首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction of antibodies specific for acetylated lysine has significantly improved the detection of endogenous acetylation sites by mass spectrometry. Here, we describe a new, commercially available mixture of anti-lysine acetylation (Kac) antibodies and show its utility for in-depth profiling of the acetylome. Specifically, seven complementary monoclones with high specificity for Kac were combined into a final anti-Kac reagent which results in at least a twofold increase in identification of Kac peptides over a commonly used Kac antibody. We outline optimal antibody usage conditions, effective offline basic reversed phase separation, and use of state-of-the-art LC-MS technology for achieving unprecedented coverage of the acetylome. The methods were applied to quantify acetylation sites in suberoylanilide hydroxamic acid-treated Jurkat cells. Over 10,000 Kac peptides from over 3000 Kac proteins were quantified from a single stable isotope labeling by amino acids in cell culture labeled sample using 7.5 mg of peptide input per state. This constitutes the deepest coverage of acetylation sites in quantitative experiments obtained to-date. The approach was also applied to breast tumor xenograft samples using isobaric mass tag labeling of peptides (iTRAQ4, TMT6 and TMT10-plex reagents) for quantification. Greater than 6700 Kac peptides from over 2300 Kac proteins were quantified using 1 mg of tumor protein per iTRAQ 4-plex channel. The novel reagents and methods we describe here enable quantitative, global acetylome analyses with depth and sensitivity approaching that obtained for other well-studied post-translational modifications such as phosphorylation and ubiquitylation, and should have widespread application in biological and clinical studies employing mass spectrometry-based proteomics.Lysine acetylation (Kac)1 is a well conserved, reversible post-translational modification (PTM) involved in multiple cellular processes (1). Acetylation is regulated by two classes of enzymes: lysine acetyltransferases (KATs) and histone deacetylases (HDACs) (24). This modification was originally identified as a nuclear event on histone proteins and has been long appreciated for its role in epigenetic and DNA-dependent processes. With the help of a growing number of large-scale acetylation studies, it has become evident that lysine acetylation is ubiquitous, also occurring on cytoplasmic and mitochondrial proteins and has a role in signaling, metabolism, and immunity (1, 46). Therefore, the examination of lysine acetylation on nonhistone proteins has gained a prominent role in PTM analysis.To date, the identification of large numbers of acetylation sites has been challenging because of the substoichiometric nature of this modification (7, 8). Additionally, global acetylation is generally less abundant than phosphorylation and ubiquitylation (1). The introduction of antibodies specific for lysine acetylation has significantly improved the ability to enrich and identify thousands of sites (914). A landmark study by Choudhary et al. used anti-Kac antibodies to globally map 3600 lysine acetylation sites on 1750 proteins, thereby demonstrating the feasibility of profiling the acetylome (10). A more recent study by Lundby et al. investigated the function and distribution of acetylation sites in 16 different rat tissues, and identified, in aggregate, 15,474 acetylation sites from 4541 proteins (12).Although anti-acetyl lysine antibodies have been a breakthrough for globally mapping acetylation sites (912), it remains a challenge to identify large numbers of lysine acetylation sites from a single sample, as is now routinely possible for phosphorylation and ubiquitylation (13, 1518). To improve the depth-of-coverage in acetylation profiling experiments there is a clear need for (1) alternative anti-acetyl lysine antibodies with higher specificity, (2) optimized antibody usage parameters, and (3) robust proteomic workflows that permit low to moderate protein input. In this study, we describe a newly commercialized mixture of anti-Kac antibodies and detail a complete proteomic workflow for achieving unprecedented coverage of the acetylome from a single stable isotope labeling by amino acids in cell culture (SILAC) labeled sample as well as isobaric tags for relative and absolute quantitation (iTRAQ)- and tandem mass tag (TMT)-labeled samples.  相似文献   

2.
3.
4.
Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysine acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S. cerevisiae. Acetylated proteins are implicated in the regulation of diverse cytoplasmic and nuclear processes including chromatin organization, mitochondrial metabolism, and protein synthesis. Bioinformatic analysis of yeast acetylation sites shows that acetylated lysines are significantly more conserved compared with nonacetylated lysines. A large fraction of the conserved acetylation sites are present on proteins involved in cellular metabolism, protein synthesis, and protein folding. Furthermore, quantification of the Rpd3-regulated acetylation sites identified several previously known, as well as new putative substrates of this deacetylase. Rpd3 deficiency increased acetylation of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) complex subunit Sgf73 on K33. This acetylation site is located within a critical regulatory domain in Sgf73 that interacts with Ubp8 and is involved in the activation of the Ubp8-containing histone H2B deubiquitylase complex. Our data provides the first global survey of acetylation in budding yeast, and suggests a wide-ranging regulatory scope of this modification. The provided dataset may serve as an important resource for the functional analysis of lysine acetylation in eukaryotes.Lysine acetylation is a dynamic and reversible post-translational modification. Acetylation of lysines on their ε-amino group is catalyzed by lysine acetyltransferases (KATs1, also known as histone acetyltrasferases (HATs)), and reversed by lysine deacetylases (KDACs, also known as histone deacetylases (HDACs)) (1). The enzymatic machinery involved in lysine acetylation is evolutionary conserved in all forms of life (24). The role of acetylation has been extensively studied in the regulation of gene expression via modification of histones (5). Acetylation also plays important roles in controlling cellular metabolism (610), protein folding (11), and sister chromatid cohesion (12). Furthermore, acetylation has been implicated in regulating the beneficial effects of calorie restriction (13), a low nutrient diet without starvation, and aging. Based on these findings, it is proposed that the functional roles of acetylation in these processes are evolutionary conserved from yeast to mammals.Advancements in mass spectrometry (MS)-based proteomics have greatly facilitated identification of thousands of post-translational modification (PTM) sites in eukaryotic cells (1418). Proteome-wide mapping of PTM sites can provide important leads for analyzing the functional relevance of individual sites and a systems-wide view of the regulatory scope of post-translational modifications. Also, large-scale PTM datasets are an important resource for the in silico analysis of PTMs, which can broaden the understanding of modification site properties and their evolutionary trajectories.The budding yeast Saccharomyces cerevisiae is a commonly used unicellular eukaryotic model organism. Yeast has been used in many pioneering “-omics” studies, including sequencing of the first eukaryotic genome (19), systems-wide genetic interactions analysis (20, 21), MS-based comprehensive mapping of a eukaryotic proteome (22), and proteome-wide analysis of protein-protein interactions (23, 24). In addition, S. cerevisiae has been extensively used to study the molecular mechanisms of acetylation. Many lysine acetyltransferases and deacetylases were discovered in this organism (2, 25), and their orthologs were subsequently identified in higher eukaryotes. Furthermore, the functional roles of many well-studied acetylation sites on histones are conserved from yeast to mammals. Recent data from human and Drosophila cells show that acetylation is present on many highly conserved metabolic enzymes (2628). However, only a few dozen yeast acetylation sites are annotated in the Uniprot database. Given the presence of a well-conserved and elaborate acetylation machinery in yeast, we reasoned that many more acetylation sites exist in this organism that remained to be identified.Here we used high resolution mass spectrometry-based proteomics to investigate the scope of acetylation in S. cerevisiae. We identified about 4000 unique acetylation sites in this important model organism. Bioinformatic analysis of yeast acetylation sites and comparison with previously identified human and Drosophila acetylation sites indicates that many acetylation sites are evolutionary conserved. Furthermore, quantitative analysis of the Rpd3-regulated acetylation sites identified several nuclear proteins that showed increased acetylation in rpd3 knockout cells. Our results provide a systems-wide view of acetylation in budding yeast, and a rich dataset for functional analysis of acetylation sites in this organism.  相似文献   

5.
6.
7.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

8.
