首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms contributing to an increased risk of thrombosis in uremia are complex and require clarification. There is scant morphological evidence of membrane-dependent binding of factor Xa (FXa) and factor Va (FVa) on endothelial cells (EC) in vitro. Our objectives were to confirm that exposed phosphatidylserine (PS) on microparticle (MP), EC, and peripheral blood cell (PBC) has a prothrombotic role in uremic patients and to provide visible and morphological evidence of PS-dependent prothrombinase assembly in vitro. We found that uremic patients had more circulating MP (derived from PBC and EC) than controls. Additionally, patients had more exposed PS on their MPs and PBCs, especially in the hemodialysis group. In vitro, EC exposed more PS in uremic toxins or serum. Moreover, reconstitution experiments showed that at the early stages, PS exposure was partially reversible. Using confocal microscopy, we observed that PS-rich membranes of EC and MP provided binding sites for FVa and FXa. Further, exposure of PS in uremia resulted in increased generation of FXa, thrombin, and fibrin and significantly shortened coagulation time. Lactadherin, a protein that blocks PS, reduced 80% of procoagulant activity on PBC, EC, and MP. Our results suggest that PBC and EC in uremic milieu are easily injured or activated, which exposes PS and causes a release of MP, providing abundant procoagulant membrane surfaces and thus facilitating thrombus formation. Blocking PS binding sites could become a new therapeutic target for preventing thrombosis.  相似文献   

2.
Coagulation factor Xa appears involved in the pathogenesis of pulmonary fibrosis. Through its interaction with protease activated receptor-1, this protease signals myofibroblast differentiation in lung fibroblasts. Although fibrogenic stimuli induce factor X synthesis by alveolar cells, the mechanisms of local posttranslational factor X activation are not fully understood. Cell-derived microparticles are submicron vesicles involved in different physiological processes, including blood coagulation; they potentially activate factor X due to the exposure on their outer membrane of both phosphatidylserine and tissue factor. We postulated a role for procoagulant microparticles in the pathogenesis of interstitial lung diseases. Nineteen patients with interstitial lung diseases and 11 controls were studied. All subjects underwent bronchoalveolar lavage; interstitial lung disease patients also underwent pulmonary function tests and high resolution CT scan. Microparticles were enumerated in the bronchoalveolar lavage fluid with a solid-phase assay based on thrombin generation. Microparticles were also tested for tissue factor activity. In vitro shedding of microparticles upon incubation with H2O2 was assessed in the human alveolar cell line, A549 and in normal bronchial epithelial cells. Tissue factor synthesis was quantitated by real-time PCR. Total microparticle number and microparticle-associated tissue factor activity were increased in interstitial lung disease patients compared to controls (84±8 vs. 39±3 nM phosphatidylserine; 293±37 vs. 105±21 arbitrary units of tissue factor activity; mean±SEM; p<.05 for both comparisons). Microparticle-bound tissue factor activity was inversely correlated with lung function as assessed by both diffusion capacity and forced vital capacity (r2 = .27 and .31, respectively; p<.05 for both correlations). Exposure of lung epithelial cells to H2O2 caused an increase in microparticle-bound tissue factor without affecting tissue factor mRNA.Procoagulant microparticles are increased in interstitial lung diseases and correlate with functional impairment. These structures might contribute to the activation of factor X and to the factor Xa-mediated fibrotic response in lung injury.  相似文献   

3.
目的:观察急性早幼粒细胞白血病(APL)细胞来源微粒(APL-MP)的促凝活性、表面组织因子(TF)表达情况、TF在其促凝活性中发挥的作用及分化治疗药物三氧化二砷(ATO)对上述指标有何影响。方法:选取3例初发APL患者,提取骨髓APL细胞,3名缺铁性贫血患者提取骨髓单个核细胞作为对照。分别用不同浓度ATO处理APL细胞24 h、48 h、72 h,收集细胞培养液提取微粒。采用流式细胞术对微粒进行定量分析并进行微粒表面TF表达情况检测;利用凝血实验比较不同组细胞释放微粒的促凝血活性;应用抗TF抗体抑制微粒促凝血活性实验检测TF在APL-MP的促凝血活性中发挥多大作用。结果:1.0μM及2.0μM ATO能显著促进APL细胞释放微粒。与正常骨髓来源单个核细胞释放的微粒相比,骨髓APL-MP的TF表达及促凝活性均显著增高,0.5μM及1.0μM ATO处理可以有效降低APL-MP的TF表达及促凝活性,且这一作用呈时间依赖性。各组APL-MP经抗TF抗体孵育后凝血时间显著延长。结论:APL-MP的TF表达和促凝学活性均显著增高,并且TF在APL-MP的促凝血活性中发挥着重要作用。ATO能显著促进APL细胞释放微粒,低浓度ATO可以有效降低APL-MP的TF表达及促凝血活性。  相似文献   

