首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Numb is an evolutionary conserved protein that plays critical roles in cell fate determination, cell adhesion, cell migration and a number of signaling pathways, but evidence for a substantial involvement of Numb in HCC has remained unclear. The present study was aimed to investigate the clinical and prognostic significance of Numb and its role in hepatocellular carcinoma (HCC).

Methodology

The expression of Numb was detected in 107 cases of clinical paraffin-embedded hepatocellular carcinoma tissues,5 matched paris of fresh tissues and six hepatocellular cell lines by immunohistochemistry with clinicopathological analyses,RT-PCR or Western blot. Moreover, loss of function and gain of function assays were performed to evaluate the effect of Numb on cell proliferation in vitro.

Conclusions

We found that Numb was obviously up-regulated in HCC tissues and cell lines (p<0.05). The Numb up-regulation correlated significantly with poor prognosis, and Numb status was identified as an independent prognostic factor. Over-expression of Numb increased proliferation in SMMC-7721 and BEL-7402 cells, while knock-down of Numb showed the opposite effect. Our study indicates that Numb up-regulation significantly correlates with cell proliferation and poor prognosis in hepatocellular carcinoma patients. It may be a useful biomarker for therapeutic strategy in hepatocellular carcinoma treatment.  相似文献   

2.

Background

The members of inhibitor of apoptosis proteins (IAPs) family are key negative regulators of apoptosis. Overexpression of IAPs are found in hepatocellular carcinoma (HCC), and can contribute to chemotherapy resistance and recurrence of HCC. Small-molecule Second mitochondria-derived activator of caspases (Smac) mimetics have recently emerged as novel anticancer drugs through targeting IAPs. The specific aims of this study were to 1) examine the anticancer activity of Smac mimetics as a single agent and in combination with chemotherapy in HCC cells, and 2) investigate the mechanism of anticancer action of Smac mimetics.

Methods

Four HCC cell lines, including SMMC-7721, BEL-7402, HepG2 and Hep3B, and 12 primary HCC cells were used in this study. Smac mimetic SM-164 was used to treat HCC cells. Cell viability, cell death induction and clonal formation assays were used to evaluate the anticancer activity. Western blotting analysis and a pancaspase inhibitor were used to investigate the mechanisms.

Results

Although SM-164 induced complete cIAP-1 degradation, it displayed weak inhibitory effects on the viability of HCC cells. Nevertheless, SM-164 considerably potentiated Apo2 ligand or TNF-related apoptosis-inducing ligand (APO2L/TRAIL)- and Doxorubicin-mediated anticancer activity in HCC cells. Mechanistic studies demonstrated that SM-164 in combination with chemotherapeutic agents resulted in enhanced activation of caspases-9, -3 and cleavage of poly ADP-ribose polymerase (PARP), and also led to decreased AKT activation.

Conclusions

Smac mimetics can enhance chemotherapeutic-mediated anticancer activity by enhancing apoptosis signaling and suppressing survival signaling in HCC cells. This study suggests Smac mimetics are potential therapeutic agents for HCC.  相似文献   

3.
4.
5.

Background

Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor involved in receptor-mediated endocytosis and cell signaling. The aim of this study was to elucidate the expression and mechanism of LRP1 in hepatocellular carcinoma (HCC).

Methods

LRP1 expression in 4 HCC cell lines and 40 HCC samples was detected. After interruption of LRP1 expression in a HCC cell line either with specific lentiviral-mediated shRNA LRP1 or in the presence of the LRP1-specific chaperone, receptor-associated protein (RAP), the role of LRP1 in the migration and invasion of HCC cells was assessed in vivo and in vitro, and the expression of matrix metalloproteinase (MMP) 9 in cells and the bioactivity of MMP9 in the supernatant were assayed. The expression and prognostic value of LRP1 were investigated in 327 HCC specimens.

Results

Low LRP1 expression was associated with poor HCC prognosis, with low expression independently related to shortened overall survival and increased tumor recurrence rate. Expression of LRP1 in non-recurrent HCC samples was significantly higher than that in early recurrent samples. LRP1 expression in HCC cell lines was inversely correlated with their metastatic potential. After inhibition of LRP1, low-metastatic SMCC-7721 cells showed enhanced migration and invasion and increased expression and bioactivity of MMP9. Correlation analysis showed a negative correlation between LRP1 and MMP9 expression in HCC patients. The prognostic value of LRP1 expression was validated in the independent data set.

