首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Hyperforin is an abundant phloroglucinol-type constituent isolated from the extract of the flowering upper portion of the plant Hypericum perforatum L. The dicyclohexylammonium salt of hyperforin (DCHA-HF) has exhibited antitumor and antiangiogenic activities in various cancer cells. Here, the antitumor effects of DCHA-HF on the chronic myeloid leukemia K562 cell line were investigated for the first time. DCHA-HF exhibited dose- and time-dependent inhibitory activities against K562 cells, with IC(50) values of 8.6 and 3.2 μM for 48 h and 72 h of treatment, respectively, which was more effective than that of the hyperforin. In contrast, little cytotoxic activity was observed with DCHA-HF on HUVECs. DCHA-HF treatment resulted in induction of apoptosis as evidenced from DNA fragmentation, nuclear condensation and increase of early apoptotic cells by DAPI staining analysis, TUNEL assay and Annexin V-FITC/PI double-labeled staining analysis, respectively. Moreover, DCHA-HF elicited dissipation of mitochondrial transmembrane potential that commenced with the release of cytochrome c through down-regulation of expression of anti-apoptotic proteins and up-regulation of expression of pro-apoptotic proteins. DCHA-HF treatment induced activation of the caspase 3, 8, and 9 cascade and subsequent PARP cleavage, and DCHA-HF-induced apoptosis was significantly inhibited by caspase inhibitors. Treated cells were arrested at the G1 phase of the cell cycle and the expression of p53 and p27(Kip1), two key regulators related to cell cycle and apoptosis, was up-regulated. These results suggest that DCHA-HF inhibits K562 cell growth by inducing caspase-dependent apoptosis mediated by a mitochondrial pathway and arresting the cell cycle at the G1 phase. Therefore, DCHA-HF is a potential chemotherapeutic antitumor drug for chronic myeloid leukemia therapy.  相似文献   

3.
To analyze the mechanisms by which cancer cells escape from hosts' immune surveillance, we investigated the changes in immune status during the progression of leukemia induced by injecting mice with WEHI-3B cells. In the bone marrow (BM) of leukemic mice, only DX5(+)CD3(-) cells were continuously increased, despite the progression of leukemia. In addition, DX5(+)CD3(-) cells were rapidly increased in peripheral blood (PB) 20 days after inoculation. We also found that myeloid dendritic cells (DCs) expressing low levels of I-A(d) and having low allo-T cell stimulatory activity were markedly increased in PB and spleen. The increase in DX5(+) cells in BM was thought to be induced by soluble factors from leukemic cells. DX5(+) cells from leukemic mice were CD3(-), B220(-), Gr-1(-), CD14(-), CD94(-), Ly-49C/F(-), asialo GM1(+), CD25(+), CD122(+), Thy-1(bright), and c-kit(dim) and showed low killing activity against YAC-1 cells, suggesting that those DX5(+) cells were immature NK cells. NK cells from leukemic PB down-regulated the expression of I-A(d) on DCs, an effect mediated by TGF-beta. Moreover, these NK cells significantly suppressed the allo-T cell stimulatory activity of DCs, an effect requiring cell-to-cell contact between NK cells and DCs and thought to involve CD25. Importantly, NK cells from leukemic PB inhibited generation of autotumor-specific CTL induced by DCs in primary MLR or by DC immunization. In conclusion, we identified circulating immature NK cells with immunosuppressive activities. These cells may be important for understanding the involvement of the host immune system during the development of leukemia.  相似文献   

4.
The natural polyphenolic alkanone (6)-gingerol (6G) has established anti-inflammatory and antitumoral properties. However, its precise mechanism of action in myeloid leukemia cells is unclear. In this study, we investigated the effects of 6G on myeloid leukemia cells in vitro and in vivo. The results of this study showed that 6G inhibited proliferation of myeloid leukemia cell lines and primary myeloid leukemia cells while sparing the normal peripheral blood mononuclear cells, in a concentration- and time-dependent manner. Mechanistic studies using U937 and K562 cell lines revealed that 6G treatment induced reactive oxygen species (ROS) generation by inhibiting mitochondrial respiratory complex I (MRC I), which in turn increased the expression of the oxidative stress response-associated microRNA miR-27b and DNA damage. Elevated miR-27b expression inhibited PPARγ, with subsequent inhibition of the inflammatory cytokine gene expression associated with the oncogenic NF-κB pathway, whereas the increased DNA damage led to G2/M cell cycle arrest. The 6G induced effects were abolished in the presence of anti-miR-27b or the ROS scavenger N-acetylcysteine. In addition, the results of the in vivo xenograft experiments in mice indicated that 6G treatment inhibited tumor cell proliferation and induced apoptosis, in agreement with the in vitro studies. Our data provide new evidence that 6G-induced myeloid leukemia cell death is initiated by reactive oxygen species and mediated through an increase in miR-27b expression and DNA damage. The dual induction of increased miR-27b expression and DNA damage-associated cell cycle arrest by 6G may have implications for myeloid leukemia treatment.  相似文献   