4.
Microparticles, also called microvesicles, are submicron extracellular vesicles produced by plasma membrane budding and shedding recognized as key actors in numerous physio(patho)logical processes. Since they can be released by virtually any cell lineages and are retrieved in biological fluids, microparticles appear as potent biomarkers. However, the small dimensions of microparticles and soluble factors present in body fluids can considerably impede their quantification. Here, flow cytometry with improved methodology for microparticle resolution was used to detect microparticles of human and mouse species generated from platelets, red blood cells, endothelial cells, apoptotic thymocytes and cells from the male reproductive tract. A family of soluble proteins, the secreted phospholipases A2 (sPLA2), comprises enzymes concomitantly expressed with microparticles in biological fluids and that catalyze the hydrolysis of membrane phospholipids. As sPLA2 can hydrolyze phosphatidylserine, a phospholipid frequently used to assess microparticles, and might even clear microparticles, we further considered the impact of relevant sPLA2 enzymes, sPLA2 group IIA, V and X, on microparticle quantification. We observed that if enriched in fluids, certain sPLA2 enzymes impair the quantification of microparticles depending on the species studied, the source of microparticles and the means of detection employed (surface phosphatidylserine or protein antigen detection). This study provides analytical considerations for appropriate interpretation of microparticle cytofluorometric measurements in biological samples containing sPLA2 enzymes.  相似文献   

5.
Elevated levels of erythrocyte-derived microparticles are present in the circulation in medical conditions affecting the red blood cells. Erythrocyte-derived microparticles expose phosphatidylserine thus providing a suitable surface for procoagulant reactions leading to thrombin formation via the tenase and prothrombinase complexes. Patients with elevated levels of circulating erythrocyte-derived microparticles have increased thrombin generation in vivo. The aim of the present study was to investigate whether erythrocyte-derived microparticles are able to support the anticoagulant reactions of the protein C system. Erythrocyte-derived microparticles were isolated using ultracentrifugation after incubation of freshly prepared erythrocytes with the ionophore A23187 or from outdated erythrocyte concentrates, the different microparticles preparations yielding similar results. According to flow cytometry analysis, the microparticles exposed phoshatidylserine and bound lactadherin, annexin V, and protein S, which is a cofactor to activated protein C. The microparticles were able to assemble the tenase and prothrombinase complexes and to stimulate the formation of thrombin in plasma-based thrombin generation assay both in presence and absence of added tissue factor. The addition of activated protein C in the thrombin generation assay inhibited thrombin generation in a dose-dependent fashion. The anticoagulant effect of activated protein C in the thrombin generation assay was inhibited by a monoclonal antibody that prevents binding of protein S to microparticles and also attenuated by anti-TFPI antibodies. In the presence of erythrocyte-derived microparticles, activated protein C inhibited tenase and prothrombinase by degrading the cofactors FVIIIa and FVa, respectively. Protein S stimulated the Arg306-cleavage in FVa, whereas efficient inhibition of FVIIIa depended on the synergistic cofactor activity of protein S and FV. In summary, the erythrocyte-derived microparticle surface is suitable for the anticoagulant reactions of the protein C system, which may be important to balance the initiation and propagation of coagulation in vivo.  相似文献   

6.
BackgroundChemotherapy induces the release of apoptotic vesicles (ApoV) from the tumor plasma membrane. Tumor ApoV may enhance the risk of thrombotic events in cancer patients undergoing chemotherapy. However, the relative contribution of ApoV to coagulation and the pathways involved remain poorly characterized. In addition, this study sets out to compare the procoagulant activity of chemotherapy-induced ApoV with their cell of origin and to determine the mechanisms of ApoV-induced coagulation.MethodsWe utilized human and murine cancer cell lines and chemotherapeutic agents to determine the requirement for the coagulation factors (tissue factor; TF, FII, FV, FVII, FVIII, FIX and phosphatidylserine) in the procoagulant activity of ApoV. The role of previously identified ApoV-associated FV was determined in a FV functional assay.ResultsApoV were significantly more procoagulant per microgram of protein compared to parental living or dying tumor cells. In the phase to peak fibrin generation, procoagulant activity was dependent on phosphatidylserine, TF expression, FVII and the prothrombinase complex. However, the intrinsic coagulation factors FIX and FVIII were dispensable. ApoV-associated FV could not support coagulation in the absence of supplied, exogenous FV.ConclusionsApoV are significantly more procoagulant than their parental tumor cells. ApoV require the extrinsic tenase and prothrombinase complex to activate the early phase of coagulation. Endogenous FV identified on tumor ApoV is serum-derived and functional, but is non-essential for ApoV-mediated fibrin generation.General significanceThis study clarifies the mechanisms of procoagulant activity of vesicles released from dying tumor cells.  相似文献   

