首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complement cascade includes heat-labile proteins and care is required when handling serum in order to preserve its functional integrity. We have previously used a whole human serum bactericidal assay to show that antibody and an intact complement system are required in blood for killing of invasive isolates of Salmonella. The aim of the present study was to evaluate the conditions under which human serum can be stored and manipulated while maintaining complement integrity. Serum bactericidal activity against Salmonella was maintained for a minimum of 35 days when stored at 4°C, eight days at 22°C and 54 hours at 37°C. Up to three freeze-thaw cycles had no effect on the persistence of bactericidal activity and hemolytic complement assays confirmed no effect on complement function. Delay in the separation of serum for up to four days from clotted blood stored at 22°C did not affect bactericidal activity. Dilution of serum resulted in an increased rate of loss of bactericidal activity and so serum should be stored undiluted. These findings indicate that the current guidelines concerning manipulation and storage of human serum to preserve complement integrity and function leave a large margin for safety with regards to bactericidal activity against Salmonella. The study provides a scheme for determining the requirements for serum handling in relation to functional activity of complement in other systems.  相似文献   

2.
Mycobacterium ulcerans causes Buruli ulcer (BU), a debilitating infection of subcutaneous tissue. There is a WHO-recommended antibiotic treatment requiring an 8-week course of streptomycin and rifampicin. This regime has revolutionized the treatment of BU but there are problems that include reliance on daily streptomycin injections and side effects such as ototoxicity. Trials of all-oral treatments for BU show promise but additional drug combinations that make BU treatment safer and shorter would be welcome. Following on from reports that avermectins have activity against Mycobacterium tuberculosis, we tested the in-vitro efficacy of ivermectin and moxidectin on M. ulcerans. We observed minimum inhibitory concentrations of 4–8 μg/ml and time-kill assays using wild type and bioluminescent M. ulcerans showed a significant dose-dependent reduction in M. ulcerans viability over 8-weeks. A synergistic killing-effect with rifampicin was also observed. Avermectins are well tolerated, widely available and inexpensive. Based on our in vitro findings we suggest that avermectins should be further evaluated for the treatment of BU.  相似文献   

