首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim

The estrogen receptor coactivator Amplified in Breast Cancer 1 (AIB1) has been associated with an improved response to adjuvant tamoxifen in breast cancer, but also with endocrine treatment resistance. We hereby use metachronous contralateral breast cancer (CBC) developed despite prior adjuvant tamoxifen for the first tumor as an “in vivo”-model for tamoxifen resistance. AIB1-expression in the presumable resistant (CBC after prior tamoxifen) and naïve setting (CBC without prior tamoxifen) is compared and correlated to prognosis after CBC.

Methods

From a well-defined population-based cohort of CBC-patients we have constructed a unique tissue-microarray including >700 patients.

Results

CBC developed after adjuvant tamoxifen more often had a HER2-positive/triple negative-subtype and a high AIB1-expression (37% vs. 23%, p = 0.009), than if no prior endocrine treatment had been administered. In patients with an estrogen receptor (ER) positive CBC, a high AIB1-expression correlated to an inferior prognosis. However, these patients seemed to respond to tamoxifen, but only if endocrine therapy had not been administered for BC1.

Conclusions

Metachronous CBC developed after prior endocrine treatment has a decreased ER-expression and an increased HER2-expression. This is consistent with endocrine treatment escape mechanisms previously suggested, and indicates metachronous CBC to be a putative model for studies of treatment resistance “in vivo”. The increased AIB1-expression in CBC developed after prior tamoxifen suggests a role of AIB1 in endocrine treatment resistance. In addition, we found indications that the response to tamoxifen in CBC with a high AIB1-expression seem to differ depending on previous exposure to this drug. A different function for AIB1 in the tamoxifen treatment naïve vs. resistant setting is suggested, and may explain previously conflicting results where a high AIB1-expression has been correlated to both a good response to adjuvant tamoxifen and tamoxifen resistance.  相似文献   

2.

Introduction

Cyclophosphamide is commonly used as an important component in conditioning prior to hematopoietic stem cell transplantation, a curative treatment for several hematological diseases. Cyclophosphamide is a prodrug activated mainly by cytochrome P450 2B6 (CYP2B6) in the liver. A high degree of inter- and intra-individual variation in cyclophosphamide kinetics has been reported in several studies.

Materials and Methods

Hydroxylation of cyclophosphamide was investigated in vitro using three microsomal batches of CYP2B6*1 with different ratios of POR/CYP expression levels. Twenty patients undergoing hematopoietic stem cell transplantation were also included in the study. All patients received an i.v. infusion of cyclophosphamide (60 mg/kg/day, for two days) as a part of their conditioning. Blood samples were collected from each patient before cyclophosphamide infusion, 6 h after the first dose and before and 6 h after the second dose. POR gene expression was measured by mRNA analysis and the pharmacokinetics of cyclophosphamide and its active metabolite were determined.

Results

A strong correlation between the in vitro intrinsic clearance of cyclophosphamide and the POR/CYP ratio was found. The apparent K m for CYP2B6.1 was almost constant (3-4 mM), while the CLint values were proportional to the POR/CYP ratio (3-34 μL/min/nmol CYP). In patients, the average expression of the POR gene in blood was significantly (P <0.001) up-regulated after cyclophosphamide infusion, with high inter-individual variations and significant correlation with the concentration ratio of the active metabolite 4-hydroxy-cyclophosphamide/cyclophosphamide. Nine patients were carriers for POR*28; four patients had relatively high POR expression.

Conclusions

This investigation shows for the first time that POR besides CYP2B6 can influence cyclophosphamide metabolism. Our results indicate that not only CYPs are important, but also POR expression and/or activity may influence cyclophosphamide bioactivation, affecting therapeutic efficacy and treatment related toxicity and hence on clinical outcome. Thus, both POR and CYP genotype and expression levels may have to be taken into account when personalizing treatment schedules to achieve optimal therapeutic drug plasma concentrations of cyclophosphamide.  相似文献   

3.

