首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-6 (IL-6), an inflammatory cytokine, is one of the most important mediators of fever, the acute phase response, and inflammatory conditions. Described here is an integrated microfluidic immunosensor capable of detecting the concentration of IL-6 in human serum samples by use of an electrochemical method in a microfluidic biochip format. The detection of IL-6 was carried out using a sandwich immunoassay method based on the use of anti-IL-6 monoclonal antibodies, immobilized on a 3-aminopropyl-modified controlled-pore glass (APCPG) packet in a central channel (CC) of the microfluidic system. The IL-6 in the serum sample is allowed to react immunologically with the immobilized anti-IL-6 and biotin-labeled second antibodies specific to IL-6. After washing, the streptavidin–alkaline phosphatase conjugate is added. p-Aminophenyl phosphate is converted to p-aminophenol by alkaline phosphatase, and the electroactive product is quantified on a gold electrode at 0.10 V. For electrochemical detection and enzyme immunoassay, the LOD was 0.41 and 1.56 pg mL−1, respectively. Reproducibility assays employed repetitive standards of IL-6, and the intra- and inter-assay coefficients of variation were below 6.5%. Compared with the traditional IL-6 sensing method, the integrated microfluidic immunosensor required smaller amounts of sample to perform faster detection.  相似文献   

2.
Nucleic acid purification using microfabricated silicon structures   总被引:9,自引:0,他引:9  
A microfluidic device has been designed, fabricated and tested for its ability to purify bacteriophage lambda DNA and bacterial chromosomal DNA, a necessary prerequisite for its incorporation into a biosensor. This device consists of a microfabricated channel in which silica-coated pillars were etched to increase the surface area within the channel by 300-600%, when the etch depth is varied from 20 to 50 microm. DNA was selectively bound to these pillars in the presence of the chaotropic salt guanidinium isothiocyanate, followed by washing with ethanol and elution with low-ionic strength buffer. Positive pressure was used to move solutions through the device, removing the need for centrifugation steps. The binding capacity for DNA in the device was approximately 82 ng/cm2 and on average, 10% of the bound DNA could be purified and recovered in the first 50 microl of elution buffer. Additionally, the device removed approximately 87% of the protein from a cell lysate. Nucleic acids recovered from the device were efficiently amplified by the polymerase chain reaction suggesting the utility of these components in an integrated, DNA amplification-based biosensor. The miniaturized format of this purification device, along with its excellent purification characteristics make it an ideal component for nucleic acid-based biosensors, especially those in which nucleic acid amplification is a critical step.  相似文献   

3.
We present a generic immunoassay platform that uses enhanced total internal reflection fluorescence in the proximity of silver island films (SIFs), a surface coating consisting of metal (silver) particles. This platform is used with a model immunoassay where a protein antigen, rabbit immunoglobulin G, was immobilized on the SIF-coated glass surface. The signal from a fluorescent dye-labeled anti-rabbit antibody binding to the surface antigen was detected; different color dyes have been tested. Close placement of the fluorophore to surface-bound silver nanostructures results in dramatic signal enhancement (up to 40-fold) on the SIFs as compared with the glass slides. Use of the total internal reflection mode of excitation has significant advantages (over classic front-face excitation) for practical assay development. The limited evanescent wave excitation volume makes it possible to minimize the background signal and use the immunoassay with no need for any washing steps.  相似文献   

4.
The effective and robust separation of biomolecules of interest from patient samples is an essential step in diagnostic applications. We present a platform for the fast extraction of nucleic acids from clinical specimens utilizing paramagnetic PMPs, an oil-water interface, a small permanent magnet and a microfluidic channel to separate and purify captured nucleic acids from lysate in less than one minute, circumventing the need for multiple washing steps and greatly simplifying and expediting the purification procedure. Our device was able to isolate influenza RNA from clinical nasopharyngeal swab samples with high efficiency when compared to the Ambion® MagMAXTM Viral RNA Isolation Kit, sufficiently separating nucleic acid analytes from PCR-inhibiting contaminants within the lysate while also critically maintaining high integrity of the viral genome. We find that this design has great potential for rapid, efficient and sensitive nucleic acid separation from patient sample.  相似文献   