Conclusions

LRP1 modulated the level of MMP9 and low level of LRP1 expression was associated with aggressiveness and invasiveness in HCCs. LRP1 offered a possible strategy for tumor molecular therapy.  相似文献   

6.
Wang Y  Sun DQ  Liu DG 《PloS one》2011,6(1):e16543

Background

Since the end of last century, RNAs from the 3′untranslated region (3′UTR) of several eukaryotic mRNAs have been found to exert tumor suppression activity when introduced into malignant cells independent of their whole mRNAs. In this study, we sought to determine the molecular mechanism of the tumor suppression activity of a short RNA from 3′UTR of C/EBPβ mRΝΑ (C/EBPβ 3′UTR RNA) in human hepatocarcinoma cells SMMC-7721.

Methodology/Principal Findings

By using Western blotting, immunocytochemistry, molecular beacon, confocal microscopy, protein kinase inhibitors and in vitro kinase assays, we found that, in the C/EBPβ 3′UTR-transfectant cells of SMMC-7721, the overexpressed C/EBPβ 3′UTR RNA induced reorganization of keratin 18 by binding to this keratin; that the C/EBPβ 3′UTR RNA also reduced phosphorylation and expression of keratin 18; and that the enzyme responsible for phosphorylating keratin 18 is protein kinase Cε. We then found that the C/EBPβ 3′UTR RNA directly inhibited the phosphorylating activity of protein kinase Cε; and that C/EBPβ 3′UTR RNA specifically bound with the protein kinase Cε-keratin 18 conjugate.

Conclusion/Significance

Together, these facts suggest that the tumor suppression in SMMC-7721 by C/EBPβ 3′UTR RNA is due to the inhibition of protein kinase Cε activity through direct physical interaction between C/EBPβ 3′UTR RNA and protein kinase Cε. These facts indicate that the 3′UTR of some eukaryotic mRNAs may function as regulators for genes other than their own.  相似文献   

7.
8.

Background

Defects of the growth arrest DNA damage-inducible gene 45β (Gadd45β) play an important role in the progression of tumor and confer resistance to chemotherapy. However, the role of Gadd45β in the apoptosis of hepatocellular carcinoma is still not clear. Purpose of this study was to explore the effect of Gadd45β on the apoptosis of liver cancer cells, and the possible mechanism was examined.

Result

In this study, we first confirmed the decreased expression of Gadd45β in human liver cancer tissues and human liver cancer cell lines, when compared to the peri-tumor liver tissue and normal liver cells. And, it was found that Gadd45β could inhibit the stemness of liver cancer cells, enhancing the apoptosis of cancer cells induced by chemotherapy. Furthermore, the results showed that HCC tissues and cell lines showed a higher methylation status in Gadd45β promoter than that in peri-tumor tissues and normal liver cells. Methylation was then reversed by pretreatment of SMMC-7721 and Hep-3B with 5-azacytidine which is the DNA methyltransferase inhibitor. And the 5-azacytidine decreased the stemness of SMMC-7721 and Hep-3B, enhanced the sensitivity of SMMC-7721 and Hep-3B to cisplatin.

Conclusions

Methylation mediated Gadd45β expression inhibited the stemness of liver cancer cells, promoting the chemotherapy-induced apoptosis. Thus Gadd45β may be the potential target for enhancing the chemosensitivity of human hepatocellular carcinoma.
  相似文献   

9.
10.

Background

Trypanosomatid parasites possess a single mitochondrion which is classically involved in the energetic metabolism of the cell, but also, in a much more original way, through its single and complex DNA (termed kinetoplast), in the correct progress of cell division. In order to identify proteins potentially involved in the cell cycle, we performed RNAi knockdowns of 101 genes encoding mitochondrial proteins using procyclic cells of Trypanosoma brucei.

Results

A major cell growth reduction was observed in 10 cases and a moderate reduction in 29 other cases. These data are overall in agreement with those previously obtained by a case-by-case approach performed on chromosome 1 genes, and quantitatively with those obtained by “high-throughput phenotyping using parallel sequencing of RNA interference targets” (RIT-seq). Nevertheless, a detailed analysis revealed many qualitative discrepancies with the RIT-seq-based approach. Moreover, for 37 out of 39 mutants for which a moderate or severe growth defect was observed here, we noted abnormalities in the cell cycle progress, leading to increased proportions of abnormal cell cycle stages, such as cells containing more than 2 kinetoplasts (K) and/or more than 2 nuclei (N), and modified proportions of the normal phenotypes (1N1K, 1N2K and 2N2K).