Background

Most breast cancers depend on estrogenic growth stimulation. Functional genetic screenings in in vitro cell models have identified genes, which override growth suppression induced by anti-estrogenic drugs like tamoxifen. Using that approach, we have previously identified Breast Cancer Anti-Estrogen Resistance 4 (BCAR4) as a mediator of cell proliferation and tamoxifen-resistance. Here, we show high level of expression and function of BCAR4 in human breast cancer.

Methods

BCAR4 mRNA expression was evaluated by (q)RT-PCR in a panel of human normal tissues, primary breast cancers and cell lines. A new antibody raised against C78-I97 of the putative BCAR4 protein and used for western blot and immunoprecipitation assays. Furthermore, siRNA-mediated gene silencing was implemented to study the function of BCAR4 and its downstream targets ERBB2/3.

Results

Except for placenta, all human normal tissues tested were BCAR4-negative. In primary breast cancers, BCAR4 expression was comparatively rare (10%), but associated with enhanced proliferation. Relative high BCAR4 mRNA expression was identified in IPH-926, a cell line derived from an endocrine-resistant lobular breast cancer. Moderate BCAR4 expression was evident in MDA-MB-134 and MDA-MB-453 breast cancer cells. BCAR4 protein was detected in breast cancer cells with ectopic (ZR-75-1-BCAR4) and endogenous (IPH-926, MDA-MB-453) BCAR4 mRNA expression. Knockdown of BCAR4 inhibited cell proliferation. A similar effect was observed upon knockdown of ERBB2/3 and exposure to lapatinib, implying that BCAR4 acts in an ERBB2/3-dependent manner.

Conclusion

BCAR4 encodes a functional protein, which drives proliferation of endocrine-resistant breast cancer cells. Lapatinib, a clinically approved EGFR/ERBB2 inhibitor, counteracts BCAR4-driven tumor cell growth, a clinical relevant observation.  相似文献   

4.

Background

The zinc transporter ZIP4 (Slc39a4) is important for proper mammalian development and is an essential gene in mice. Recent studies suggest that this gene may also play a role in pancreatic cancer.

Methods/Principal Findings

Herein, we present evidence that this essential zinc transporter is expressed in hepatocellular carcinomas. Zip4 mRNA and protein were dramatically elevated in hepatocytes in the majority of human hepatocellular carcinomas relative to noncancerous surrounding tissues, as well as in hepatocytes in hepatocellular carcinomas occurring in farnesoid X receptor-knockout mice. Interestingly, meta-analysis of microarray data in the Geo and Oncomine databases suggests that Zip4 mRNA may also be elevated in many types of cancer. Potential mechanisms of action of ZIP4 were examined in cultured cell lines. RNAi knockdown of Zip4 in mouse Hepa cells significantly increased apoptosis and modestly slowed progression from G0/G1 to S phase when cells were released from hydroxyurea block into zinc-deficient medium. Cell migration assays revealed that RNAi knockdown of Zip4 in Hepa cells depressed in vitro migration whereas forced over-expression in Hepa cells and MCF-7 cells enhanced in vitro migration.

Conclusions

ZIP4 may play a role in the acquisition of zinc by hepatocellular carcinomas, and potentially many different cancerous cell-types, leading to repressed apoptosis, enhanced growth rate and enhanced invasive behavior.  相似文献   

5.
6.

Background

Cinnamomum cassia bark is a popular culinary spice used for flavoring and in traditional medicine. C. cassia extract (CE) induces apoptosis in many cell lines. In the present study, particular differences in the mechanism of the anti-proliferative property of C. cassia on two breast cancer cell lines, MCF-7 and MDA-MB-231, were elucidated.