5.
Conventional immunoblotting techniques are labor intensive, time consuming and rely on the elution of target protein after depletion. Here we describe a new method for detection and quantification of proteins, independent of washing and elution. In this method, the target protein is first captured by immunodepletion with antibody-coated microbeads. In the second step, both the supernatant after immunodepletion and the untreated protein sample are directly analyzed by microfluidic electrophoresis without further processing. Subsequently, the detection and quantification are performed by comparing the electropherograms of these two samples. This method was tested using an Escherichia coli lysate with a FLAG-tagged protein and anti-FLAG magnetic beads. An incubation of as short as one min was sufficient for detectable depletion (66%) by microchip electrophoresis. Longer incubation (up to 60 min) resulted in more depletion of the target band (82%). Our results show that only 19% of the target is recovered after elution from the beads. By eliminating multiple wash and elution steps, our method is faster, less labor intensive, and highly reproducible. The target protein can still be easily identified even in the case of nonspecific binding at low concentrations. This work highlights the advantages of integrating immunodepletion techniques on a microfluidic platform.  相似文献   

6.
This paper describes a method for the patterned immobilization of capture antibodies into a microfluidic platform fabricated by roll-to-roll (R2R) hot embossing on poly (methyl methacrylate) (PMMA). Covalent attachment of antibodies was achieved by two sequential inkjet printing steps. First, a polyethyleneimine (PEI) layer was deposited onto oxygen plasma activated PMMA foil and further cross-linked with glutaraldehyde (GA) to provide an amine-reactive aldehyde surface (PEI-GA). This step was followed by a second deposition of antibody by overprinting on the PEI-GA patterned PMMA foil. The PEI polymer ink was first formulated to ensure stable drop formation in inkjet printing and the printed films were characterized using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Anti-CRP antibody was patterned on PMMA foil by the developed method and bonded permanently with R2R hot embossed PMMA microchannels by solvent bonding lamination. The functionality of the immobilized antibody inside the microfluidic channel was evaluated by fluorescence-based sandwich immunoassay for detection of C-reactive protein (CRP). The antibody-antigen assay exhibited a good level of linearity over the range of 10 ng/ml to 500 ng/ml (R2 = 0.991) with a calculated detection limit of 5.2 ng/ml. The developed patterning method is straightforward, rapid and provides a versatile approach for creating multiple protein patterns in a single microfluidic channel for multiplexed immunoassays.  相似文献   

7.
An innovative microfluidic platform for magnetic beads manipulation is introduced, consisting of novel microfabricated 3D magnetic devices positioned in a microfluidic chamber. Each magnetic device comprises of an embedded actuation micro-coil in various design versions, a ferromagnetic pillar, a magnetic backside plate and a sensing micro-coil. The various designs of the micro-coils enable efficient magnetic beads trapping and concentration in different patterns. The finite element analysis (FEA) results show a significant increase of the developed force on suspended magnetic beads when the magnetic pillar and backside plate were integrated into the device structure. These simulation results were confirmed experimentally by measuring the magnetic beads trapping ratios for the different designs and structures of the devices under continuous flow conditions. The trapping ratios and profiles were studied using beads counting, measuring the change of inductance with the sensing micro-coil and by image processing. The devices have efficiently demonstrated a controlled and localized magnetic beads trapping and concentration at small spatial locations for the first time. The new results shown in this study demonstrate the feasibility of efficiently using these original devices as key elements in complex bio-analysis systems.  相似文献   