Sperm glyceraldehyde-3-phosphate dehydrogenase has been shown to be a successful target for a non-hormonal contraceptive approach, but the agents tested to date have had unacceptable side effects. Obtaining the structure of the sperm-specific isoform to allow rational inhibitor design has therefore been a goal for a number of years but has proved intractable because of the insoluble nature of both native and recombinant protein. We have obtained soluble recombinant sperm glyceraldehyde-3-phosphate dehydrogenase as a heterotetramer with the Escherichia coli glyceraldehyde-3-phosphate dehydrogenase in a ratio of 1:3 and have solved the structure of the heterotetramer which we believe represents a novel strategy for structure determination of an insoluble protein. A structure was also obtained where glyceraldehyde 3-phosphate binds in the Ps pocket in the active site of the sperm enzyme subunit in the presence of NAD. Modeling and comparison of the structures of human somatic and sperm-specific glyceraldehyde-3-phosphate dehydrogenase revealed few differences at the active site and hence rebut the long presumed structural specificity of 3-chlorolactaldehyde for the sperm isoform. The contraceptive activity of α-chlorohydrin and its apparent specificity for the sperm isoform in vivo are likely to be due to differences in metabolism to 3-chlorolactaldehyde in spermatozoa and somatic cells. However, further detailed analysis of the sperm glyceraldehyde-3-phosphate dehydrogenase structure revealed sites in the enzyme that do show significant difference compared with published somatic glyceraldehyde-3-phosphate dehydrogenase structures that could be exploited by structure-based drug design to identify leads for novel male contraceptives.Glyceraldehyde-3-phosphate dehydrogenase-S (GAPDS3 in rat; GAPDH2 in human) is the sperm-specific isoform of GAPDH (13) and the sole GAPDH enzyme in sperm. GAPDS is highly conserved between species showing 94% identity between rat and mouse and 87% identity between rat and human. Within a particular species, GAPDS also shows significant sequence identity to its GAPDH paralogue, 70, 70, and 68% for rat, mouse, and human, respectively. The most striking difference between GAPDS and GAPDH is the presence of an N-terminal polyproline region in GAPDS, which is 97 residues in rat (accession number AJ297631), 105 in mouse (3), and 72 in human (2). GAPDS is restricted to the principal piece of the sperm flagellum (1, 2, 4) where it is localized to the fibrous sheath (5), an association proposed to be mediated via the N-terminal polyproline extension.GAPDS first came to prominence as a contraceptive target during the 1970s (68). Investigations showed that treatment of sperm with α-chlorohydrin or a number of related compounds could inhibit GAPDS activity (911), sperm motility (913), and the fertilization of oocytes in vitro (14). The metabolite of these compounds, 3-chlorolactaldehyde (1517), selectively inhibited GAPDS, having no effect on the activity of somatic cell GAPDH (18, 19), providing the specificity required for a potential contraceptive. Questions surrounding these particular compounds were raised when a number of side effects were evident from in vivo trials (7, 2022); however, the design of small molecule inhibitors of GAPDS may provide a viable alternative. Its potential as a contraceptive target was supported by data from mice where GAPDS−/− males (23) were infertile because of defects in sperm motility.Glyceraldehyde-3-phosphate dehydrogenases are tetrameric enzymes that catalyze the oxidative phosphorylation of d-glyceraldehyde 3-phosphate (Glc-3-P) into 1,3-diphosphoglycerate in the presence of an NAD cofactor via a two-step chemical mechanism (24). The first models of substrate binding were proposed on the basis of crystal structures of the holoenzyme from lobster (25) and Bacillus stearothermophilus (26), and Moras and co-workers (25) identified two anion-binding sites postulated to correspond to those binding the C-3 phosphate group of d-Glc-3-P (Ps site) and the inorganic phosphate ion (Pi site).Structure-based design of small molecules to inhibit GAPDH is not unprecedented. GAPDH has been targeted from protozoan parasites (2730), as the bloodstream forms rely solely on glycolysis for energy production (31, 32). A number of mammalian GAPDH structures have also been solved, including rabbit muscle (33, 34), human liver (35), and human placenta (36); however, no structures are available for sperm-specific isoforms of this enzyme.Active heterotetramers of GAPDH between different species have been reported and biochemically characterized previously, both in ratios of 2:2 and 3:1 (3740). In this study we have successfully obtained crystals of rat recombinant GAPDS as a heterotetramer with Escherichia coli GAPDH in a 1:3 ratio. To understand the basis of inhibition of the sperm isoform by substrate analogue 3-chlorolactaldehyde, a metabolite of α-chlorohydrin, a structure was also determined in the presence of the substrate glyceraldehyde 3-phosphate. The sperm-specific structure was compared with the human placental GAPDH structure (PDB entry 1U8F; Ref. 36) to identify differences that may provide a target for the design of inhibitors specific to the GAPDS protein. The unique structural features identified offer potential candidates for further investigation as inhibitor targets.  相似文献   

9.
10.
11.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

12.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

13.