Methodology/Principal Findings

The hexane extract of C. cassia demonstrated high anti-proliferative activity against MCF-7 and MDA-MB-231 cells (IC50, 34±3.52 and 32.42 ±0.37 μg/ml, respectively). Oxidative stress due to disruption of antioxidant enzyme (SOD, GPx and CAT) activity is suggested as the probable cause for apoptosis initiation. Though the main apoptosis pathway in both cell lines was found to be through caspase-8 activation, caspase-9 was also activated in MDA-MB-231 cells but suppressed in MCF-7 cells. Gene expression studies revealed that AKT1, the caspase-9 suppressor, was up-regulated in MCF-7 cells while down-regulated in MDA-MB-231 cells. Although, AKT1 protein expression in both cell lines was down-regulated, a steady increase in MCF-7 cells was observed after a sharp decrease of suppression of AKT1. Trans-cinnamaldehyde and coumarin were isolated and identified and found to be mainly responsible for the observed anti-proliferative activity of CE (Cinnamomum cassia).

Conclusion

Activation of caspase-8 is reported for the first time to be involved as the main apoptosis pathway in breast cancer cell lines upon treatment with C. cassia. The double effects of C. cassia on AKT1 gene expression in MCF-7 cells is reported for the first time in this study.  相似文献   

7.

Objective

The aim of this study was to explore the therapeutic effect of natural killer (NK) cells on human doxorubicin-sensitive and resistant breast adenocarcinoma.

Methods

Human doxorubicin-sensitive and resistant breast cancer cell lines (MCF-7 and MCF-7/ADR) were tagged with renilla luciferase (Rluc) (MCF-7/RC and MCF-7/ADR/RC). NK cells were tagged with enhanced firefly luciferase (effluc) using a recombinant retrovirus transfection (NKF). Expression of Rluc, effluc, and NK cell surface markers CD16, CD56 as well as death receptors, DR4 and DR5, were assessed by using flow cytometry. In vitro cytotoxic effect of NK to MCF-7 and MCF-7/ADR was measured and in vivo bioluminescence imaging was also performed to visualize MCF-7/RC, MCF-7/ADR, and NKF in an animal model.

Results

NK92-MI, MCF-7, and MCF-7/ADR cells were successfully labeled with Rluc or effluc. Both the target breast cancer cells (with Rluc) and therapeutic NK cells (with effluc) were noninvasively visualized in nude mice. Doxorubicin-resistant breast cancer cells (MCF-7/ADR) presented a higher expression of DR5 and were more sensitive to NK cells compared with doxorubicin-sensitive breast cancer cells (MCF-7).

Conclusion

The results of present study suggest that NK cell therapy has a therapeutic effect on doxorubicin-sensitive and resistant breast cancer cells.  相似文献   

8.

Background & Aims

Altered extrahepatic bile ducts, gut, and cardiovascular anomalies constitute the variable phenotype of biliary atresia (BA).

Methods

To identify potential susceptibility loci, Caucasian children, normal (controls) and with BA (cases) at two US centers were compared at >550000 SNP loci. Systems biology analysis was carried out on the data. In order to validate a key gene identified in the analysis, biliary morphogenesis was evaluated in 2-5-day post-fertilization zebrafish embryos after morpholino-antisense oligonucleotide knockdown of the candidate gene ADP ribosylation factor-6 (ARF6, Mo-arf6).

Results

Among 39 and 24 cases at centers 1 and 2, respectively, and 1907 controls, which clustered together on principal component analysis, the SNPs rs3126184 and rs10140366 in a 3’ flanking enhancer region for ARF6 demonstrated higher minor allele frequencies (MAF) in each cohort, and 63 combined cases, compared with controls (0.286 vs. 0.131, P = 5.94x10-7, OR 2.66; 0.286 vs. 0.13, P = 5.57x10-7, OR 2.66). Significance was enhanced in 77 total cases, which included 14 additional BA genotyped at rs3126184 only (p = 1.58x10-2, OR = 2.66). Pathway analysis of the 1000 top-ranked SNPs in CHP cases revealed enrichment of genes for EGF regulators (p<1 x10-7), ERK/MAPK and CREB canonical pathways (p<1 x10-34), and functional networks for cellular development and proliferation (p<1 x10-45), further supporting the role of EGFR-ARF6 signaling in BA. In zebrafish embryos, Mo-arf6 injection resulted in a sparse intrahepatic biliary network, several biliary epithelial cell defects, and poor bile excretion to the gall bladder compared with uninjected embryos. Biliary defects were reproduced with the EGFR-blocker AG1478 alone or with Mo-arf6 at lower doses of each agent and rescued with arf6 mRNA.