8.
Cultured neuronal networks (CNNs) are a robust model to closely investigate neuronal circuits’ formation and monitor their structural properties evolution. Typically, neurons are cultured in plastic plates or, more recently, in microfluidic platforms with potentially a wide variety of neuroscience applications. As a biological protocol, cell culture integration with a microfluidic system provides benefits such as accurate control of cell seeding area, culture medium renewal, or lower exposure to contamination. The objective of this report is to present a novel neuronal network on a chip device, including a chamber, fabricated from PDMS, vinyl and glass connected to a microfluidic platform to perfuse the continuous flow of culture medium. Network growth is compared in chips and traditional Petri dishes to validate the microfluidic chip performance. The network assessment is performed by computing relevant topological measures like the number of connected neurons, the clustering coefficient, and the shortest path between any pair of neurons throughout the culture's life. The results demonstrate that neuronal circuits on a chip have a more stable network structure and lifespan than developing in conventional settings, and therefore this setup is an advantageous alternative to current culture methods. This technology could lead to challenging applications such as batch drug testing of in vitro cell culture models. From the engineering perspective, a device's advantage is the chance to develop custom designs more efficiently than other microfluidic systems.  相似文献   

9.
This paper reports the pre-concentration of C-reactive protein (CRP) antigen with packed beads in a microfluidic chamber to enhance the sensitivity of the miniaturized fluorescence detection system for portable point-of-care testing devices. Although integrated optical systems in microfluidic chips have been demonstrated by many groups to replace bulky optical systems, the problem of low sensitivity is a hurdle for on-site clinical applications. Hence we integrated the pre-concentration module with miniaturized detection in microfluidic chips (MDMC) to improve analytical sensitivity. Cheap silicon-based photodiodes with optical filter were packaged in PDMS microfluidic chips and beads were packed by a frit structure for pre-concentration. The beads were coated with CRP antibodies to capture antigens and the concentrated antigens were eluted by an acid buffer. The pre-concentration amplified the fluorescence intensity by about 20-fold and the fluorescence signal was linearly proportional to the concentration of antigens. Then the CRP antigen was analyzed by competitive immunoassay with an MDMC. The experimental result demonstrated that the analytical sensitivity was enhanced up to 1.4 nM owing to the higher signal-to-noise ratio. The amplification of fluorescence by pre-concentration of bead-based immunoassay is expected to be one of the methods for portable fluorescence detection system.  相似文献   

10.
Rapid antibody biosensor assays for environmental analysis   总被引:3,自引:0,他引:3  
Traditionally, biosensor development has focused on molecules with a defined metabolic role that can be exploited by enzyme-based systems. Antibodies have the ability to move beyond this range of analytes, and are particularly useful in detecting small, hapten molecules. Electrochemically based biosensor developments have been less fruitful in this regard, as enzyme labelling is required, and such assays require the separation from bound and unbound species. These separations and the removal of background signals result in the increased complexity of the assay format, making it unsuitable for rapid sensor analysis. We have developed an electrochemical sensor based on antibodies that does not require the separation of bound and unbound molecules in a competition immunoassay format. This removes the need for several washing and separation steps as is normally employed in this type of assay. This allows single-step immunoassays to be performed using this system, and also allows for the real-time monitoring of antibody-antigen interactions. We have shown that such assays are possible in both batch and flow-injection formats and we are currently developing an assay for the pesticide atrazine. Tentative results show that analysis with this system is possible in the p.p.m. to p.p.b. range.  相似文献   

11.
Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM) have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images.  相似文献   