5.
MicroRNAs have been extensively studied as regulators of hematopoiesis and leukemogenesis. We identified miR-638 as a novel regulator in myeloid differentiation and proliferation of leukemic cells. We found that miR-638 was developmentally up-regulated in cells of myeloid but not lymphoid lineage. Furthermore, significant miR-638 down-regulation was observed in primary acute myeloid leukemia (AML) blasts, whereas miR-638 expression was dramatically up-regulated in primary AML blasts and leukemic cell lines undergoing forced myeloid differentiation. These observations suggest that miR-638 might play a role in myeloid differentiation, and its dysregulation may contribute to leukemogenesis. Indeed, ectopic expression of miR-638 promoted phorbol 12-myristate 13-acetate- or all-trans-retinoic acid-induced differentiation of leukemic cell lines and primary AML blasts, whereas miR-638 inhibition caused an opposite phenotype. Consistently, miR-638 overexpression induced G1 cell cycle arrest and reduced colony formation in soft agar. Cyclin-dependent kinase 2 (CDK2) was found to be a target gene of miR-638. CDK2 inhibition phenotypically mimicked the overexpression of miR-638. Moreover, forced expression of CDK2 restored the proliferation and the colony-forming ability inhibited by miR-638. Our data suggest that miR-638 regulates proliferation and myeloid differentiation by targeting CDK2 and may serve as a novel target for leukemia therapy or marker for AML diagnosis and prognosis.  相似文献   

6.
7.
Recently, a novel approach has been used in the treatment of leukemia: induction of the leukemic cells to undergo terminal differentiation. Based on its in vitro ability to induce differentiation in several myeloid leukemic cell lines, retinoic acid (RA) has been applied clinically in cases of myelodysplastic syndromes and acute myeloid and promyelocytic leukemia. In the present study we have determined in detail the ability of RA to induce expression of granulocytic functions in a human promyelocytic leukemia cell line (HL-60) and compared it with that of dimethylsulfoxide (DMSO). Several granulocytic characteristics (phagocytosis, surface adherence and generation of free radicals in response to phorbol-ester) were induced to the same degree by both agents. Other normal neutrophil functions, including lysozyme accumulation, spontaneous migration, chemotactic activity toward zymosan-activated serum (containing C5a), the peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) and spontaneous motility in semi-solid medium were induced by DMSO, but they were absent or incompletely expressed in RA-induced cells. In contrast, only RA induced migration toward leukotriene B4 (LTB4). Simultaneous treatment with RA and DMSO proved synergistic with respect to morphological maturation and several functions (e.g. NBT reduction), but complementary stimulation of other activities (e.g. chemotaxis, lysozyme content) could not be demonstrated. Furthermore, characteristics induced by DMSO (i.e., expression of C5a and FMLP receptors and accumulation of lysozyme) were inhibited by the addition of RA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Leukemia in AKR mice was found to be associated with the presence of a serum factor(s) termed AKR leukemic suppressor factor (AKR-LSF). Suppression was quantitated by measuring the inhibition of PHA-stimulated [3H]thymidine incorporation by normal AKR spleen cells at various dilutions of leukemic mouse serum (LMS). AKR-LSF activity was expressed as units per milliliter, which is the reciprocal of the LMS dilution that inhibited [3H]thymidine uptake by 50% with respect to fetal calf serum control cultures. The amount of activity in the serum directly correlated to the rate of tumor cell growth. Mice receiving 107 BW5147 transplanted leukemia cells had 130 ± 12 units of AKR-LSF activity/ml of serum compared to 40 ± 8 units/ ml for mice with spontaneous leukemia. Normal mouse serum contained 33 ± 11 units/ml. The leukemic serum exhibited no strain specificity in either phytohemagglutinin or lipopolysaccharide assays, but was found to be twofold more inhibitory against mouse spleen cells than that against rat spleen cells. Human lymphocyte blastogenesis was not inhibited by the leukemic serum. LMS did not inhibit the growth of L929 fibroblasts or murine tumor cells in vitro. Further work is necessary to determine what role the suppressor factor may play in the regulation of antitumor cell immunity.  相似文献   