Conclusions

The BA-associated SNPs identify a chromosome 14q21.3 susceptibility locus encompassing the ARF6 gene. arf6 knockdown in zebrafish implicates early biliary dysgenesis as a basis for BA, and also suggests a role for EGFR signaling in BA pathogenesis.  相似文献   

9.
10.

Rationale

Our previous studies demonstrated that bone morphogenetic protein 4 (BMP4) mediated, elevated expression of canonical transient receptor potential (TRPC) largely accounts for the enhanced proliferation in pulmonary arterial smooth muscle cells (PASMCs). In the present study, we sought to determine the signaling pathway through which BMP4 up-regulates TRPC expression.

Methods

We employed recombinant human BMP4 (rhBMP4) to determine the effects of BMP4 on NADPH oxidase 4 (NOX4) and reactive oxygen species (ROS) production in rat distal PASMCs. We also designed small interfering RNA targeting NOX4 (siNOX4) and detected whether NOX4 knockdown affects rhBMP4-induced ROS, TRPC1 and 6 expression, cell proliferation and intracellular Ca2+ determination in PASMCs.

Results

In rhBMP4 treated rat distal PASMCs, NOX4 expression was (226.73±11.13) %, and the mean ROS level was (123.65±1.62) % of that in untreated control cell. siNOX4 transfection significantly reduced rhBMP4-induced elevation of the mean ROS level in PASMCs. Moreover, siNOX4 transfection markedly reduced rhBMP4-induced elevation of TRPC1 and 6 proteins, basal [Ca2+]i and SOCE. Furthermore, compared with control group (0.21±0.001), the proliferation of rhBMP4 treated cells was significantly enhanced (0.41±0.001) (P<0.01). However, such increase was attenuated by knockdown of NOX4. Moreover, external ROS (H2O2 100 µM, 24 h) rescued the effects of NOX4 knockdown, which included the declining of TRPC1 and 6 expression, basal intracellular calcium concentration ([Ca2+]i) and store-operated calcium entry (SOCE), suggesting that NOX4 plays as an important mediator in BMP4-induced proliferation and intracellular calcium homeostasis.

Conclusion

These results suggest that BMP4 may increase ROS level, enhance TRPC1 and 6 expression and proliferation by up-regulating NOX4 expression in PASMCs.  相似文献   

11.
12.

Introduction

There is a high degree of inter-individual variability among people in response to intervention with omega-3 fatty acids (FA), which may partly explain conflicting results on the effectiveness of omega-3 FA for the treatment and prevention of chronic inflammatory diseases. In this study we sought to evaluate whether part of this inter-individual variability in response is related to the regulation of key oxylipin metabolic genes in circulating peripheral blood mononuclear cells (PBMCs).

Methods

Plasma FA and oxylipin profiles from 12 healthy individuals were compared to PBMC gene expression profiles following six weeks of supplementation with fish oil, which delivered 1.9 g/d eicosapentaenoic acid (EPA) and 1.5 g/d docosahexaenoic acid (DHA). Fold changes in gene expression were measured by a quantitative polymerase chain reaction (qPCR).

