical importance in improving cancer patient survival. Previous studies revealed that fucoidan, a fucose-rich polysaccharide isolated from marine brown alga, is a promising natural product with significant anti-cancer activity. However, little is known about the role of endoplasmic reticulum (ER) stress in fucoidan-induced cell apoptosis.

Principal Findings

We reported that fucoidan treatment inhibits cell growth and induces apoptosis in cancer cells. Fucoidan treatments resulted in down-regulation of the glucose regulated protein 78 (GRP78) in the metastatic MDA-MB-231 breast cancer cells, and of the ER protein 29 (ERp29) in the metastatic HCT116 colon cancer cells. However, fucoidan treatment promoted ER Ca2+-dependent calmodulin-dependent kinase II (CaMKII) phosphorylation, Bcl-associated X protein (Bax) and caspase 12 expression in MDA-MB-231 cells, but not in HCT116 cells. In both types of cancer cells, fucoidan activated the phosphorylation of eukaryotic initiation factor 2 alpha (p-eIF2α)\CCAAT/enhancer binding protein homologous protein (CHOP) pro-apoptotic cascade and inhibited the phosphorylation of inositol-requiring kinase 1 (p-IRE-1)\X-box binding proteins 1 splicing (XBP-1s) pro-survival cascade. Furthermore, CHOP knockdown prevented DNA damage and cell death induced by fucoidan.

Conclusion/Significance

Fucoidan exerts its anti-tumor function by modulating ER stress cascades. Contribution of ER stress to the fucoidan-induced cell apoptosis augments our understanding of the molecular mechanisms underlying its anti-tumour activity and provides evidence for the therapeutic application of fucoidan in cancer.  相似文献   

17.
Aberrant expression of microRNA-146a (miR-146a) has been reported to be involved in the development and progression of various types of cancers. However, its role in non-small cell lung cancer (NSCLC) has not been elucidated. The aim of this study was to investigate the contribution of miR-146a to various aspects of the malignant phenotype of human NSCLCs. In functional experiments, miR-146a suppressed cell growth, induced cellular apoptosis and inhibited EGFR downstream signaling in five NSCLC cell lines (H358, H1650, H1975, HCC827 and H292). miR-146a also inhibited the migratory capacity of these NSCLC cells. On the other hand, miR-146a enhanced the inhibition of cell proliferation by drugs targeting EGFR, including both TKIs (gefitinib, erlotinib, and afatinib) and a monoclonal antibody (cetuximab). These effects were independent of the EGFR mutation status (wild type, sensitizing mutation or resistance mutation), but were less potent compared to the effects of siRNA targeting of EGFR. Our results suggest that these effects of miR-146a are due to its targeting of EGFR and NF-κB signaling. We also found, in clinical formalin fixed paraffin embedded (FFPE) lung cancer samples, that low expression of miR-146a was correlated with advanced clinical TNM stages and distant metastasis in NSCLC (P<0.05). The patients with high miR-146a expression in their tumors showed longer progression-free survival (25.6 weeks in miR-146a high patients vs. 4.8 weeks in miR-146a low patients, P<0.05). miR-146a is therefore a strong candidate prognostic biomarker in NSCLC. Thus inducing miR-146a might be a therapeutic strategy for NSCLC.  相似文献   

18.
19.
20.
In addition to inducing apoptosis, caspase inhibition contributes to necroptosis and/or autophagy depending on the cell type and cellular context. In macrophages, necroptosis can be induced by co-treatment with Toll-like receptor (TLR) ligands (lipopolysaccharide [LPS] for TLR4 and polyinosinic-polycytidylic acid [poly I:C] for TLR3) and a cell-permeable pan-caspase inhibitor zVAD. Here, we elucidated the signaling pathways and molecular mechanisms of cell death. We showed that LPS/zVAD- and poly I:C/zVAD-induced cell death in bone marrow-derived macrophages (BMDMs) was inhibited by receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 and autophagy inhibitor 3-methyladenine. Electron microscopic images displayed autophagosome/autolysosomes, and immunoblotting data revealed increased LC3II expression. Although zVAD did not affect LPS- or poly I:C-induced activation of IKK, JNK, and p38, it enhanced IRF3 and STAT1 activation as well as type I interferon (IFN) expression. In addition, zVAD inhibited ERK and Akt phosphorylation induced by LPS and poly I:C. Of note, zVAD-induced enhancement of the IRF3/IFN/STAT1 axis was abolished by necrostatin-1, while zVAD-induced inhibition of ERK and Akt was not. Our data further support the involvement of autocrine IFNs action in reactive oxygen species (ROS)-dependent necroptosis, LPS/zVAD-elicited ROS production was inhibited by necrostatin-1, neutralizing antibody of IFN receptor (IFNR) and JAK inhibitor AZD1480. Accordingly, both cell death and ROS production induced by TLR ligands plus zVAD were abrogated in STAT1 knockout macrophages. We conclude that enhanced TRIF-RIP1-dependent autocrine action of IFNβ, rather than inhibition of ERK or Akt, is involved in TLRs/zVAD-induced autophagic and necroptotic cell death via the JAK/STAT1/ROS pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号