3.
Myotubularin-related protein 6 (MTMR6) is a catalytically active member of the myotubularin (MTM) family, which is composed of 14 proteins. Catalytically active myotubularins possess 3-phosphatase activity dephosphorylating phosphatidylinositol-3-phoshate and phosphatidylinositol-3,5-bisphosphate, and some members have been shown to form homomers or heteromeric complexes with catalytically inactive myotubularins. We demonstrate that human MTMR6 forms a heteromer with an enzymatically inactive member myotubularin-related protein 9 (MTMR9), both in vitro and in cells. MTMR9 increased the binding of MTMR6 to phospholipids without changing the lipid binding profile. MTMR9 increased the 3-phosphatase activity of MTMR6 up to 6-fold. We determined that MTMR6 is activated up to 28-fold in the presence of phosphatidylserine liposomes. Together, MTMR6 activity in the presence of MTMR9 and assayed in phosphatidylserine liposomes increased 84-fold. Moreover, the formation of this heteromer in cells resulted in increased protein levels of both MTMR6 and MTMR9, probably due to the inhibition of degradation of both proteins. Furthermore, co-expression of MTMR6 and MTMR9 decreased etoposide-induced apoptosis, whereas decreasing both MTMR6 and MTMR9 by RNA interference led to increased cell death in response to etoposide treatment when compared with that seen with RNA interference of MTMR6 alone. Thus, MTMR9 greatly enhances the functions of MTMR6.Myotubularin proteins are a family of 14 proteins with the canonical dual specificity protein tyrosine phosphatase active site CX5R motif (13). Eight members of the myotubularin family possess catalytic activity, dephosphorylating phosphatidylinositol 3-phosphate (PtdIns-3-P)4 and phosphatidylinositol 3,5-bisphosphate (PtdIns-3,5-P2) at the D-3 position, and six members are not catalytically active because they lack the conserved cysteine residue in the protein tyrosine phosphatase motif that is required for activity. Interest in this group of proteins originated from the genetic evidence linking myotubularin, the founding member of this family, to myotubular myopathy, an X-linked disorder characterized by severe hypotonia and generalized muscle weakness (4). Subsequently, mutations in MTMR2 and in its inactive binding partner MTMR13 were linked to a subset of Charcot-Marie-Tooth disease type 4B, a demyelinating neurodegenerative disorder (5, 6).Despite near identical substrate specificity, biochemical and genetic evidence supports the hypothesis that myotubularin proteins are not redundant and have unique functions within cells (2, 79). The mechanisms by which loss of function of myotubularin proteins produce diseases are not known. Current evidence supports the hypothesis that each myotubularin protein regulates a specific pool of PtdIns-3-P and/or PtdIns-3,5-P2, which in turn regulates a variety of cellular functions. Differences in tissue expression and subcellular localization play a role in the specificity of different myotubularins (1015).The functions of myotubularin proteins are altered by the formation of heteromers between catalytically active and inactive members of the family. The initial biochemical purification of MTM1 demonstrated the presence of MTM1 homodimers and MTM1-3-phosphatase adapter protein (3PAP) heteromers (16), which was later described as MTMR12 (15, 17). MTMR2 was found to form heteromers with MTMR5 (13) and MTMR13 (18), and MTMR7 formed heteromers with MTMR9 (19). In each case, a catalytically active myotubularin protein interacted with an inactive protein. Heteromerization generated two important effects: increased catalytic activity of the active component (13, 15, 19, 20) and targeting of the heteromer to specific subcellular locations (15). Mutations in the inactive member MTMR13 result in a similar phenotype in patients as the mutations in its catalytically active binding partner MTMR2, indicating an indispensable role for the catalytically inactive subunit (21).Myotubularin proteins can be grouped into subfamilies based on homology. Closely related MTMR6, MTMR7, and MTMR8 comprise such a subfamily. We have previously characterized the interaction between mouse MTMR7 and MTMR9 proteins (19). In this report, we characterize the interaction between human MTMR6 and MTMR9. MTMR6 and MTMR9 have been shown to form a heteromeric complex in mouse and Caenorhabditis elegans (19, 22). MTMR6 has been shown to inhibit the activity of a calcium-activated potassium channel (type KCa3.1) (23, 24). Two screening experiments implicate MTMR6 as a regulator of apoptosis. By RNA microarray analysis, increased MTMR6 expression was observed in B cell chronic lymphoid leukemia cells with increased resistance to irradiation-induced apoptosis (25), whereas in an RNA interference screen in HeLa cells, decreased MTMR6 expression promoted apoptosis (26).Here we show that MTMR6 interacts with MTMR9 in vitro and in human cells. This interaction increases the phospholipid binding and enzymatic activity of MTMR6 in vitro. Co-expression of either subunit in cells dramatically increased the protein levels of the individual binding partners, suggesting that heteromer formation increases the stability of the proteins. Finally, MTMR9 was found to potentiate the effects of MTMR6 on apoptosis.  相似文献   

4.
大肠杆菌拓扑异构酶 I(E. coli TopA)属于 I 型拓扑异构酶,在DNA复制、转录、重组和基因表达调控等过程中发挥关键作用。E. coli TopA 不仅能结合锌,还可以结合铁。细胞内过量铁可与锌竞争,通过与锌指结构域结合减弱其 DNA 结合能力和改变蛋白质空间构象,从而抑制TopA拓扑异构酶活性。然而,铁结合形式TopA的氧化还原特性以及氧化还原条件对其活性的影响仍不清楚。本研究通过紫外分光光谱和体外DNA拓扑异构酶活性分析,发现体外纯化得到的铁结合形式的 TopA 呈氧化状态,能够被二硫苏糖醇和连二亚硫酸钠还原,原本氧化状态下无活性的TopA在还原条件下,可恢复其拓扑异构酶活性。当还原剂被去除后,铁结合的TopA在空气中能够重新被氧化,且其活性重新受到抑制。这说明,氧化还原条件对铁结合的 TopA 功能具有可逆调节作用。通过金属 蛋白体外结合实验进一步发现,无金属结合的TopA蛋白(apo-TopA)在无氧条件下,与 Fe2+ 和 Fe3+ 均能结合,但与Fe2+ 结合能力较弱,并且TopA结合的Fe3+ 被还原成Fe2+ 后,结合力显著下降,能够被铁螯合指示剂菲咯嗪快速捕获。此外,蛋白质内源性荧光光谱分析实验表明,铁结合的TopA在氧化还原的不同状态时,其在330 nm左右的荧光值有显著差异。这提示,氧化还原条件可能通过影响铁离子与TopA的结合状态,引起蛋白质空间构象改变,从而对TopA的拓扑异构酶活性进行调节。此研究表明,铁结合TopA的拓扑异构酶活性会受到细胞内氧化还原信号的可逆调控,也提示I型拓扑异构酶可能是细胞铁超载通过氧化损伤引起细胞功能障碍(或铁死亡)的靶点之一。  相似文献   