Results

Healthy individuals supplemented with omega-3 FA had differential responses in prostaglandin-endoperoxide synthase 1 (PTGS1), prostaglandin-endoperoxide synthase 2 (PTGS2), arachidonate 12-lipoxygenase (ALOX12), and interleukin 8 (IL-8) gene expression in isolated PBMCs. In those individuals for whom plasma arachidonic acid (ARA) in the phosphatidylethanolamine (PE) lipid class decreased in response to omega-3 intervention, there was a corresponding decrease in gene expression for PTGS1 and ALOX12. Several oxylipin product/FA precursor ratios (e.g. prostaglandin E2 (PGE2)/ARA for PTGS1 and 12-hydroxyeicosatetraenoic acid (12-HETE)/ARA for ALOX12) were also associated with fold change in gene expression, suggesting an association between enzyme activity and gene expression. The fold-change in PTGS1 gene expression was highly positively correlated with ALOX12 gene expression but not with PTGS2, whereas IL-8 and PTGS2 were positively correlated.

Conclusions

The regulation of important oxylipin metabolic genes in PBMCs varied with the extent of change in ARA concentrations in the case of PTGS1 and ALOX12 regulation. PBMC gene expression changes in response to omega-3 supplementation varied among healthy individuals, and were associated with changes in plasma FA and oxylipin composition to different degrees in different individuals.

Trial Registration

clinicaltrials.gov NCT01838239  相似文献   

13.

Background

Cystic Echinococcosis(CE), caused by infection with the larval stage of the cestode Echinococcus granulosus (E. granulosus), is a chronic parasitic zoonosis, with highly susceptible infection in sheep. However, the comprehensive molecular mechanisms that underlie the process of E. granulosus infection in the early stage remain largely unknown. The objective of this present study was to gain a cluster of genes expression profiles in the intestine tissue of sheep infected with CE.

Methods

Nine healthy sheep were divided into infection group and healthy controls, with six infected perorally 5000 E. granulosus eggs suspended in 1000μl physiological saline and three controls perorally injected 1000μl physiological saline. All animals were sacrificed at 4 hours post-infection, respectively. The intestine tissue was removed and the RNA was extracted. In the infection group, the biology replicates were designed to make sure the accuracy of the data. The ovine microarrays were used to analyze changes of gene expression in the intestine tissue between CE infected sheep and healthy controls. Real-time PCR was used to assess reliability of the microarray data.

Results

By biology repeats, a total of 195 differentially expressed genes were identified between infected group and controls at 4 hours post-infection, with 105 genes related to immune responses, while 90 genes associated with functions including energy metabolism, fat soluble transport, etc. Among the 105 immunity genes, 72 genes showed up-regulated expression levels while 33 showed down-regulation levels. Function analysis showed that most of up-regulated genes were related to innate immune responses, such as mast cell, NK cell, cytokines, chemokines and complement. In addition, Real-time PCR analysis of a random selection of nine genes confirmed the reliability of the microarray data.

Conclusion

To our knowledge, this is the first report describing gene expression profiles in the intestine tissue of CE infection sheep. These results suggested that the innate immune system was activated to elicit immediate defense in the intestine tissue where E. granulosus invaded in at 4 hour-post infection. Furthermore, future interest will also focus on unraveling similar events, especially for the function of adaptive immunity, but at late stage infection.  相似文献   

14.

Background

Colorectal cancer is common. Polyunsaturated fatty acids (PUFAs) exert growth-inhibitory and pro-apoptotic effects on colon cancer cells. Metabolites of PUFAs such as prostaglandins (PGs), leukotrienes (LTs) and lipoxins (LXs) play a significant role in colon cancer.

Methods

Human colon cancer LoVo and RKO cells were cultured with different concentration of PUFAs and 5-fluorouracil (5-FU) in vitro. Cell morphological changes, fatty acid composition, formation of PGE2, LTB4 and LXA4 and expression of COX-2, ALOX5, PGD synthase (PGDS), microsomal prostaglandin E synthase (mPGES) were assessed in LoVo and RKO cells when supplemented with PUFAs and 5-FU.