7.
While the risk for symptomatic atherosclerotic disease increases after menopause, currently recognized risk factors do not identify ongoing disease processes in low-risk women. This study tested the hypothesis that circulating cell-derived microparticles may reflect disease processes in women defined as low risk by the Framingham risk score. The concentration and phenotype of circulating microparticles were evaluated in a cross-sectional study of apparently healthy menopausal women, screened for enrollment into the Kronos Early Estrogen Prevention Study. Microparticles were evaluated by flow cytometry, and coronary artery calcification (CAC) was scored using 64-slice computed tomography scanners. The procoagulant activity of isolated microparticles was determined with a sensitive fluorescent thrombin generation assay. Chronological age, body mass index, serum lipids, systolic blood pressure (Framingham risk score < 10%, range 1-3%), and high-sensitivity C-reactive protein did not differ significantly among women with low (0 < 35; range, 0.3-32 Agatston units) or high (>50; range, 93-315 Agatston units) CAC compared with women without calcification. The total concentration and percentage of microparticles derived from platelets and endothelial cells were greatest in women with high CAC scores. The thrombin-generating capacity of the isolated microparticles correlated with phosphatidylserine expression, which also was greatest in women with high CAC scores. The percentages of microparticles expressing granulocyte and monocyte markers were not significantly different among groups. Therefore, the characterization of platelet and endothelial microparticles may identify early menopausal women with premature CAC who would not otherwise be identified by the usual risk factor analysis.  相似文献   

8.
9.
Cardiovascular disease (CVD) is now the largest killer in western society, and the importance of interactions between vascular endothelium and circulating blood components in disease pathogenesis is well established. Microparticles are a heterogeneous population of <1 μm blood borne particles that arise from blebbing or shedding of cell membranes. The microparticle population includes several classes of apoptotic bodies; however, increased numbers of procoagulant microparticles have been described in plasma from people with CVD. We have previously demonstrated that interactions of monocytes and platelets with isolated inflamed endothelial cells lead to production of pro-coagulant tissue factor bearing microparticles under laminar flow conditions. Here we have investigated microparticle production after perfusion of human whole blood through intact inflamed human umbilical artery. When blood was perfused through umbilical arteries which had been pre-stimulated with tumour necrosis factor (TNFα) for 18 h under flow conditions, there was significantly increased production of microparticles from both platelet and non-platelet sources, in particular from erythrocytes. To determine whether microparticles generated during interactions with inflamed endothelium could induce a pro-inflammatory response in trans, we isolated microparticles by centrifugation after co-culture and incubated with isolated quiescent endothelial cells followed by measurement of reactive oxygen species formation. Microparticles derived from co-culture with inflamed endothelium induced significantly enhanced levels of reactive oxygen species (ROS). These data suggest that presence of an inflamed endothelium causes release of pro-inflammatory microparticles from circulating blood cells, which could contribute to prolonged endothelial activation and subsequent atherosclerotic changes in blood vessels subjected to inflammatory insult.  相似文献   

10.
Increased homocysteine (Hcy) levels in plasma correlate with the risk of thromboic events. Red blood cells (RBCs), the most abundant blood cells in circulation, also play an active role in the process of thrombus formation. However, the effect of Hcy on procoagulant activity (PCA) of RBCs is unclear. In the present study, RBCs from healthy adults were treated with Hcy (8, 20, 80, 200, 800 μmol/L) for 24 h. Phosphatidylserine (PS) exposure of RBCs and red blood cell-derived microparticles (RMPs) release were detected using Alexa Fluor 488-lactadherin. PCA was assessed by coagulation time and purified clotting complexes testes. We found that Hcy treatment dose dependently enhanced PS exposure and consequent PCA of RBCs. Hcy also elevated the formation of procoagulant RMPs, with statistical significance at 800 μmol/L of Hcy. Moreover, 128 nmol/L lactadherin inhibited about 90 % PCA of RBCs and RMPs. Our data suggest that PS exposure and RMPs shedding are key sources for Hcy-induced PCA of RBCs. Lactadherin could be used to modulate the anticoagulant and procoagulant balance in this process.  相似文献   