12.
The key benefits of Lab-on-a-Chip technology are substantial time savings via an automation of lab processes, and a reduction in sample and reagent volumes required to perform analysis. In this article we present a new implementation of cell assays on disposable microfluidic chips. The applications are based on the controlled movement of cells by pressure-driven flow in microfluidic channels and two-color fluorescence detection of single cells. This new technology allows for simple flow cytometric studies of cells in a microfluidic chip-based system. In addition, we developed staining procedures that work “on-chip,” thus eliminating time-consuming washing steps. Cells and staining-reagents are loaded directly onto the microfluidic chip and analysis can start after a short incubation time. These procedures require only a fraction of the staining reagents generally needed for flow cytometry and only 30,000 cells per sample, demonstrating the advantages of microfluidic technology. The specific advantage of an on-chip staining reaction is the amount of time, cells, and reagents saved, which is of great importance when working with limited numbers of cells, e.g., primary cells or when needing to perform routine tests of cell cultures as a quality control step. Applications of this technology are antibody staining of proteins and determination of cell transfection efficiency by GFP expression. Results obtained with microfluidic chips, using standard cell lines and primary cells, show good correlation with data obtained using a conventional flow cytometer.  相似文献   

13.
Rapid prototyping (RP) of microfluidic channels in liquid photopolymers using standard lithography (SL) involves multiple deposition steps and curing by ultraviolet (UV) light for the construction of a microstructure layer. In this work, the conflicting effect of oxygen diffusion and UV curing of liquid polyurethane methacrylate (PUMA) is investigated in microfabrication and utilized to reduce the deposition steps and to obtain a monolithic product. The conventional fabrication process is altered to control for the best use of the oxygen presence in polymerization. A novel and modified lithography technique is introduced in which a single step of PUMA coating and two steps of UV exposure are used to create a microchannel. The first exposure is maskless and incorporates oxygen diffusion into PUMA for inhibition of the polymerization of a thin layer from the top surface while the UV rays penetrate the photopolymer. The second exposure is for transferring the patterns of the microfluidic channels from the contact photomask onto the uncured material. The UV curing of PUMA as the main substrate in the presence of oxygen is characterized analytically and experimentally. A few typical elastomeric microstructures are manufactured. It is demonstrated that the obtained heights of the fabricated structures in PUMA are associated with the oxygen concentration and the UV dose. The proposed technique is promising for the RP of molds and microfluidic channels in terms of shorter processing time, fewer fabrication steps and creation of microstructure layers with higher integrity.  相似文献   

14.
Immunological microarrays (biochips) for detecting erythrocyte surface antigens, viz., blood group antigens (A, B, 0) and Rhesus system antigens (D, E, e, C, and c), are described. The biochips represent transparent plastic supports onto which 1.5-mm spots of specific immobilized antibodies (IgM) are coated in different dilutions. The volume of tested blood samples is rather small (1–2 μl). Binding of erythrocytes to antibodies immobilized on the biochips is specific and allows further morphological analysis of bound cells. Analysis of the dynamics of cell detachment from biochip spots using a microfluidic chamber at different flow rates of the washing solution showed that combination of a biochip with a microfluidic chamber is a promising approach to concentration of cells of various immunotypes even if their content in the mixture is very low.  相似文献   

15.
Immunosensing microfluidic devices are reviewed. Devices are commonly fabricated in glass, silicon, and polymers, with polymers seeing greater attention in recent years. Methods have been developed to immobilize antibodies and other molecules and resist non-specific adsorption through surface modification. The most common detection method is fluorescence, followed by electrochemistry. Various microfluidic designs have been reported for immunoassay applications. The observed trends in microfluidic immunoassay applications closely resemble the trends of general immunoassays, where large molecules are detected principally through a sandwich procedure, while competitive assays are used to detect smaller molecules. The following future trends are suggested: more sensitive detection, increased integration and miniaturization, multianalyte analysis, more robust reagents and devices, and increased functionality of surface treatments.  相似文献   

16.
Microfluidics can be integrated with standard electrophysiology techniques to allow new experimental modalities. Specifically, the motivation for the microfluidic brain slice device is discussed including how the device docks to standard perfusion chambers and the technique of passive pumping which is used to deliver boluses of neuromodulators to the brain slice. By simplifying the device design, we are able to achieve a practical solution to the current unmet electrophysiology need of applying multiple neuromodulators across multiple regions of the brain slice. This is achieved by substituting the standard coverglass substrate of the perfusion chamber with a thin microfluidic device bonded to the coverglass substrate. This was then attached to the perfusion chamber and small holes connect the open-well of the perfusion chamber to the microfluidic channels buried within the microfluidic substrate. These microfluidic channels are interfaced with ports drilled into the edge of the perfusion chamber to access and deliver stimulants. This project represents how the field of microfluidics is transitioning away from proof-of concept device demonstrations and into practical solutions for unmet experimental and clinical needs.  相似文献   