Results

PUFAs and 5-FU inhibited growth of LoVo and RKO cells to the same extent at the doses used and produced significant alterations in their shape. As expected, higher concentrations of supplemented PUFAs were noted in the cells compared to control. LA, GLA, AA, ALA and EPA supplementation to LoVo cells suppressed production of PGE2, LTB4,and ALOX5, mPGES expression, but enhanced that of LXA4; whereas DHA enhanced PGE2 and LXA4 synthesis but decreased LTB4 formation and COX-2, ALOX5, mPGES expression. In contrast, 5-FU enhanced formation of PGE2, LTB4 and mPGES expression, but suppressed LXA4 synthesis and COX-2 expression. PGE2, LTB4 synthesis and ALOX5 expression was suppressed by LA, GLA, ALA and DHA; whereas AA, EPA and 5-FU enhanced PGE2 but paradoxically AA decreased and EPA and 5-FU enhanced LTB4 synthesis in RKO cells. All the PUFAs tested enhanced, while 5-FU decreased LXA4 formation in RKO cells; whereas GLA, AA, and 5-FU augmented while LA, ALA, EPA and DHA enhanced COX-2 expression in RKO cells.

Conclusions

Tumoricidal action of PUFAs on colorectal LoVo and RKO cancer cells in vitro was associated with increased formation of LXA4, decreased synthesis of PGE2 and LTB4 and suppressed expression of COX-2, ALOX5, mPGES, whereas 5-FU produced contrasting actions on these indices.  相似文献   

15.

Background

Keratins are structural marker proteins with tissue specific expression; however, recent reports indicate their involvement in cancer progression. Previous study from our lab revealed deregulation of many genes related to structural molecular integrity including KRT76. Here we evaluate the role of KRT76 downregulation in oral precancer and cancer development.

Methods

We evaluated KRT76 expression by qRT-PCR in normal and tumor tissues of the oral cavity. We also analyzed K76 expression by immunohistochemistry in normal, oral precancerous lesion (OPL), oral squamous cell carcinoma (OSCC) and in hamster model of oral carcinogenesis. Further, functional implication of KRT76 loss was confirmed using KRT76-knockout (KO) mice.

Results

We observed a strong association of reduced K76 expression with increased risk of OPL and OSCC development. The buccal epithelium of DMBA treated hamsters showed a similar trend. Oral cavity of KRT76-KO mice showed preneoplastic changes in the gingivobuccal epithelium while no pathological changes were observed in KRT76 negative tissues such as tongue.

Conclusion

The present study demonstrates loss of KRT76 in oral carcinogenesis. The KRT76-KO mice data underlines the potential of KRT76 being an early event although this loss is not sufficient to drive the development of oral cancers. Thus, future studies to investigate the contributing role of KRT76 in light of other tumor driving events are warranted.  相似文献   

16.

Background

Overexpression of the myristolated alanine-rich C kinase substrate (MARCKS) occurs in vascular proliferative diseases such as restenosis after bypass surgery. MARCKS knockdown results in arrest of vascular smooth muscle cell (VSMC) proliferation with little effect on endothelial cell (EC) proliferation. We sought to identify the mechanism of differential regulation by MARCKS of VSMC and EC proliferation in vitro and in vivo.

Methods and Results

siRNA-mediated MARCKS knockdown in VSMCs inhibited proliferation and prevented progression from phase G0/G1 to S. Protein expression of the cyclin-dependent kinase inhibitor p27kip1, but not p21cip1 was increased by MARCKS knockdown. MARCKS knockdown did not affect proliferation in VSMCs derived from p27kip1-/- mice indicating that the effect of MARCKS is p27kip1-dependent. MARCKS knockdown resulted in decreased phosphorylation of p27kip1 at threonine 187 and serine 10 as well as, kinase interacting with stathmin (KIS), cyclin D1, and Skp2 expression. Phosphorylation of p27kip1 at serine 10 by KIS is required for nuclear export and degradation of p27kip1. MARCKS knockdown caused nuclear trapping of p27kip1. Both p27kip1 nuclear trapping and cell cycle arrest were released by overexpression of KIS, but not catalytically inactive KIS. In ECs, MARCKS knockdown paradoxically increased KIS expression and cell proliferation. MARCKS knockdown in a murine aortic injury model resulted in decreased VSMC proliferation determined by bromodeoxyuridine (BrdU) integration assay, and inhibition of vascular wall thickening. MARCKS knockdown increased the rate of re-endothelialization.