11.
The membrane microparticle (MP) formation and phosphatidylserine (PS) exposure evoked by platelet activation provide catalytic surfaces for thrombin generation. Several reports have indicated the effects of cAMP-elevating agents on agonist-induced MP formation and PS exposure; however, the mechanism still remains unclear. Here we show that inhibition of basal cyclic AMP-dependent protein kinase (PKA) activity incurred platelet MP formation and PS exposure. Pretreatment of platelets with cAMP-elevating agent, forskolin, abolished thrombin plus collagen-induced MP formation and PS exposure, and obviously decreased calcium ionophore-evoked MP shedding. Moreover, the inhibitory effects of forskolin on agonists-induced MP formation and PS exposure were reversed by the PKA inhibitor H89. PKA inhibitor-induced MP formation was dose-dependently inhibited by calpain inhibitor MDL28170, and forskolin abrogated thrombin plus collagen-induced calpain activation. In conclusion, PKA plays key roles in the regulation of platelet MP formation and PS exposure. PKA-mediated MP shedding is dependent on calpain activation.  相似文献   

12.

Aim

Circulating endothelial cells and microparticles are prognostic factors in cancer. However, their prognostic and predictive value in patients with glioblastoma is unclear. The objective of this study was to investigate the potential prognostic value of circulating endothelial cells and microparticles in patients with newly diagnosed glioblastoma treated with standard radiotherapy and concomitant temozolomide. In addition, we have analyzed the methylation status of the MGMT promoter.

Methods

Peripheral blood samples were obtained before and at the end of the concomitant treatment. Blood samples from healthy volunteers were also obtained as controls. Endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Microparticles were quantified by flow cytometry. Microparticle-mediated procoagulant activity was measured by endogen thrombin generation and by phospholipid-dependent clotting time. Methylation status of MGMT promoter was determined by multiplex ligation-dependent probe amplification.

Results

Pretreatment levels of circulating endothelial cells and microparticles were higher in patients than in controls (p<0.001). After treatment, levels of microparticles and thrombin generation decreased, and phospholipid-dependent clotting time increased significantly. A high pretreatment endothelial cell count, corresponding to the 99th percentile in controls, was associated with poor overall survival. MGMT promoter methylation was present in 27% of tumor samples and was associated to a higher overall survival (66 weeks vs 30 weeks, p<0.004).

Conclusion

Levels of circulating endothelial cells may have prognostic value in patients with glioblastoma.  相似文献   

13.
目的:探讨胃癌患者血浆中组织因子阳性的血小板、白细胞和微粒的数量及其促凝活性。方法:将45例胃癌患者根据TNM分期分为Ⅰ、Ⅱ、Ⅲ、Ⅳ期,同时选取30例健康人作为对照组。采用流式细胞术检测组织因子阳性的细胞和微粒数。凝血酶生成实验检测细胞和微粒的凝血活性。结果:胃癌Ⅲ/Ⅳ期患者血浆中组织因子阳性的血小板、中性粒细胞、单核细胞和微粒的数量明显高于胃癌Ⅰ/Ⅱ期和健康对照组。胃癌Ⅲ/Ⅳ期患者血小板、白细胞和微粒的促凝活性与其他组相比显著升高,与增加凝血酶的生成速度和生成总量有关。用抗组织因子抗体抑制TF后,细胞和微粒的凝血活性明显下降。然而,使用抗膜连蛋白V抑制PS后,细胞和微粒的凝血活性虽然有下降趋势,但是并不明显。此外,根治性手术治疗可以降低组织因子阳性的血小板、中性粒细胞、单核细胞和微粒的数量。结论:组织阳性的血小板、中性粒细胞、单核细胞和微粒是胃癌Ⅲ/Ⅳ患者高凝状态的原因之一,通过抑制TF和凝血酶的生成可能降低胃癌患者的血栓发生率。  相似文献   

14.