9.
Hemopoietic lineage switching occurs when leukemic cells, apparently committed to one lineage, change and display the phenotype of another pathway. cDNA representational difference analysis was used to identify myeloid-specific genes that may be associated with an erythroid to myeloid lineage switch involving the murine J2E erythroleukemic cell line. One of the genes isolated (HLS7) is homologous to the novel human oncogene myeloid leukemia factor 1 (MLF1) involved in the t(3;5)(q25.1;q34) translocation associated with acute myeloid leukemia. Enforced expression of HLS7 in J2E cells induced a monoblastoid phenotype, thereby recapitulating the spontaneous erythroid to myeloid lineage switch. HLS7 also inhibited erythropoietin- or chemically-induced differentiation of erythroleukemic cell lines and suppressed development of erythropoietin-responsive colonies in semi-solid culture. However, intracellular signaling activated by erythropoietin was not impeded by ectopic expression of HLS7. In contrast, HLS7 promoted maturation of M1 monoblastoid cells and increased myeloid colony formation in vitro. These data show that HLS7 can influence erythroid/myeloid lineage switching and the development of normal hemopoietic cells.  相似文献   

10.
11.
Natural killer (NK) cells have been implicated in defense against malignancies, especially leukemia. Because patients with leukemia and preleukemic disorders manifest low NK activity, it is possible that NK cell impairment may contribute to leukemogenesis. In view of this possibility, it was important to characterize the NK cell defect of leukemic patients and to design new approaches for its correction. Analysis of the mechanism of NK cell defect demonstrated that NK cells of leukemic patients were impaired in their tumor-binding and lytic activity and did not display ability to recycle or to produce cytotoxic factor. However, deficient NK activity could be corrected by culture of peripheral blood effector cells with IL 2. IL 2-activated NK cells manifested restoration of all measured parameters of the cytotoxic mechanism, as exemplified by normalized tumor-binding and lytic activity, as well as the rate of lysis and ability to recycle. Importantly, such in vitro stimulated cytotoxic cells displayed reactivity against fresh leukemic cells of autologous as well as allogeneic origin. Another interesting observation from these studies was that the NK activity was also induced in the leukemic bone marrow, a tissue with a very low frequency of cytotoxic NK cells. It is important to note that cultured NK cells did not represent a stationary cell population, but proliferated in vitro quite actively (doubling time 3 to 6 days) for at least 5 wk. Characterization of the in vitro generated cytotoxic cells indicated that these cells displayed large granular lymphocyte morphology and CD16 and Leu-19 cell surface phenotype. Our data demonstrate that the NK cell defect of leukemic patients is not a permanent phenomenon, but can be reversed in culture with IL 2, and that fully cytotoxic NK cells can be maintained and expanded in vitro. Thus, it is reasonable to suggest that adoptive transfer of autologous NK cells to the patients may represent a promising new therapy for treatment of leukemia.  相似文献   

12.
For long-term survival in vitro and in vivo of acute myeloid leukemia cells, their adhesion to bone marrow stromal cells is indispensable. However, it is still unknown if these events are uniquely induced by the leukemic stem cells. Here we show that TF-1 human leukemia cells, once they have formed a cobblestone area by adhering to mouse bone marrow-derived MS-5 cells, can acquire some leukemic stem cell like properties in association with a change in the CD44 isoform-expression pattern and with an increase in a set of related microRNAs. These findings strongly suggest that at least some leukemia cells can acquire leukemic stem cell like properties in an adhesion-mediated stochastic fashion.  相似文献   