Conclusions

MARCKS knockdown arrested VSMC cell cycle by decreasing KIS expression. Decreased KIS expression resulted in nuclear trapping of p27kip1 in VSMCs. MARCKS knockdown paradoxically increased KIS expression in ECs resulting in increased EC proliferation. MARCKS knockdown significantly attenuated the VSMC proliferative response to vascular injury, but accelerated reestablishment of an intact endothelium. MARCKS is a novel translational target with beneficial cell type-specific effects on both ECs and VSMCs.  相似文献   

17.

Objective

To evaluate evidence on the association between CYP2D6 genotype and tamoxifen response through.

Design

Systematic review and meta-analysis of prospective, cross-sectional and case-control studies published to 2012. For each study, relative risks and 95% confidence intervals were extracted and pooled with a fixed and random effects model. Heterogeneity, publication bias, subgroup, and meta-regression analyses were performed.

Data Sources

PubMed (inception-2012) and EMBASE (inception-2012).

Eligibility Criteria for Selecting Studies

Criteria for inclusion were studies reporting breast cancer outcomes in patients treated with tamoxifen and genotyped for polymorphisms in the CYP2D6 gene.

Results

Twenty-five studies of 13,629 individuals were identified, of which 22 investigated the association of CYP2D6 genotype with outcomes in breast cancer women all receiving tamoxifen treatment (“treatment-only” design). Three randomized trials evaluated the effect of CYP2D6 genotype on tamoxifen response (“effect modification” design). In analysis of treatment-only studies, the relative risk (RR) of all-cause mortality (>307 events in 4,936 patients) for carriers of a CYP2D6 reduced function allele was 1.11 (95% confidence interval (CI): 0.94 to 1.31) compared to individuals with normal/increased function CYP2D6 alleles. When we investigated a composite outcome including all-cause mortality and surrogate endpoints for overall survival (>307 events in 6,721 patients), carriers of a CYP2D6 reduced function allele had a RR of 1.27 (95% CI: 1.11 to 1.45). From two randomized trials that permitted effect-modification analysis, one had only 154 patients and showed evidence of effect modification of tamoxifen by CYP2D6 genotype for distant recurrence but was directionally opposite to that predicted, whereas a larger trial of 2,537 patients failed to show evidence of effect modification for breast cancer-free interval (P values for interaction 0.02 and 0.44, respectively).

Conclusions

Based on these findings, there is insufficient evidence to recommend CYP2D6 genotyping to guide tamoxifen treatment.  相似文献   

18.

Background

Sjögren’s syndrome antigen B is expressed in the nucleus and surface membrane of human polymorphonuclear neutrophils and is released after cell death. However, its biological role is not clear. This study is aimed to investigate the effect of Sjögren’s syndrome antigen B on human polymorphonuclear neutrophils.

Methods

Human recombinant Sjögren’s syndrome antigen B (rSSB) purified from E. coli was incubated with human polymorphonuclear neutrophils as well as retinoid acid-induced granulocytic differentiated HL-60 cells, HL-60 (RA). Interleukin (IL)-8 protein production and mRNA expressions were measured by enzyme-linked immunosorbent assay and quantitative-polymerase chain reaction, respectively. Uptake of fluorescein isothiocyanate (FITC)-rSSB was assessed by flow cytometry and fluorescence microscopy. Moreover, mitogen-activated protein kinase (MAPK) pathways and nuclear factor-kappaB activation were investigated.