Background

15% of reproducing couples suffer from pregnancy loss(PL) and recurs in 2-3%. One of the most frequently hypothesized causes of unexplained PL refers to a defective maternal haemostatic response leading to uteroplacental thrombosis. Hereditary thrombophilia and antiphospholipid antibodies have been extensively described as risk factors for PL in women with unknown aetiology. Recently, a new marker has emerged: the cell-derived procoagulant circulating microparticles(MPs) which have been reported to have a major role in many thrombosis complicated diseases. This study aims to analyze the significance of procoagulant MPs in women suffering from unexplained recurrent pregnancy loss(RPL), and characterize their cellular origin.

Method and Findings

115 women with RPL were analyzed for common thrombophilia markers and different cell derived MPs-total annexinV, platelet(CD41a), endothelial(CD146,CD62e), leukocyte(CD45), erythrocyte(CD235a) and tissue factor(CD142)(TF) expressing MPs and were compared with 20 healthy non-pregnant women. Methodology for MP analysis was standardized by participating in the “Vascular Biology Scientific and Standardization Committee workshop”.

Results

Total annexinV, TF and endothelial MPs were found significantly increased(p<0.05, 95% confidence interval) in women with RPL. The procoagulant activity of MPs measured by STA-PPL clotting time assay was found in correspondence with annexinV MP levels, wherein the clot time was shortened in samples with increased MP levels. Differences in platelet, leukocyte and erythrocyte derived MPs were not significant. Thirty seven of 115 women were found to carry any of the acquired or hereditary thrombophilia markers. No significant differences were seen in the MP profile of women with and without thrombophilia marker.

Conclusion

The presence of elevated endothelial, TF and phosphatidylserine expressing MPs at a distance (at least 3 months) from the PL suggests a continued chronic endothelial damage/activation which may get exaggerated at the onset of pregnancy. The data suggests that MPs may contribute to uteroplacental thrombosis and are associated with the pathogenesis of RPL.  相似文献   

15.

Purpose

Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke.

Methods

Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3–7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls.

Results

Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions.

Conclusions

Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger cerebral lesions associate with deeper vessel injury affecting vascular smooth muscle cells.  相似文献   

16.
High plasma levels of soluble P-selectin are associated with thrombotic disorders and may predict future cardiovascular events. Mice with high levels of soluble P-selectin have more microparticles in their plasma than do normal mice. Here we show that chimeras of P-selectin and immunoglobulin (P-sel-Ig) induced formation of procoagulant microparticles in human blood through P-selectin glycoprotein ligand-1 (PSGL-1; encoded by the Psgl1 gene, officially known as Selpl). In addition, Psgl1-/- mice produced fewer microparticles after P-sel-Ig infusion and did not spontaneously increase their microparticle count in old age as do wild-type mice. Injected microparticles specifically bound to thrombi and thus could be involved in thrombin generation at sites of injury. Infusion of P-sel-Ig into hemophilia A mice produced a 20-fold increase over control immunoglobulin in microparticles containing tissue factor. This significantly improved the kinetics of fibrin formation in the hemophilia A mice and normalized their tail-bleeding time. P-sel-Ig treatment could become a new approach to sustained control of bleeding in hemophilia.  相似文献   

17.
Zhu J  Xie R  Piao X  Hou Y  Zhao C  Qiao G  Yang B  Shi J  Lu Y 《Amino acids》2012,43(3):1243-1250
Total elevated plasma homocysteine (Hcy) is a risk factor for thromboembolism. Vascular endothelium is important to regulate coagulation, but the impact of Hcy on the clot-promoting activity (CPA) of endothelial cells has not been fully understood. In our study, human umbilical vein endothelial cells (HUVECs) were treated with Hcy (8, 20, 80, 200, 800?μmol/L) for 24?h. Annexin V was utilized to detect phosphatidylserine (PS) externalization and endothelial microparticles (MPs) formation. CPA was assessed by recalcification time and purified clotting complex tests. We found that Hcy enhanced the externalized PS and consequent CPA of HUVECs in a dose-dependent fashion, effect of Hcy had statistical significance at 800?μmol/L. In addition, Hcy also increased the shedding of procoagulant endothelial MPs. Blocking of PS with 128?nmol/L annexin V reduced approximately 70% CPA of HUVECs and endothelial MPs, but human anti-tissue factor antibody had little inhibitive effect. Our results showed that Hcy increased CPA of HUVECs via PS externalization and MPs release. Our present study has implications for hyperhomocysteinemia-related hypercoagulability.  相似文献   

18.