13.
Hypoxia and interactions with bone marrow (BM) stromal cells have emerged as essential components of the leukemic BM microenvironment in promoting leukemia cell survival and chemoresistance. High levels of transforming growth factor beta 1 (TGFβ1) produced by BM stromal cells in the BM niche regulate cell proliferation, survival, and apoptosis, depending on the cellular context. Exogenous TGFβ1 induced accumulation of acute myeloid leukemia (AML) cells in a quiescent G0 state, which was further facilitated by the co-culture with BM-derived mesenchymal stem cells (MSCs). In turn, TGFβ-neutralizing antibody 1D11 abrogated rhTGFβ1 induced cell cycle arrest. Blocking TGFβ with 1D11 further enhanced cytarabine (Ara-C)–induced apoptosis of AML cells in hypoxic and in normoxic conditions. Additional constituents of BM niche, the stroma-secreted chemokine CXCL12 and its receptor CXCR4 play crucial roles in cell migration and stroma/leukemia cell interactions. Treatment with 1D11 combined with CXCR4 antagonist plerixafor and Ara-C decreased leukemia burden and prolonged survival in an in vivo leukemia model. These results indicate that blockade of TGFβ by 1D11 and abrogation of CXCL12/CXCR4 signaling may enhance the efficacy of chemotherapy against AML cells in the hypoxic BM microenvironment.  相似文献   

14.
The homeobox protein, PEPP2 (RHOXF2), has been suggested as a cancer/testis (CT) antigen based on its expression pattern. However, the peptide epitope of PEPP2 that is recognized by cytotoxic T cells (CTLs) is unknown. In this study, we revealed that PEPP2 gene was highly expressed in myeloid leukemia cells and some other hematological malignancies. This gene was also expressed in leukemic stem-like cells. We next identified the first reported epitope peptide (PEPP2271-279). The CTLs induced by PEPP2271-279 recognized PEPP2-positive target cells in an HLA-A*24:02-restricted manner. We also found that a demethylating agent, 5-aza-2’-deoxycytidine, could enhance PEPP2 expression in leukemia cells but not in blood mononuclear cells from healthy donors. The cytotoxic activity of anti-PEPP2 CTL against leukemic cells treated with 5-aza-2’-deoxycytidine was higher than that directed against untreated cells. These results suggest a clinical rationale that combined treatment with this novel antigen-specific immunotherapy together with demethylating agents might be effective in therapy-resistant myeloid leukemia patients.  相似文献   

15.
2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD) is a cyclic oligosaccharide that is widely used as an enabling excipient in pharmaceutical formulations, but also as a cholesterol modifier. HP-β-CyD has recently been approved for the treatment of Niemann-Pick Type C disease, a lysosomal lipid storage disorder, and is used in clinical practice. Since cholesterol accumulation and/or dysregulated cholesterol metabolism has been described in various malignancies, including leukemia, we hypothesized that HP-β-CyD itself might have anticancer effects. This study provides evidence that HP-β-CyD inhibits leukemic cell proliferation at physiologically available doses. First, we identified the potency of HP-β-CyD in vitro against various leukemic cell lines derived from acute myeloid leukemia (AML), acute lymphoblastic leukemia and chronic myeloid leukemia (CML). HP-β-CyD treatment reduced intracellular cholesterol resulting in significant leukemic cell growth inhibition through G2/M cell-cycle arrest and apoptosis. Intraperitoneal injection of HP-β-CyD significantly improved survival in leukemia mouse models. Importantly, HP-β-CyD also showed anticancer effects against CML cells expressing a T315I BCR-ABL mutation (that confers resistance to most ABL tyrosine kinase inhibitors), and hypoxia-adapted CML cells that have characteristics of leukemic stem cells. In addition, colony forming ability of human primary AML and CML cells was inhibited by HP-β-CyD. Systemic administration of HP-β-CyD to mice had no significant adverse effects. These data suggest that HP-β-CyD is a promising anticancer agent regardless of disease or cellular characteristics.  相似文献   

16.
Deregulated cell growth and inhibition of apoptosis are hallmarks of cancer. All-trans retinoic acid induces clinical remission in patients with acute promyelocytic leukemia by inhibiting cell growth and inducing differentiation and apoptosis of the leukemic blasts. An important role of the cell cycle regulatory protein, cyclin A1, in the development of acute myeloid leukemia has previously been demonstrated in a transgenic mouse model. We have recently shown that there was a direct interaction between cyclin A1 and a major all-trans retinoic acid receptor, RAR alpha, following all-trans retinoic acid treatment of leukemic cells. In the present study, we investigated whether cyclin A1 might be involved in all-trans retinoic acid-induced apoptosis in U-937 leukemic cells. We found that all-trans retinoic acid-induced apoptosis was associated with concomitant increase in cyclin A1 expression. However, there was no induction of cyclin A1 mRNA expression following the all-trans retinoic acid-induced apoptosis. Treatment of cells with a caspase inhibitor was not able to prevent all-trans retinoic acid-induced up-regulation of cyclin A1 expression. Interestingly, induced cyclin A1 expression in U-937 cells led to a significant increase in the proportion of apoptotic cells. Further, U-937 cells overexpressing cyclin A1 appeared to be more sensitive to all-trans retinoic acid-induced apoptosis indicating the ability of cyclin A1 to mediate all-trans retinoic acid-induced apoptosis. Induced cyclin E expression was not able to initiate cell death in U-937 cells. Our results indicate that cyclin A1 might have a role in apoptosis by mediating all-trans retinoic acid-induced apoptosis.  相似文献   