The lysine acetylation of proteins is a reversible post-translational modification that plays a critical regulatory role in both eukaryotes and prokaryotes. Mycobacterium tuberculosis is a facultative intracellular pathogen and the causative agent of tuberculosis. Increasing evidence shows that lysine acetylation may play an important role in the pathogenesis of M. tuberculosis. However, only a few acetylated proteins of M. tuberculosis are known, presenting a major obstacle to understanding the functional roles of reversible lysine acetylation in this pathogen. We performed a global acetylome analysis of M. tuberculosis H37Ra by combining protein/peptide prefractionation, antibody enrichment, and LC-MS/MS. In total, we identified 226 acetylation sites in 137 proteins of M. tuberculosis H37Ra. The identified acetylated proteins were functionally categorized into an interaction map and shown to be involved in various biological processes. Consistent with previous reports, a large proportion of the acetylation sites were present on proteins involved in glycolysis/gluconeogenesis, the citrate cycle, and fatty acid metabolism. A NAD+-dependent deacetylase (MRA_1161) deletion mutant of M. tuberculosis H37Ra was constructed and its characterization showed a different colony morphology, reduced biofilm formation, and increased tolerance of heat stress. Interestingly, lysine acetylation was found, for the first time, to block the immunogenicity of a peptide derived from a known immunogen, HspX, suggesting that lysine acetylation plays a regulatory role in immunogenicity. Our data provide the first global survey of lysine acetylation in M. tuberculosis. The dataset should be an important resource for the functional analysis of lysine acetylation in M. tuberculosis and facilitate the clarification of the entire metabolic networks of this life-threatening pathogen.Mycobacterium tuberculosis was responsible for 1.3 million deaths and 8.6 million new cases of tuberculosis (TB)1 worldwide in 2012 (1). This global public health crisis remains a serious problem, with the emergence of drug-resistant M. tuberculosis, especially multidrug-resistant and extensively drug-resistant M. tuberculosis, and also the emergence of coinfections of TB and human immunodeficiency virus (2, 3). To counter the increasing threat of TB, it is critical to understand fundamental aspects of TB-related biology. Such studies will not only provide new drug targets for the design of novel therapeutic agents, but also facilitate the development of novel diagnostic tools and new vaccines.Acetylation is one of the important protein modifications and occurs both co- and post-translationally on the α-amino group at the N terminus of the protein, so-called “N-terminal acetylation,” or on the ε-amino group on the side chain of lysine (4). Lysine acetylation is one of the most common post-translational modifications to proteins in both eukaryotes and prokaryotes. As a dynamic and reversible process, protein acetylation plays important roles in many cellular physiological processes, including cell-cycle regulation and apoptosis, cell morphology (5), metabolic pathways (68), protein interactions (9), and enzymatic activity (8, 10). In recent years, great advances have been made in proteomic studies, and a large number of lysine-acetylated proteins have been identified in many eukaryotes, including human (5, 11, 12), rat (13), mouse (11), Drosophila (14), Arabidopsis (15, 16), Saccharomyces cerevisiae (17), and protozoans (18, 19). The global analysis of lysine acetylation has also been reported in bacteria, including Escherichia coli (2022), Erwinia amylovora (23), Bacillus subtilis (24), and Salmonella enterica (6). These acetylome studies have generated large datasets of bacterial proteins acetylated on lysine residues and have demonstrated the diverse cellular functions of lysine acetylation in bacteria.Increasing evidence shows that protein acetylation occurs and plays an important regulatory role in mycobacteria (8, 2531). For example, Lange et al. reported the N-terminal acetylation of early secreted antigenic target 6 (ESAT-6) protein (31). Rv1151c is reported to be an NAD+-dependent protein deacetylase in M. tuberculosis that deacetylates and thus regulates the activity of acetyl-CoA synthase (25, 32). Two cyclic adenosine monophosphate (cAMP)-binding proteins in M. smegmatis and M. tuberculosis (MSMEG_5458 and Rv0998, respectively) show similarity to the GNAT family of acetyltransferases and could acetylate a universal stress protein (USP, MSMEG_4207) (30). Subsequent structural studies revealed the fine mechanisms of how cAMP regulates the protein lysine acetyltransferase in mycobacteria (27, 28). Very recently, reversible lysine acetylation was shown to regulate the activity of several fatty acyl-CoA synthetases in M. tuberculosis (8, 26), and also to regulate acetate and propionate metabolism in M. smegmatis (8, 26). However, to the best of our knowledge, only a few acetylated proteins in M. tuberculosis have been identified, presenting a major obstacle to further understanding the regulatory roles of reversible lysine acetylation in this life-threatening pathogen.To fill this gap in our knowledge, we undertook a systematic study of the functional roles of lysine acetylation in M. tuberculosis. We performed an acetylomic analysis of M. tuberculosis H37Ra using high-accuracy MS combined with the identification of 226 unique lysine acetylation sites on 137 proteins. This set of M. tuberculosis proteins acetylated on lysine residues supports the emerging view that lysine acetylation is a general and fundamental regulatory process, and is not restricted to eukaryotes. It also opens the way for its detailed functional and evolutionary analysis of lysine acetylation in M. tuberculosis. The identified acetylated proteins that are involved in several important biological processes were functionally categorized into an interaction map. This is the first time that an interaction network of acetylated proteins in M. tuberculosis has been constructed, and should allow us to better understand the significance of acetylation in key cellular mechanisms in M. tuberculosis. To further explore the effects of lysine acetylation on the physiology of M. tuberculosis H37Ra, MRA_1161, the gene encoding the only known protein deacetylase in this bacterium, was deleted. The roles of MRA_1161 in the colony morphology, carbon source utilization, heat stress tolerance, and biofilm formation of M. tuberculosis were analyzed. The effect of lysine acetylation on the immunogenicity of a known immunogen, HspX, was also tested.  相似文献   

14.