5.
Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin), compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes.  相似文献   

6.
As fight against antibiotic resistance must be strengthened, improving old drugs that have fallen in reduced clinical use because of toxic side effects and/or frequently reported resistance, like chloramphenicol (CAM), is of special interest. Chloramphenicol (CAM), a prototypical wide-spectrum antibiotic has been shown to obstruct protein synthesis via binding to the bacterial ribosome. In this study we sought to identify features intensifying the bacteriostatic action of CAM. Accordingly, we synthesized a series of CAM-dimers with various linker lengths and functionalities and compared their efficiency in inhibiting peptide-bond formation in an Escherichia coli cell-free system. Several CAM-dimers exhibited higher activity, when compared to CAM. The most potent of them, compound 5, containing two CAM bases conjugated via a dicarboxyl aromatic linker of six successive carbon-bonds, was found to simultaneously bind both the ribosomal catalytic center and the exit-tunnel, thus revealing a second, kinetically cryptic binding site for CAM. Compared to CAM, compound 5 exhibited comparable antibacterial activity against MRSA or wild-type strains of Staphylococcus aureus, Enterococcus faecium and E. coli, but intriguingly superior activity against some CAM-resistant E. coli and Pseudomonas aeruginosa strains. Furthermore, it was almost twice as active in inhibiting the growth of T-leukemic cells, without affecting the viability of normal human lymphocytes. The observed effects were rationalized by footprinting tests, crosslinking analysis, and MD-simulations.  相似文献   

7.
Aerobic organisms are faced with a dilemma. Environmental iron is found primarily in the relatively inert Fe(III) form, whereas the more metabolically active ferrous form is a strong pro-oxidant. This conundrum is solved by the redox cycling of iron between Fe(III) and Fe(II) at every step in the iron metabolic pathway. As a transition metal ion, iron can be “metabolized” only by this redox cycling, which is catalyzed in aerobes by the coupled activities of ferric iron reductases (ferrireductases) and ferrous iron oxidases (ferroxidases).  相似文献   

8.
Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is an urgent need to develop drugs that are efficacious, safe, and more accessible to patients. Trypanosomatids, including Leishmania spp. and Trypanosoma cruzi, have an essential requirement for ergosterol and other 24-alkyl sterols, which are absent in mammalian cells. Inhibition of ergosterol biosynthesis is increasingly recognized as a promising target for the development of new chemotherapeutic agents. The aim of this work was to investigate the antiproliferative, physiological and ultrastructural effects against Leishmania amazonensis of itraconazole (ITZ) and posaconazole (POSA), two azole antifungal agents that inhibit sterol C14α-demethylase (CYP51). Antiproliferative studies demonstrated potent activity of POSA and ITZ: for promastigotes, the IC50 values were 2.74 µM and 0.44 µM for POSA and ITZ, respectively, and for intracellular amastigotes, the corresponding values were 1.63 µM and 0.08 µM, for both stages after 72 h of treatment. Physiological studies revealed that both inhibitors induced a collapse of the mitochondrial membrane potential (ΔΨm), which was consistent with ultrastructural alterations in the mitochondrion. Intense mitochondrial swelling, disorganization and rupture of mitochondrial membranes were observed by transmission electron microscopy. In addition, accumulation of lipid bodies, appearance of autophagosome-like structures and alterations in the kinetoplast were also observed. In conclusion, our results indicate that ITZ and POSA are potent inhibitors of L. amazonensis and suggest that these drugs could represent novel therapies for the treatment of leishmaniasis, either alone or in combination with other agents.  相似文献   

