首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron availability is a key determinant of virulence in the pathogenic fungus Cryptococcus neoformans. Previous work revealed that the ESCRT (endosomal sorting complex required for transport) protein Vps23 functions in iron acquisition, capsule formation and virulence. Here, we further characterized the ESCRT machinery to demonstrate that defects in the ESCRT‐II and III complexes caused reduced capsule attachment, impaired growth on haem and resistance to non‐iron metalloprotoporphyrins. The ESCRT mutants shared several phenotypes with a mutant lacking the pH‐response regulator Rim101, and in other fungi, the ESCRT machinery is known to activate Rim101 via proteolytic cleavage. We therefore expressed a truncated and activated version of Rim101 in the ESCRT mutants and found that this allele restored capsule formation but not growth on haem, thus suggesting a Rim101‐independent contribution to haem uptake. We also demonstrated that the ESCRT machinery acts downstream of the cAMP/protein kinase A pathway to influence capsule elaboration. Defects in the ESCRT components also attenuated virulence in macrophage survival assays and a mouse model of cryptococcosis to a greater extent than reported for loss of Rim101. Overall, these results indicate that the ESCRT complexes function in capsule elaboration, haem uptake and virulence via Rim101‐dependent and independent mechanisms.  相似文献   

2.
3.
A conserved pathway, called Rim or Pal, transduces the ambient pH signal in ascomycetous yeasts and fungi, respectively. This pathway requires most of the components of the endosomal sorting complex required for transport (ESCRT) pathway. In the yeast Yarrowia lipolytica, a functional analysis of the ESCRT-I subunit Vps23 was carried out by in-frame deletions of each of the conserved domains to test whether Vps23 functions in the Rim and ESCRT pathways could be separated. These two pathways were shown to necessitate both the coiled-coil domain and the C-terminal steadiness box. However, the central proline-rich region seems to be required for neither of them. Both pathways involve the N-terminal ubiquitin E2 variant (UEV) domain. Thus, identical domains of YlVps23 are required for both Rim and ESCRT pathways, but the UEV domain was shown to bind the arrestin-like protein Rim8/PalF in the Rim pathway, whereas it binds Vps27 in the ESCRT pathway. Vps23 is therefore required to link pH signalling and endocytosis.  相似文献   

4.
5.
6.
7.
8.
Fungi are exposed to broadly fluctuating environmental conditions, to which adaptation is crucial for their survival. An ability to respond to a wide pH range, in particular, allows them to cope with rapid changes in their extracellular settings. PacC/Rim signaling elicits the primary pH response in both model and pathogenic fungi and has been studied in multiple fungal species. In the predominant human pathogenic fungi, namely, Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, this pathway is required for many functions associated with pathogenesis and virulence. Aspects of this pathway are fungus specific and do not exist in mammalian cells. In this review, we highlight recent advances in our understanding of PacC/Rim-mediated functions and discuss the growing interest in this cascade and its factors as potential drug targets for antifungal strategies. We focus on both conserved and distinctive features in model and pathogenic fungi, highlighting the specificities of PacC/Rim signaling in C. albicans, A. fumigatus, and C. neoformans. We consider the role of this pathway in fungal virulence, including modulation of the host immune response. Finally, as now recognized for other signaling cascades, we highlight the role of pH in adaptation to antifungal drug pressure. By acting on the PacC/Rim pathway, it may therefore be possible (i) to ensure fungal specificity and to limit the side effects of drugs, (ii) to ensure broad-spectrum efficacy, (iii) to attenuate fungal virulence, (iv) to obtain additive or synergistic effects with existing antifungal drugs through tolerance inhibition, and (v) to slow the emergence of resistant mutants.  相似文献   

9.
10.
11.
12.
Yarrowia lipolytica is a dimorphic fungus that secretes either an acidic or an alkaline protease depending on the environmental pH. Previous results have indicated that secretion of the alkaline protease is under control of the pH signaling Pal/Rim pathway originally described in Aspergillus nidulans. Several Y. lipolytica mutants defective in some Rim components of this pathway have been previously isolated and the RIM genes characterized. In the present study, Y. lipolytica RIM9 (palI) gene (YlRIM9) was sequenced from a plasmid (AL414126) of the Genolevures project (the DNA sequence data for YlRIM9 gene has been deposited at EMBL with accession number AJ566902). The derived translation product contains 724 amino acids with a predicted signal peptide and four transmembrane domains in its N-terminal region. We demonstrated that mutation in YlRIM9, as well as in other genes encoding members of the Pal/Rim pathway, did not affect the pH-dependent dimorphic transition of Y. lipolytica. A different pathway must exist in this fungus that controls the effect of pH on dimorphism.  相似文献   

