共查询到20条相似文献,搜索用时 15 毫秒
1.
Wisam Al-Faqheri Fatimah Ibrahim Tzer Hwai Gilbert Thio Jacob Moebius Karunan Joseph Hamzah Arof Marc Madou 《PloS one》2013,8(3)
This paper introduces novel vacuum/compression valves (VCVs) utilizing paraffin wax. A VCV is implemented by sealing the venting channel/hole with wax plugs (for normally-closed valve), or to be sealed by wax (for normally-open valve), and is activated by localized heating on the CD surface. We demonstrate that the VCV provides the advantages of avoiding unnecessary heating of the sample/reagents in the diagnostic process, allowing for vacuum sealing of the CD, and clear separation of the paraffin wax from the sample/reagents in the microfluidic process. As a proof of concept, the microfluidic processes of liquid flow switching and liquid metering is demonstrated with the VCV. Results show that the VCV lowers the required spinning frequency to perform the microfluidic processes with high accuracy and ease of control. 相似文献
2.
Jun Cai Mingli Chen Yu Wang Junfeng Pan Aobo Li Deyuan Zhang 《Current microbiology》2013,67(6):652-658
We proved the feasibility of using a microfluidic chip to culture diatom Bacillaria paradoxa, and analyzed the gliding characteristics of its self-organized colony in detail. The optimal cultivation parameters of B. paradoxa for the designed chip made with polydimethylsiloxane are as follows: the preferable cells injecting rate for keeping the cells alive is 0.2 mL/h, the initial cell density for fast reproduction is 5.5 × 104 cells/mL, and the optimal replacement period of culture medium is 4 days. B. paradoxa tends to form a colony during their growth, and the colony can glide with a steady period of 29 ± 3 s along its axial direction in a constant stream, the amplitude of the colony will not decay (e.g., 24 μm of two-cell colony at 1.1 mm/s flow rate), and the colony rapidly adjusts its direction of gliding to the direction of water flow. The successful culture of diatoms on a microfluidic platform may be used for biosensing chips and the creation of gasoline-producing diatom solar panels. 相似文献
3.
Effects of Prechilling and Sequential Washing on Enumeration of Microorganisms from Refuse
下载免费PDF全文

Techniques were evaluated for formation of a liquid inoculum from shredded municipal refuse, including chilling the refuse at 4°C prior to blending and multiple washing and blending cycles. The average count of cellulolytic bacteria from six different detachment treatments was 5.1 × 104 cells per g (dry weight) of refuse with a range of 0.7 × 104 to 12.7 × 104 cells per g (dry weight). The liquid obtained from blending the refuse in phosphate buffer followed by hand squeezing was the selected detachment procedure. The inoculum formation procedure was validated by the addition of ruminal cellulolytic bacteria to refuse and recovery of the cellulolytic bacteria by most-probable-number enumerations. The ratio of measured to expected cell counts among tests in which different volumes of ruminal fluid were added to refuse ranged from 2.7 to 14.4. There was no evidence of anaerobic cellulolytic fungi in a refuse sample. 相似文献
4.
5.
《Bioscience, biotechnology, and biochemistry》2013,77(10):2190-2192
The interaction of bovine insulin with anti-human insulin antibody (mAb) was examined using a fluorescent probe. The fluorescence intensity of fluoresceinthiocarbamyl (FTC)-insulin was increased by adding mAb, and the increase was saturated at 53% at a molar ratio of FTC-insulin to mAb of 2.0. Based on the change in fluorescence intensity, a standard curve of the homogeneous competitive-type immunoassay was constructed, and the detection range of insulin was found to be 50–400 nM. 相似文献
6.
Alexander Golberg Gregory Linshiz Ilia Kravets Nina Stawski Nathan J. Hillson Martin L. Yarmush Robert S. Marks Tania Konry 《PloS one》2014,9(1)
We report an all-in-one platform – ScanDrop – for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a “cloud” network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2–4 days for other currently available standard detection methods. 相似文献
7.