9.
This study investigated the potential antibacterial activity of three series of compounds synthesized from 12 linear and branched polyamines with 2–8 amino groups, which were substituted to produce the corresponding guanides, biguanides, or phenylguanides, against Acinetobacter baumannii, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Antibacterial activity was measured for each compound by determining the minimum inhibitory concentration against the bacteria, and the toxicity towards mammalian cells was determined. The most effective compound, THAM trisphenylguanide, was studied in time-to-kill and cytoplasmic leakage assays against methicillin-resistant Staphylococcus aureus (MRSA, USA300) in comparison to chlorhexidine. Preliminary toxicity and MRSA challenge studies in mice were also conducted on this compound. THAM trisphenylguanide showed significant antibacterial activity (MIC ∼1 mg/L) and selectivity against MRSA relative to all the other bacteria examined. In time-to-kill assays it showed increased antimicrobial activity against MRSA versus chlorhexidine. It induced leakage of cytoplasmic content at concentrations that did not reduce cell viability, suggesting the mechanism of action may involve membrane disruption. Using an intraperitoneal mouse model of invasive MRSA disease, THAM trisphenylguanide reduced bacterial burden locally and in deeper tissues. This study has identified a novel guanide compound with selective microbicidal activity against Staphylococcus aureus, including a methicillin-resistant (MRSA) strain.  相似文献   

10.
Ascaris suum and Ascaris lumbricoides are two closely related geo-helminth parasites that ubiquitously infect pigs and humans, respectively. Ascaris suum infection in pigs is considered a good model for A. lumbricoides infection in humans because of a similar biology and tissue migration to the intestines. Ascaris lumbricoides infections in children are associated with malnutrition, growth and cognitive stunting, immune defects, and, in extreme cases, life-threatening blockage of the digestive tract and aberrant migration into the bile duct and peritoneum. Similar effects can be seen with A. suum infections in pigs related to poor feed efficiency and performance. New strategies to control Ascaris infections are needed largely due to reduced treatment efficacies of current anthelmintics in the field, the threat of resistance development, and the general lack of new drug development for intestinal soil-transmitted helminths for humans and animals. Here we demonstrate for the first time that A. suum expresses the receptors for Bacillus thuringiensis crystal protein and novel anthelmintic Cry5B, which has been previously shown to intoxicate hookworms and which belongs to a class of proteins considered non-toxic to vertebrates. Cry5B is able to intoxicate A. suum larvae and adults and triggers the activation of the p38 mitogen-activated protein kinase pathway similar to that observed with other nematodes. Most importantly, two moderate doses of 20 mg/kg body weight (143 nM/kg) of Cry5B resulted in a near complete cure of intestinal A. suum infections in pigs. Taken together, these results demonstrate the excellent potential of Cry5B to treat Ascaris infections in pigs and in humans and for Cry5B to work effectively in the human gastrointestinal tract.  相似文献   

11.
12.
13.
Glycyrrhizin (GL) has been used in Japan to treat patients with chronic viral hepatitis, as an anti-inflammatory drug to reduce serum alanine aminotransferase levels. GL is also known to exhibit various biological activities, including anti-viral effects, but the anti-hepatitis C virus (HCV) effect of GL remains to be clarified. In this study, we demonstrated that GL treatment of HCV-infected Huh7 cells caused a reduction of infectious HCV production using cell culture-produced HCV (HCVcc). To determine the target step in the HCV lifecycle of GL, we used HCV pseudoparticles (HCVpp), replicon, and HCVcc systems. Significant suppressions of viral entry and replication steps were not observed. Interestingly, extracellular infectivity was decreased, and intracellular infectivity was increased. By immunofluorescence and electron microscopic analysis of GL treated cells, HCV core antigens and electron-dense particles had accumulated on endoplasmic reticulum attached to lipid droplet (LD), respectively, which is thought to act as platforms for HCV assembly. Furthermore, the amount of HCV core antigen in LD fraction increased. Taken together, these results suggest that GL inhibits release of infectious HCV particles. GL is known to have an inhibitory effect on phospholipase A2 (PLA2). We found that group 1B PLA2 (PLA2G1B) inhibitor also decreased HCV release, suggesting that suppression of virus release by GL treatment may be due to its inhibitory effect on PLA2G1B. Finally, we demonstrated that combination treatment with GL augmented IFN-induced reduction of virus in the HCVcc system. GL is identified as a novel anti-HCV agent that targets infectious virus particle release.  相似文献   

14.