Background & Aims

Ischemia–reperfusion injury (IRI) can cause hepatic failure after liver surgery or transplantation. IRI causes oxidative stress, which injures sinusoidal endothelial cells (SECs), leading to recruitment and activation of Kupffer cells, platelets and microcirculatory impairment. We investigated whether injured SECs and other cell types release microparticles during post-ischemic reperfusion, and whether such microparticles have pro-inflammatory, platelet-activating and pro-injurious effects that could contribute to IRI pathogenesis.

Methods

C57BL6 mice underwent 60 min of partial hepatic ischemia followed by 15 min–24 hrs of reperfusion. We collected blood and liver samples, isolated circulating microparticles, and determined protein and lipid content. To establish mechanism for microparticle production, we subjected murine primary hepatocytes to hypoxia-reoxygenation. Because microparticles express everted phosphatidylserine residues that are the target of annexin V, we analyzed the effects of an annexin V-homodimer (Diannexin or ASP8597) on post-ischemia microparticle production and function.

Results

Microparticles were detected in the circulation 15–30 min after post-ischemic reperfusion, and contained markers of SECs, platelets, natural killer T cells, and CD8+ cells; 4 hrs later, they contained markers of macrophages. Microparticles contained F2-isoprostanes, indicating oxidative damage to membrane lipids. Injection of mice with TNF-α increased microparticle formation, whereas Diannexin substantially reduced microparticle release and prevented IRI. Hypoxia-re-oxygenation generated microparticles from primary hepatocytes by processes that involved oxidative stress. Exposing cultured hepatocytes to preparations of microparticles isolated from the circulation during IRI caused injury involving mitochondrial membrane permeability transition. Microparticles also activated platelets and induced neutrophil migration in vitro. The inflammatory properties of microparticles involved activation of NF-κB and JNK, increased expression of E-selectin, P-selectin, ICAM-1 and VCAM-1. All these processes were blocked by coating microparticles with Diannexin.

Conclusions

Following hepatic IRI, microparticles circulate and can be taken up by hepatocytes, where they activate signaling pathways that mediate inflammation and hepatocyte injury. Diannexin prevents microparticle formation and subsequent inflammation.  相似文献   

19.
BACKGROUND: Microparticles released from platelets may play a role in the normal hemostatic response to vascular injury, because they exhibit prothrombinase activity. Microparticles are generated by high shear stress and may be formed in diseased small arteries and arterioles in various clinical settings. However, the surface composition of high shear-induced platelet microparticles is unknown. It was recently shown that some cytokines modulate platelet activation. However, no reports are available concerning the effect of cytokines on high shear-induced platelet aggregation (SIPA) microparticle generation. MATERIALS AND METHODS: Measurement of SIPA was performed with a cone-plate viscometer. The conformational characteristics of high shear (108 dynes/cm(2))-induced platelet microparticles were analyzed by flow cytometry and confocal laser scanning microscopy. Effects of cytokines for high SIPA microparticle generation were also analyzed using flow cytometry. RESULTS: The overall pattern of monoclonal antibody binding in high shear-induced microparticles was almost the same as that in activated platelets under high shear stress. Microparticles exhibited markedly increased Annexin V binding. In fluorescent confocal images, small and fine regions of fluorescence (microparticles) were recognized separate from platelet fluorescence. Thrombopoietin not only induced platelet activation, as demonstrated by CD62P expression, but also increased the number of microparticles. Erythropoietin and interleukin-6 enhanced only microparticle generation. CONCLUSIONS: These results suggest that microparticles possessing procoagulant activity are released by platelet activation when levels of certain cytokines increase under high shear stress in various clinical settings.  相似文献   

20.
Several studies have suggested a role for blood coagulation proteins in tumour progression. Herein, we discuss (1) the activation of the blood clotting cascade in the tumour microenvironment and its impact on primary tumour growth; (2) the intravascular activation of blood coagulation and its impact on tumour metastasis and cancer-associated thrombosis; and (3) antitumour therapies that target blood-coagulation-associated proteins. Expression levels of the clotting initiator protein TF (tissue factor) have been correlated with tumour cell aggressiveness. Simultaneous TF expression and PS (phosphatidylserine) exposure by tumour cells promote the extravascular activation of blood coagulation. The generation of blood coagulation enzymes in the tumour microenvironment may trigger the activation of PARs (protease-activated receptors). In particular, PAR1 and PAR2 have been associated with many aspects of tumour biology. The procoagulant activity of circulating tumour cells favours metastasis, whereas the release of TF-bearing MVs (microvesicles) into the circulation has been correlated with cancer-associated thrombosis. Given the role of coagulation proteins in tumour progression, it has been proposed that they could be targets for the development of new antitumour therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号