Bacterial colonization of surfaces and interfaces has a major impact on various areas including biotechnology, medicine, food industries, and water technologies. In most of these areas biofilm development has a strong impact on hygiene situations, product quality, and process efficacies. In consequence, biofilm manipulation and prevention is a fundamental issue to avoid adverse impacts. For such scenario online, non-destructive biofilm monitoring systems become important in many technical and industrial applications. This study reports such a system in form of a microfluidic sensor platform based on the combination of electrical impedance spectroscopy and amperometric current measurement, which allows sensitive online measurement of biofilm formation and activity. A total number of 12 parallel fluidic channels enable real-time online screening of various biofilms formed by different Pseudomonas aeruginosa and Stenotrophomonas maltophilia strains and complex mixed population biofilms. Experiments using disinfectant and antibiofilm reagents demonstrate that the biofilm sensor is able to discriminate between inactivation/killing of bacteria and destabilization of biofilm structures. The impedance and amperometric sensor data demonstrated the high dynamics of biofilms as a consequence of distinct responses to chemical treatment strategies. Gene expression of flagellar and fimbrial genes of biofilms grown inside the microfluidic system supported the detected biofilm growth kinetics. Thus, the presented biosensor platform is a qualified tool for assessing biofilm formation in specific environments and for evaluating the effectiveness of antibiofilm treatment strategies. 相似文献
8.
An acyl-enzyme intermediate proposed in the reaction mechanism of lipase was inspected by the exchange of oxygen between substrate (oleic acid) and solvent (18O-labelled water). Gas chromatography-mass spectrometry analysis supported the formation of an acyl-enzyme intermediate in the reaction mechanism through the observed incorporation of 18O into oleic acid. The incorporation did not occur in the absence of the lipase. When Ser residues were modified with diisopropylfluorophosphate, the activity of lipase OF 360 was markedly decreased. Photooxidation of His residues also resulted in a decrease in the activity of the lipase. Chemical modification studies suggested the existence of a charge relay system (Ser-His-Asp/Glu) in the active site. Based on these results, a model of the active site and reaction mechanism of the lipase are presented. 相似文献
9.
Heptahelical G-protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors couple to heterotrimeric G proteins to relay extracellular signals to intracellular signaling networks, but the molecular mechanism underlying guanosine 5′-diphosphate (GDP) release by the G protein α-subunit is not well understood. Amino acid substitutions in the conserved α5 helix of Gi, which extends from the C-terminal region to the nucleotide-binding pocket, cause dramatic increases in basal (receptor-independent) GDP release rates. For example, mutant Gαi1-T329A shows an 18-fold increase in basal GDP release rate and, when expressed in culture, it causes a significant decrease in forskolin-stimulated cAMP accumulation. The crystal structure of Gαi1-T329A·GDP shows substantial conformational rearrangement of the switch I region and additional striking alterations of side chains lining the catalytic pocket that disrupt the Mg+2 coordination sphere and dislodge bound Mg+2. We propose a “sequential release” mechanism whereby a transient conformational change in the α5 helix alters switch I to induce GDP release. Interestingly, this mechanistic model for heterotrimeric G protein activation is similar to that suggested for the activation of the plant small G protein Rop4 by RopGEF8. 相似文献
10.
Erika J. Fong Chao Huang Julie Hamilton William J. Benett Mihail Bora Alison Burklund Thomas R. Metz Maxim Shusteff 《Journal of visualized experiments : JoVE》2015,(105)
A major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15–1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection, system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing. 相似文献
11.
Acid unfolding of non-inhibited papain at pH 2 was studied by means of spectroscopic and electrophoresis techniques as well
as activity assays. We found a molten globule like species (A state) similar to that previously reported for bromelain and
S-carboxy-methyl-papain. We demonstrated that this A state is not thermodynamically stable but a metastable conformer which
decays into an unfolded conformation in a few hours. The mechanism of acid unfolding to the A state proved to be completely
irreversible, with a biphasic time evolution of spectroscopic signals characteristic of the existence of a kinetic intermediate.
This latter species showed properties in-between native and A state such as secondary structure, exposition of hydrophobic
area and tryptophan environment, but a native like hydrodynamic radius. Native papain seems to unfold at acid pH through at
least two kinetic barriers, being its proregion mandatory to conduct and stabilize its active structure. Computer simulations
of acid unfolding, followed by ANS docking, identified three regions of cavity formation induced by acid media which might
be used as regions to be fortified by protein engineering in the quest for extreme-resistant proteases or as hot-spots for
protease inactivation. 相似文献
12.