Background

As plans to expand mass drug treatment campaigns to fight schistosomiasis form, worries about reliance on praziquantel as the sole available treatment motivate the investigation for novel antischistosomal compounds. Drug repurposing might be an inexpensive and effective source of novel antischistosomal leads.

Methodology

1600 FDA approved compounds were first assayed against Schistosoma mansoni schistosomula at a concentration of 10 µM. Active compounds identified from this screen were advanced to the adult worm screen at 33.33 µM, followed by hit characterization. Leads with complementary pharmacokinetic and toxicity profiles were then selected for in vivo studies.

Principal Findings

The in vitro screen identified 121 and 36 compounds active against the schistosomula and adult stage, respectively. Further, in vitro characterization and comparison with already available pharmacokinetic and toxicity data identified 11 in vivo candidates. Doramectin (10 mg/kg) and clofazimine (400 mg/kg) were found to be active in vivo with worm burden reductions of 60.1% and 82.7%, respectively.

Conclusions/Significance

The work presented here expands the knowledge of antischistosomal properties of already approved compounds and underscores variations observed between target-based and phenotypic approaches and among laboratories. The two in vivo-active drugs identified in this study, doramectin and clofazimine are widely available and present as novel drug classes as starting points for further investigation.  相似文献   

15.
The most evident challenge to treatment of Helicobacter pylori, a bacterium responsible for gastritis, peptic ulcers and gastric cancer, is the increasing rate of resistance to all currently used therapeutic antibiotics. Thus, the development of novel therapies is urgently required. N-geranyl-N''-(2-adamantyl) ethane-1, 2-diamine (SQ109) is an ethylene diamine-based antitubercular drug that is currently in clinical trials for the treatment of tuberculosis (TB). Previous pharmacokinetic studies of SQ109 revealed that persistently high concentrations of SQ109 remain in the stomach 4 hours post oral administration in rats. This finding, combined with the need for new anti- Helicobacter therapies, prompted us to define the in vitro efficacy of SQ109 against H. pylori. Liquid broth micro-dilution was used for susceptibility studies to determine the antimicrobial activity of SQ109 against a total of 6 laboratory strains and 20 clinical isolates of H. pylori; the clinical isolates included a multi-drug resistant strain. All strains tested were susceptible to SQ109 with MIC and MBC ranges of 6-10 µM and 50-60 µM, respectively. SQ109 killing kinetics were concentration- and time-dependent. SQ109 killed H. pylori in 8-10 h at 140 µM (2MBCs) or 4-6 h at 200 µM (~3MBCs). Importantly, though the kinetics of killing were altered, SQ109 retained potent bactericidal activity against H. pylori at low pH. Additionally, SQ109 demonstrated robust thermal stability and was effective at killing slow growing or static bacteria. In fact, pretreatment of cultures with a bacteriostatic concentration of chloramphenicol (Cm) synergized the effects of typically bacteriostatic concentrations of SQ109 to the level of five-logs of bacterial killing. A molar-to-molar comparison of the efficacy of SQ109 as compared to metronidazole (MTZ), amoxicillin (AMX), rifampicin (RIF) and clarithromycin (CLR), revealed that SQ109 was superior to MTZ, AMX and RIF but not to CLR. Finally, the frequency of resistance to SQ109 was low and electron microscopy studies revealed that SQ109 interacted with bacterial inner membrane and cytoplasmic content(s). Collectively, our in vitro data demonstrate that SQ109 is an effective monotherapy against susceptible and multi-drug resistant strains of H. pylori and may be useful alone or in combination with other antibiotics for development as a new class of anti- Helicobacter drugs.  相似文献   