13.
External alkalization activates the Rim101 pathway in Saccharomyces cerevisiae. In this pathway, three integral membrane proteins, Rim21, Dfg16, and Rim9, are considered to be the components of the pH sensor machinery. However, how these proteins are involved in pH sensing is totally unknown. In this work, we investigated the localization, physical interaction, and interrelationship of Rim21, Dfg16, and Rim9. These proteins were found to form a complex and to localize to the plasma membrane in a patchy and mutually dependent manner. Their cellular level was also mutually dependent. In particular, the Rim21 level was significantly decreased in dfg16Δ and rim9Δ cells. Upon external alkalization, the proteins were internalized and degraded. We also demonstrate that the transient degradation of Rim21 completely suppressed the Rim101 pathway but that the degradation of Dfg16 or Rim9 did not. This finding strongly suggests that Rim21 is the pH sensor protein and that Dfg16 and Rim9 play auxiliary functions through maintaining the level of Rim21 and assisting in its plasma membrane localization. Even without external alkalization, the Rim101 pathway was activated in a Rim21-dependent manner by either protonophore treatment or depletion of phosphatidylserine in the inner leaflet of the plasma membrane, both of which caused plasma membrane depolarization like the external alkalization. Therefore, plasma membrane depolarization seems to be one of the key signals for the pH sensor molecule Rim21.  相似文献   

14.
15.
16.
17.
In yeast, external alkalization and alteration in plasma membrane lipid asymmetry are sensed by the Rim101 pathway. It is currently under debate whether the signal elicited by external alkalization is transduced to downstream molecules at the plasma membrane or via endocytosis of the Rim21 sensor protein at the late endosome. We found that the downstream molecules, including arrestin-related protein Rim8, calpain-like protein Rim13, and scaffold protein Rim20, accumulated at the plasma membrane upon external alkalization and that the accumulation was dependent on Rim21. Snf7, an endosomal sorting complex required for transport (ESCRT) III subunit also essential for the Rim101 pathway, localized to the plasma membrane, in addition to the late endosome, under alkaline conditions. Snf7 at the plasma membrane but not at the late endosome was shown to be involved in Rim101 signaling. In addition, the Rim101 pathway was normally activated, even when endocytosis was severely impaired. Considering this information as a whole, we propose that Rim101 signaling proceeds at the plasma membrane. We also found that activity of the Rsp5 ubiquitin ligase was required for recruiting the downstream molecules to the plasma membrane, suggesting that ubiquitination mediates Rim101 signaling at the plasma membrane.  相似文献   

18.
Dongmei Ma  Ruoyu Li 《Mycopathologia》2013,175(1-2):13-23
Aspergillus fumigatus is an important opportunistic fungal pathogen that causes lethal systemic invasive aspergillosis. It must be able to adapt to stress in the microenvironment during host invasion and systemic spread. The high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) signaling pathway is a key element that controls adaptation to environmental stress. It plays a critical role in the virulence of several fungal pathogens. In this review, we summarize the current knowledge about the functions of different components of the HOG-MAPK pathway in A. fumigatus through mutant analysis or inferences from the genome annotation, focusing on their roles in adaptation to stress, regulation of infection-related morphogenesis, and effect on virulence. We also briefly compare the functions of the HOG pathway in A. fumigatus with those in the model fungi Saccharomyces cerevisiae and Aspergillus nidulans as well as several other human and plant pathogens including Candida albicans, Cryptococcus neoformans, and Magnaporthe oryzae. The genes described in this review mainly include tcsB, fos1, skn7, sho1, pbs2, and sakA whose deletion mutants have already been established in A. fumigatus. Among them, fos1 has been considered a virulence factor in A. fumigatus, indicating that components of the HOG pathway may be suitable as targets for developing new fungicides. However, quite a few of the genes of this pathway, such as sskA (ssk1), sskB, steC, and downstream regulator genes, are not well characterized. System biology approaches may contribute to a more comprehensive understanding of HOG pathway functions with dynamic details.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号