Conclusions

These data, together with the observation of other abnormal phenotypes, show that all the corresponding mitochondrial proteins are involved, directly or indirectly, in the correct progress or, less likely, in the regulation, of the cell cycle in T. brucei. They also show how post-genomics analyses performed on a case-by-case basis may yield discrepancies with global approaches.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1505-5) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
13.
S Piao  Y Liu  J Hu  F Guo  J Ma  Y Sun  B Zhang 《PloS one》2012,7(8):e42540

Background and Objective

The significance of ubiquitin-specific protease 22 (USP22) as a potential marker has been growing in the field of oncology. The aim of this study was to investigate the role of USP22 and the association with its potential targets in oral squamous cell carcinoma (OSCC).

Methods

Immunohistochemistry was used to determine the expression of USP22 protein in 319 OSCC patients in comparison with 42 healthy controls. The clinical correlations and prognostic significance of the aberrantly expressed protein was evaluated to identify novel biomarker of OSCC.

Results

The incidence of positive USP22 expression was 63.32% in 319 conventional OSCC tissues. The protein expression level of USP22 was concomitantly up-regulated from non-cancerous mucosa to primary carcinoma and from carcinomas to lymph node metastasis (P<0.001). Moreover, statistical analysis showed that positive USP22 expression was positively related to lymph node metastasis, Ki67, Cox-2 and recurrence. Furthermore, it was shown that patients with positive USP22 expression had significantly poorer outcome compared with patients with negative expression of USP22 for patients with positive lymph nodes. Multivariate Cox regression analysis revealed that USP22 expression level was an independent prognostic factor for both overall survival and disease-free survival (P<0.001 and P<0.001, respectively). Cancer cells with reduced USP22 expression exhibited reduced proliferation and colony formation evaluated by MTT and soft agar assays.

Conclusion

To our knowledge, this is the first study that determines the relationship between USP22 expression and prognosis in OSCC. We found that increased expression of USP22 is associated with poor prognosis in OSCC. USP22 may represent a novel and useful prognostic marker for OSCC.  相似文献   

14.
15.
Zhang R  Pan X  Huang Z  Weber GF  Zhang G 《PloS one》2011,6(8):e23831

Background and Aims

Osteopontin, SDF-1α, and MMP-2 are important secreted molecules involved in the pathophysiology of human hepatocellular carcinoma (HCC). This study investigates the effect of the SDF-1α/CXCR4 axis on expression and activity of MMP-2 induced by osteopontin.

Methods

The expression of CXCR4, SDF-1α, MMP-2 and their associated cellular signaling cascades, involving Akt and MAP Kinases, were determined by Western blotting. The activities of MMP-2 and MMP-9 were assayed by gel zymography. The role of the osteopontin receptors integrin αvβ3 and CD44v6 was evaluated using neutralizing antibodies. We also established CXCR4-deficient SMMC7721 cell lines by transfection with miRNA-CXCR4 plasmids and determined cell invasion activity in a transwell assay.

Results

In comparison with untreated cells, recombinant human osteopontin (rhOPN) up-regulated CXCR4, SDF-1α, and MMP-2 expression about 5-, 4-, and 6-fold on the protein levels through binding to integrin αvβ3 and CD44v6 in hepatocellular carcinoma cells (SMMC7721 and HepG2). Inhibition of the SDF-1α/CXCR4 axis down-regulated the rhOPN-induced MMP-2 expression and activity. rhOPN also activated Akt, p38 and JNK. Down-regulation of CXCR4 decreased the rhOPN-induced invasion in SMMC7721 cells.

Conclusion

These results indicate that rhOPN up-regulates MMP-2 through the SDF-1α/CXCR4 axis, mediated by binding to integrin αvβ3 and CD44v6 and activating the PI-3K/Akt and JNK pathways in HepG2 and SMMC7721 cells. Therefore, the osteopontin-SDF-1α/CXCR4-MMP-2 system may be a new therapeutic target for treating HCC progression.  相似文献   

16.
17.