16.
Helicobacter pylori infects approximately half of the world population and is a major cause of gastritis, peptic ulcer, and gastric cancer. Moreover, this bacterium has quickly developed resistance to all major antibiotics. Recently, we developed a novel liposomal linolenic acid (LipoLLA) formulation, which showed potent bactericidal activity against several clinical isolated antibiotic-resistant strains of H. pylori including both the spiral and coccoid form. In addition, LipoLLA had superior in vivo efficacy compared to the standard triple therapy. Our data showed that LipoLLA associated with H. pylori cell membrane. Therefore, in this study, we investigated the possible antibacterial mechanism of LipoLLA against H. pylori. The antibacterial activity of LipoLLA (C18:3) was compared to that of liposomal stearic acid (LipoSA, C18:0) and oleic acid (LipoOA, C18:1). LipoLLA showed the most potent bactericidal effect and completely killed H. pylori within 5 min. The permeability of the outer membrane of H. pylori increased when treated with LipoOA and LipoLLA. Moreover, by detecting released adenosine triphosphate (ATP) from bacteria, we found that bacterial plasma membrane of H. pylori treated with LipoLLA exhibited significantly higher permeability than those treated with LipoOA, resulting in bacteria cell death. Furthermore, LipoLLA caused structural changes in the bacterial membrane within 5 min affecting membrane integrity and leading to leakage of cytoplasmic contents, observed by both transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Our findings showing rapid bactericidal effect of LipoLLA suggest it is a very promising new, effective anti-H. pylori agent.  相似文献   

17.
The ability to acquire iron from various sources has been demonstrated to be a major determinant in the pathogenesis of Neisseria meningitidis. Outside the cells, iron is bound to transferrin in serum, or to lactoferrin in mucosal secretions. Meningococci can extract iron from iron-loaded human transferrin by the TbpA/TbpB outer membrane complex. Moreover, N. meningitidis expresses the LbpA/LbpB outer membrane complex, which can extract iron from iron-loaded human lactoferrin. Iron transport through the outer membrane requires energy provided by the ExbB-ExbD-TonB complex. After transportation through the outer membrane, iron is bound by periplasmic protein FbpA and is addressed to the FbpBC inner membrane transporter. Iron-complexing compounds like citrate and pyrophosphate have been shown to support meningococcal growth ex vivo. The use of iron pyrophosphate as an iron source by N. meningitidis was previously described, but has not been investigated. Pyrophosphate was shown to participate in iron transfer from transferrin to ferritin. In this report, we investigated the use of ferric pyrophosphate as an iron source by N. meningitidis both ex vivo and in a mouse model. We showed that pyrophosphate was able to sustain N. meningitidis growth when desferal was used as an iron chelator. Addition of a pyrophosphate analogue to bacterial suspension at millimolar concentrations supported N. meningitidis survival in the mouse model. Finally, we show that pyrophosphate enabled TonB-independent ex vivo use of iron-loaded human or bovine transferrin as an iron source by N. meningitidis. Our data suggest that, in addition to acquiring iron through sophisticated systems, N. meningitidis is able to use simple strategies to acquire iron from a wide range of sources so as to sustain bacterial survival.  相似文献   

18.
Following the discovery of synergistic action between oxacillin and manuka honey against methicillin-resistant Staphylococcus aureus, this study was undertaken to search for further synergistic combinations of antibiotics and honey that might have potential in treating wounds. Fifteen antibiotics were tested with and without sublethal concentrations of manuka honey against each of MRSA and Pseudomonas aeruginosa using disc diffusion, broth dilution, E strip, chequerboard titration and growth curves. Five novel antibiotic and manuka honey combinations were found that improved antibacterial effectiveness in vitro and these offer a new avenue of future topical treatments for wound infections caused by these two important pathogens.  相似文献   

19.
Hepatitis C viral infection affects 170 million people worldwide. It causes serious chronic liver diseases. HCV infection has been implicated in iron accumulation in the liver and iron overload has been shown to be a potential cofactor for HCV associated hepatocellular carcinoma progression. The underlying mechanisms are not understood. Human hepcidin, a 25 amino acid peptide mainly produced by hepatocytes, is a key regulator of iron metabolism. Alteration of hepcidin expression levels has been reported in the setting of chronic HCV infection and hepatocellular carcinoma. In this study, we aim to examine the interactions between HCV infection and hepcidin expression in liver cells. We found that hepcidin expression was suppressed in HCV infected cells. The suppressive effect appears to be regulated by histone acetylation but not DNA methylation. Moreover, we found that hepcidin had a direct antiviral activity against HCV replication in cell culture. The antiviral effect is associated with STAT3 activation. In conclusion, hepcidin can induce intracellular antiviral state while HCV has a strategy to suppress hepcidin expression. This may be a novel mechanism by which HCV circumvents hepatic innate antiviral defense.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号