Results

Human rSSB stimulated IL-8 production from normal human neutrophils and HL-60 (RA) cells in a time- and dose-dependent manner. This IL-8-stimulated activity was blocked by chloroquine and NH4Cl, indicating that endosomal acidification is important for this effect. We found rSSB activated both MAPK pathway and nuclear factor-kappaB signaling to transcribe the IL-8 gene expression of cells. Furthermore, tumor necrosis factor-α exerted an additive effect and rSSB-anti-SSB immune complex exhibited a synergistic effect on rSSB-induced IL-8 production.

Conclusions

Sjögren’s syndrome antigen B might act as an endogenous danger molecule to enhance IL-8 gene expression in human polymorphonuclear neutrophils.  相似文献   

19.

Background

Treatment of breast cancer patients with distant metastases represents one of the biggest challenges in today’s gynecological oncology. Therefore, a better understanding of mechanisms promoting the development of metastases is of paramount importance. The serine/threonine kinase AKT was shown to drive cancer progression and metastasis. However, there is emerging data that single AKT isoforms (i.e. AKT1, AKT2 and AKT3) have different or even opposing functions in the regulation of cancer cell migration in vitro, giving rise to the hypothesis that inhibition of distinct AKT isoforms might have undesirable effects on cancer dissemination in vivo.

Methods

The triple negative breast cancer cell line MDA-MB-231 was used to investigate the functional roles of AKT in migration and metastasis. AKT single and double knockdown cells were generated using isoform specific shRNAs. Migration was analyzed using live cell imaging, chemotaxis and transwell assays. The metastatic potential of AKT isoform knockdown cells was evaluated in a subcutaneous xenograft mouse model in vivo.

Results

Depletion of AKT3, but not AKT1 or AKT2, resulted in increased migration in vitro. This effect was even more prominent in AKT2,3 double knockdown cells. Furthermore, combined downregulation of AKT2 and AKT3, as well as AKT1 and AKT3 significantly increased metastasis formation in vivo. Screening for promigratory proteins revealed that downregulation of AKT3 increases the expression of S100A4 protein. In accordance, depletion of S100A4 by siRNA approach reverses the increased migration induced by knockdown of AKT3.

Conclusions

We demonstrated that knockdown of AKT3 can increase the metastatic potential of triple negative breast cancer cells. Therefore, our results provide a rationale for the development of AKT isoform specific inhibitors.  相似文献   

20.

Background

Robo4 is involved in hematopoietic stem/progenitor cell homeostasis and essential for tumor angiogenesis. Expression of Robo4 was recently found in solid tumors and leukemia stem cells. However, the clinical implications of Robo4 expression in patients with acute myeloid leukemia (AML) remain unclear.

Methods

We investigated the clinical and prognostic relevance of mRNA expression of Robo4 in bone marrow (BM) mononuclear cells from 218 adult patients with de novo AML. We also performed immunohistochemical staining to assess the Robo4 protein expression in the BM biopsy specimens from 30 selected AML patients in the cohort.

Results

Higher Robo4 expression was closely associated with lower white blood cell counts, expression of HLA-DR, CD13, CD34 and CD56 on leukemia cells, t(8;21) and ASXL1 mutation, but negatively correlated with t(15;17) and CEBPA mutation. Compared to patients with lower Robo4 expression, those with higher expression had significantly shorter disease-free survival (DFS) and overall survival (OS). This result was confirmed in an independent validation cohort. Furthermore, multivariate analyses showed that higher Robo4 expression was an independent poor prognostic factor for DFS and OS in total cohort and patients with intermediate-risk cytogenetics, irrespective of age, WBC count, karyotype, and mutation status of NPM1/FLT3-ITD, and CEBPA.

Conclusions

BM Robo4 expression can serve as a new biomarker to predict clinical outcomes in AML patients and Robo4 may serve as a potential therapeutic target in patients with higher Robo4 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号