Assessing Adhesion Forces of Type I and Type IV Pili of Xylella fastidiosa Bacteria by Use of a Microfluidic Flow Chamber 总被引:1,自引:0,他引:1
下载免费PDF全文

Leonardo De La Fuente Emilie Montanes Yizhi Meng Yaxin Li Thomas J. Burr H. C. Hoch Mingming Wu 《Applied microbiology》2007,73(8):2690-2696
Xylella fastidiosa, a bacterium responsible for Pierce's disease in grapevines, possesses both type I and type IV pili at the same cell pole. Type IV pili facilitate twitching motility, and type I pili are involved in biofilm development. The adhesiveness of the bacteria and the roles of the two pili types in attachment to a glass substratum were evaluated using a microfluidic flow chamber in conjunction with pilus-defective mutants. The average adhesion force necessary to detach wild-type X. fastidiosa cells was 147 ± 11 pN. Mutant cells possessing only type I pili required a force of 204 ± 22 pN for removal, whereas cells possessing only type IV pili required 119 ± 8 pN to dislodge these cells. The experimental results demonstrate that microfluidic flow chambers are useful and convenient tools for assessing the drag forces necessary for detaching bacterial cells and that with specific pilus mutants, the role of the pilus type can be further assessed. 相似文献
13.
Sequential effects of prostaglandins and interferon-gamma on differentiation of CD8+ suppressor cells 总被引:4,自引:0,他引:4
We have previously demonstrated that differentiation of CD8+ Tp44- suppressor cells in pokeweed mitogen (PWM)-stimulated cultures requires soluble factors elaborated by CD4+ cells and monocytes, and that the monocyte signal for such differentiation can be replaced by prostaglandin E2 (PGE2). In this study, we explored the ability of interleukin 2 (IL 2) and interferon-gamma (IFN-gamma) to replace the CD4+ signal. When IL 2 or IFN-gamma was used at concentrations equivalent to those present in supernatants of PWM-pulsed cultures of CD4+ cells, no effect on differentiation of CD8+ cells was observed. However, a potent suppressor inducing activity was detected when IFN-gamma, but not IL 2, was mixed with supernatants derived from cultures of PWM-pulsed purified monocytes (M phi sup) or with 10(-8) M PGE2. Differentiated CD8+ suppressor cells (Ts) inhibited both PWM-stimulated proliferative response of CD4+ cells and immunoglobulin production by B cells. The signals mediated by the M phi sup or PGE2 and IFN-gamma were shown to act sequentially. That is, M phi sup or PGE2 was required initially, followed by an IFN-gamma-dependent differentiative step. These studies thus suggest a cascade of cellular interactions involving monocytes, CD4+ cells, and CD8+ Ts precursors that are required for the differentiation of CD8+ suppressor effector cells. 相似文献
14.
Thermal and Spectroscopic Characterization of a Proton Pumping Rhodopsin from an Extreme Thermophile
Takashi Tsukamoto Keiichi Inoue Hideki Kandori Yuki Sudo 《The Journal of biological chemistry》2013,288(30):21581-21592
So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding. 相似文献
15.
Thomas D. Pfister Melinda Hollingshead Robert J. Kinders Yiping Zhang Yvonne A. Evrard Jiuping Ji Sonny A. Khin Suzanne Borgel Howard Stotler John Carter Raymond Divelbiss Shivaani Kummar Yves Pommier Ralph E. Parchment Joseph E. Tomaszewski James H. Doroshow 《PloS one》2012,7(12)
Background
Topoisomerase I (Top1) is a proven target for cancer therapeutics. Recent data from the Fluorouracil, Oxaliplatin, CPT-11: Use and Sequencing (FOCUS) trial demonstrated that nuclear staining of Top1 correlates with chemotherapeutic efficacy. Such a correlation may help identify patients likely to respond to Top1 inhibitors and illuminate their mechanism of action. Cellular response to Top1 inhibitors is complex, but Top1 target engagement is a necessary first step in this process. This paper reports the development and validation of a quantitative immunoassay for Top1 in tumors.Methodology/Principal Findings
We have developed and validated a two-site enzyme chemiluminescent immunoassay for quantifying Top1 levels in tumor biopsies. Analytical validation of the assay established the inter-day coefficient of variation at 9.3%±3.4% and a 96.5%±7.3% assay accuracy. Preclinical fit-for-purpose modeling of topotecan time- and dose-effects was performed using topotecan-responsive and -nonresponsive xenografts in athymic nude mice. Higher baseline levels of Top1 were observed in topotecan-responsive than -nonresponsive tumors. Top1 levels reached a maximal decrease 4 to 7 hours following treatment of engrafted mice with topotecan and the indenoisoquinoline NSC 724998.Conclusions/Significance
Our analysis of Top1 levels in control and treated tumors supports the previously proposed mechanism of action for Top1 inhibitor efficacy, wherein higher baseline Top1 levels lead to formation of more covalent-complex-dependent double-strand break damage and, ultimately, cell death. In contrast, xenografts with lower baseline Top1 levels accumulate fewer double-stand breaks, and may be more resistant to Top1 inhibitors. Our results support further investigation into the use of Top1 levels in tumors as a potential predictive biomarker. The Top1 immunoassay described in this paper has been incorporated into a Phase I clinical trial at the National Cancer Institute to assess pharmacodynamic response in tumor biopsies and determine whether baseline Top1 levels are predictive of response to indenoisoquinoline Top1 inhibitors. 相似文献16.