Background

Although Imatinib mesylate has revolutionized the treatment of chronic myeloid leukemia, some patients develop resistance with progression of leukemia. Alternative or additional targeting of signalling pathways deregulated in Bcr-Abl-driven chronic myeloid leukemia may provide a feasible option for improving clinical response and overcoming resistance.

Results

In this study, we investigate ability of CR8 isomers (R-CR8 and S-CR8) and MR4, three derivatives of the cyclin-dependent kinases (CDKs) inhibitor Roscovitine, to exert anti-leukemic activities against chronic myeloid leukemia in vitro and then, we decipher their mechanisms of action. We show that these CDKs inhibitors are potent inducers of growth arrest and apoptosis of both Imatinib-sensitive and –resistant chronic myeloid leukemia cell lines. CR8 and MR4 induce dose-dependent apoptosis through mitochondrial pathway and further caspases 8/10 and 9 activation via down-regulation of short-lived survival and anti-apoptotic factors Mcl-1, XIAP and survivin which are strongly implicated in survival of Bcr-Abl transformed cells.

Conclusions

These results suggest that CDK inhibitors may constitute a complementary approach to treat chronic myeloid leukemia.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0163-x) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

The development of a risk assessment tool for long-term hepatocellular carcinoma risk would be helpful in identifying high-risk patients and providing information of clinical consultation.

Methods

The model derivation and validation cohorts consisted of 975 and 572 anti-HCV seropositives, respectively. The model included age, alanine aminotransferase (ALT), the ratio of aspirate aminotransferase to ALT, serum HCV RNA levels and cirrhosis status and HCV genotype. Two risk prediction models were developed: one was for all-anti-HCV seropositives, and the other was for anti-HCV seropositives with detectable HCV RNA. The Cox''s proportional hazards models were utilized to estimate regression coefficients of HCC risk predictors to derive risk scores. The cumulative HCC risks in the validation cohort were estimated by Kaplan-Meier methods. The area under receiver operating curve (AUROC) was used to evaluate the performance of the risk models.

Results

All predictors were significantly associated with HCC. The summary risk scores of two models derived from the derivation cohort had predictability of HCC risk in the validation cohort. The summary risk score of the two risk prediction models clearly divided the validation cohort into three groups (p<0.001). The AUROC for predicting 5-year HCC risk in the validation cohort was satisfactory for the two models, with 0.73 and 0.70, respectively.

Conclusion

Scoring systems for predicting HCC risk of HCV-infected patients had good validity and discrimination capability, which may triage patients for alternative management strategies.  相似文献   

19.
Zhao JJ  Pan K  Li JJ  Chen YB  Chen JG  Lv L  Wang DD  Pan QZ  Chen MS  Xia JC 《PloS one》2011,6(10):e26608

Background

LZAP was isolated as a binding protein of the Cdk5 activator p35. LZAP has been highly conserved during evolution and has been shown to function as a tumor suppressor in various cancers. This study aimed to investigate LZAP expression and its prognostic value in hepatocellular carcinoma (HCC). Meanwhile, the function of LZAP in hepatocarcinogenesis was further investigated in cell culture models and mouse models.

Methods

Real-time quantitative PCR, western blot and immunohistochemistry were used to explore LZAP expression in HCC cell lines and primary HCC clinical specimens. The functions of LZAP in the proliferation, colony formation, cell cycle, migration, invasion and apoptosis of HCC cell lines were also analyzed by infecting cells with an adenovirus containing full-length LZAP. The effect of LZAP on tumorigenicity in nude mice was also investigated.

Results

LZAP expression was significantly decreased in the tumor tissues and HCC cell lines. Clinicopathological analysis showed that LZAP expression was significantly correlated with tumor size, histopathological classification and serum α-fetoprotein (AFP). The Kaplan–Meier survival curves revealed that decreasing LZAP expression was associated with poor prognosis in HCC patients. LZAP expression was an independent prognostic marker of overall HCC patient survival in a multivariate analysis. The re-introduction of LZAP expression in the HepG2 and sk-Hep1 HCC cell lines significantly inhibited proliferation and colony formation in the HCC cells and induced G1 phase arrest and apoptosis of the HCC cells in vitro. Restoring LZAP expression in the HCC cell lines also inhibited migration and invasion. In addition, experiments with a mouse model revealed that LZAP overexpression could suppress HCC tumorigenicity in vivo.

Conclusions

Our data suggest that LZAP may play an important role in HCC progression and could be a potential molecular therapy target for HCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号