17.
The cell cycle is driven by the kinase activity of cyclin·cyclin-dependent kinase (CDK) complexes, which is negatively regulated by CDK inhibitor proteins. Recently, we identified INCA1 as an interaction partner and a substrate of cyclin A1 in complex with CDK2. On a functional level, we identified a novel cyclin-binding site in the INCA1 protein. INCA1 inhibited CDK2 activity and cell proliferation. The inhibitory effects depended on the cyclin-interacting domain. Mitogenic and oncogenic signals suppressed INCA1 expression, whereas it was induced by cell cycle arrest. We established a deletional mouse model that showed increased CDK2 activity in spleen with altered spleen architecture in Inca1(-/-) mice. Inca1(-/-) embryonic fibroblasts showed an increase in the fraction of S-phase cells. Furthermore, blasts from acute lymphoid leukemia and acute myeloid leukemia patients expressed significantly reduced INCA1 levels highlighting its relevance for growth control in vivo. Taken together, this study identifies a novel CDK inhibitor with reduced expression in acute myeloid and lymphoid leukemia. The molecular events that control the cell cycle occur in a sequential process to ensure a tight regulation, which is important for the survival of a cell and includes the detection and repair of genetic damage and the prevention of uncontrolled cell division.  相似文献   

18.
Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RARalpha and PLZF-RARalpha fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RARalpha from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells.  相似文献   

19.
Previous studies suggested that phenylthiosemicarbazones are considered as a new apoptosis-inducing agent. In this study, anti-proliferative and apoptotic effects of the copper (II) phenylthiosemicarbazone complex (Cu-PTSC) were investigated in human acute myeloid leukemia KG1a cell line. The KG1a cells were treated with various concentrations (20−140 μM) of the Cu-PTSC, and cell viability was determined by MTT assay. The IC50 value of 80 ± 2.5 μM was selected for further evaluations. Apoptosis, as the antitumor strategy in the cells, was investigated morphologically by acridine orange/ethidium bromide (AO/EtBr) double staining, and surface expression assay of phosphatidylserine by Annexin V/PI technique was studied via flow cytometry. Results indicated that the cells undergo morphologic changes with chromatin condensation and G0/G1 cell cycle arrest after treatment with Cu-PTSC. The presence of phosphatidylserine on the outer surface of the cell membrane confirmed the apoptosis occurrence in the KG1a cells. Real-time PCR and western blot analyses revealed that the incubation of KG1a cells with Cu-PTSC down-regulated the expression of Bcl-2 (anti-apoptotic protein) and Survivin (as an IAP protein) while induced the expression of Bax (pro-apoptotic protein). Based on present data, it seems that Cu-PTSC may provide a novel therapeutic approach for the treatment of acute myeloid leukemia.  相似文献   

20.
A new apoptotic pathway for the complement factor B-derived fragment Bb   总被引:2,自引:0,他引:2  
Apoptosis is involved in both the cellular and humoral immune system destroying tumors. An apoptosis-inducing factor from HL-60 myeloid leukemia cells was obtained, purified, and sequenced. The protein found has been identified as a human complement factor B-derived fragment Bb, although it is known that factor B is able to induce apoptosis in several leukemia cell lines. Monoclonal antibodies against fragment Ba and Bb inhibited the apoptotic activity of factor B. When the purified fragment Bb was used for apoptosis induction, only the anti-Bb antibody inhibited Bb-induced apoptosis, and not the anti-Ba antibody. The apoptosis-inducing activity was found to be enhanced under conditions facilitating the formation of Bb. Blocking TNF/TNFR or FasL/Fas interactions did not interfere with the factor B-induced apoptosis. CD11c (iC3bR) acts as the main subunit of a heterodimer binding to fragment Bb in the apoptosis pathway, and the factor B-derived fragment Bb was found to possess the previously unknown function of inducing apoptosis in leukemic cells through a suicide mechanism of myeloid lineage cells during the differentiation stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号