Xiaoqian Tang Xin Li Peiwu Li Qi Zhang Ran Li Wen Zhang Xiaoxia Ding Jiawen Lei Zhaowei Zhang 《PloS one》2014,9(1)
The zearalenone (ZEA) monoclonal antibody (mAb) 2D3, one of the highest sensitivity antibodies, was developed. Based on this mAb, it was established of an immunoaffinity column (IAC) coupled with an indirect competitive enzyme-linked immunosorbent assay (icELISA). After optimization, the icELISA allowed an IC50 against ZEA of 0.02 µg L−1. The mAb 2D3 exhibited a high recognition of ZEA (100%) and β-zearalenol (β-ZOL, 88.2%). Its cross-reactivity with α-zearalenol (α-ZOL) and β-zearalanol (β-ZAL) were found to be 4.4% and 4.6%, respectively. The IAC-icELISA method was employed to analyze ZEA contamination in food samples, compared with high-performance liquid chromatography (HPLC). The spiked assay for ZEA demonstrated the considerable recoveries for IAC-icELISA (83–93%) and HPLC (94–108%) methods. Results showed that the mAb 2D3 and IAC-icELISA method posed potential applications in sensitively determination of ZEA in maize. 相似文献
17.
18.
19.
P450cam (CYP101A1) is a bacterial monooxygenase that is known to catalyze the oxidation of camphor, the first committed step in camphor degradation, with simultaneous reduction of oxygen (O2). We report that P450cam catalysis is controlled by oxygen levels: at high O2 concentration, P450cam catalyzes the known oxidation reaction, whereas at low O2 concentration the enzyme catalyzes the reduction of camphor to borneol. We confirmed, using 17O and 2H NMR, that the hydrogen atom added to camphor comes from water, which is oxidized to hydrogen peroxide (H2O2). This is the first time a cytochrome P450 has been observed to catalyze oxidation of water to H2O2, a difficult reaction to catalyze due to its high barrier. The reduction of camphor and simultaneous oxidation of water are likely catalyzed by the iron-oxo intermediate of P450cam, and we present a plausible mechanism that accounts for the 1∶1 borneol:H2O2 stoichiometry we observed. This reaction has an adaptive value to bacteria that express this camphor catabolism pathway, which requires O2, for two reasons: 1) the borneol and H2O2 mixture generated is toxic to other bacteria and 2) borneol down-regulates the expression of P450cam and its electron transfer partners. Since the reaction described here only occurs under low O2 conditions, the down-regulation only occurs when O2 is scarce. 相似文献
20.
Masayuki Sato Gaku Takahashi Shigehiro Shibata Makoto Onodera Yasushi Suzuki Yoshihiro Inoue Shigeatsu Endo 《PloS one》2015,10(12)
We previously reported that a soluble CD14-subtype (sCD14-ST) immunochromatographic test (ICT) for plasma is more convenient than chemiluminescent enzyme immunoassay (CLEIA), but plasma separation makes bedside measurements difficult. We developed a new sCD14-ST ICT for whole blood and investigated whether quantitative determinations of sCD14-ST by ICT were useful for diagnosing sepsis and severe sepsis/septic shock. We studied 20 patients who fulfilled two or more systemic inflammatory response syndrome (SIRS) criteria and 32 patients who had been diagnosed with sepsis or severe sepsis/septic shock. Whole blood was collected on day 0 (on admission) and day 7, and the sCD14-ST concentration was quantitatively measured by CLEIA and ICT for whole blood. The patients’ Acute Physiology and Chronic Health Evaluation (APACHE) II, Sequential Organ Failure Assessment (SOFA), and Mortality in Emergency Department Sepsis (MEDS) scores were also calculated. The cut-off values obtained by the quantitative measurements made by ICT were 464.5 pg/mL for sepsis and 762.7 pg/mL for severe sepsis/septic shock (P < 0.0001). A Bland–Altman plot showed that no fixed bias or proportional bias was detected between CLEIA and quantitative ICT for whole blood. sCD14-ST concentrations were significantly correlated with APACHE II, SOFA, and MEDS scores (P < 0.0001). These results suggest that the new sCD14-ST ICT for whole blood may be a useful tool for the convenient, rapid bedside diagnosis and treatment of sepsis. 相似文献