17.
18.
In the present study, we demonstrate the use of a disposable luciferase‐based microfluidic bioassay chip for environmental monitoring and methods for fabrication. The designed microfluidic system includes a chamber with immobilized enzymes of bioluminescent bacteria Photobacterium leiognathi and Vibrio fischeri and their substrates, which dissolve after the introduction of the water sample and thus activate bioluminescent reactions. Limits of detection for copper (II) sulfate, 1,3‐dihydroxybenzene and 1,4‐benzoquinone for the proposed microfluidic biosensor measured 3 μM, 15 mM, and 2 μM respectively, and these values are higher or close to the level of conventional environmental biosensors based on lyophilized bacteria. Approaches for entrapment of enzymes on poly(methyl methacrylate) (PMMA) plates using a gelatin scaffold and solvent bonding of PMMA chip plates under room temperature were suggested. The proposed microfluidic system may be used with some available luminometers and future portable luminescence readers.  相似文献   

19.
Gottwald E  Lahni B  Lüdke G  Preckel T  Buhlmann C 《BioTechniques》2003,35(2):358-62, 364, 366-7
HSP72 is an important marker for various environmental stresses and diseases, and many researchers need to detect HSP72 levels in various cells. We have therefore developed an assay to monitor intracellular heat-shock protein 72 expression on a microfluidic Lab-on-a-chip platform. We established this method to detect HSP72 intracellularly by antibody staining with DNA counterstaining. The Lab-on-a-chip technology is simple and efficient when performing flow cytometric assays. By permeabilizing the cells for the delivery of antibodies, we were able to show HSP72 expression after 30 min heat-shock at 44 degrees C and then at various post-incubation times at 37 degrees C. We compared our method to a conventional flow cytometer and an enzyme immunoassay technique.  相似文献   

20.
This study reports a microfluidic chip integrated with an arrayed immunoassay for surface plasmon resonance (SPR) phase imaging of specific bio-samples. The SPR phase imaging system uses a surface-sensitive optical technique to detect two-dimensional (2D) spatial phase variation caused by rabbit immunoglobulin G (IgG) adsorbed on an anti-rabbit IgG film. The microfluidic chip was fabricated by using micro-electro-mechanical-systems (MEMS) technology on glass and polydimethylsiloxane (PDMS) substrates to facilitate well-controlled and reproducible sample delivery and detection. Since SPR detection is very sensitive to temperature variation, a micromachine-based temperature control module comprising micro-heaters and temperature sensors was used to maintain a uniform temperature distribution inside the arrayed detection area with a variation of less than 0.3 degrees C. A self-assembled monolayer (SAM) technique was used to pattern the surface chemistry on a gold layer to immobilize anti-rabbit IgG on the modified substrates. The microfluidic chip is capable of transporting a precise amount of IgG solution by using micropumps/valves to the arrayed detection area such that highly sensitive, highly specific bio-sensing can be achieved. The developed microfluidic chips, which employed SPR phase imaging for immunoassay analysis, could successfully detect the interaction of anti-rabbit IgG and IgG. The interactions between immobilized anti-rabbit IgG and IgG with various concentrations have been measured. The detection limit is experimentally found to be 1 x 10(-4)mg/ml (0.67 nM). The specificity of the arrayed immunoassay was also explored. Experimental data show that only the rabbit IgG can be detected and the porcine IgG cannot be adsorbed. The developed microfluidic system is promising for various applications including medical diagnostics, microarray detection and observing protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号