15.
16.
17.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

18.
Lysine succinylation is a newly identified protein post-translational modification pathway present in both prokaryotic and eukaryotic cells. However, succinylation substrates and regulatory enzyme(s) remain largely unknown, hindering the biological study of this modification. Here we report the identification of 2,580 bacterial lysine succinylation sites in 670 proteins and 2,803 lysine acetylation (Kac) sites in 782 proteins, representing the first lysine succinylation dataset and the largest Kac dataset in wild-type E. coli. We quantified dynamic changes of the lysine succinylation and Kac substrates in response to high glucose. Our data showed that high-glucose conditions led to more lysine-succinylated proteins and enhanced the abundance of succinyllysine peptides more significantly than Kac peptides, suggesting that glucose has a more profound effect on succinylation than on acetylation. We further identified CobB, a known Sir2-like bacterial lysine deacetylase, as the first prokaryotic desuccinylation enzyme. The identification of bacterial CobB as a bifunctional enzyme with lysine desuccinylation and deacetylation activities suggests that the eukaryotic Kac-regulatory enzymes may have enzymatic activities on various lysine acylations with very different structures. In addition, it is highly likely that lysine succinylation could have unique and more profound regulatory roles in cellular metabolism relative to lysine acetylation under some physiological conditions.Lysine acetylation (Kac)1 is a dynamic and evolutionarily conserved post-translational modification (PTM) that is known to be involved in the regulation of diverse cellular processes (19). The status of this modification is controlled by two groups of enzymes with opposing enzymatic activities, lysine acetyltransferases that add an acetyl group to the lysine (Lys or K) residue, and histone lysine deacetylases (HDACs) that remove the acetyl group (1016). HDACs are grouped into several categories (17): class I (HDAC1, -2, -3, and -8), class IIA (HDAC4, -5, -7, and -9), class IIB (HDAC6 and -10), class III (Sirt1–7), and class IV (HDAC11). The weak deacetylation activities of some HDACs (e.g. Sirt4–7 and HDAC4, -5, and -7–11), as well as the demonstration of Sirt5 as a desuccinylation and demalonylation enzyme, suggest that some HDAC enzymes have activities that are independent of acetylation (18, 19).For a long period of time, lysine acetylation was considered as a protein modification that was restricted to nuclei (20). The identification of cytosolic Kac substrates and the localization of some HDACs outside nuclei suggest a non-nuclear function of lysine acetylation (13, 21, 22). The first proteomic screening identified hundreds of substrate proteins in cytosolic and mitochondrial fractions and demonstrated high abundance of Kac in mitochondrial proteins and metabolic enzymes (23). This result implies that Kac has diverse non-nuclear roles and can regulate functions of metabolism and mitochondria (23). Since then, we and others have extensively characterized the cellular acetylome (5, 9, 2426).The lysine succinylation (Ksucc) and lysine malonylation pathways are two PTM pathways that were recently identified and comprehensively validated in both bacterial and mammalian cells, with multiple substrate proteins identified, using HPLC-MS/MS, co-elution of synthetic peptides, isotopic labeling, Western blotting analysis using pan-anti-Ksucc antibodies, and proteomics analysis (18, 27). We also showed that Ksucc is present in core histones (29). In yeast histones, some Ksucc sites are located in regions where histones make close contact with DNA, suggesting that Ksucc sites may be involved in gene regulation by changing the chromatin structure (29). We then found that Sirt5, a member of the class III family of HDACs, can function as a desuccinylation enzyme in vitro and in vivo (18, 19). In a recent study, we revealed that Sirt5 is a key regulatory enzyme of Ksucc and that Ksucc proteins are abundant among a group of mitochondrial enzymes that are predominantly involved in fatty acid metabolism, amino acid degradation, and the tricarboxylic acid cycle (28). Importantly, Ksucc is very dynamic not only in mammalian cells, but also in bacteria (27, 29). These lines of evidence strongly suggest that lysine succinylation is likely an important PTM in the regulation of cellular functions.Although key elements of the Ksucc pathway are being identified in mammalian cells, their counterparts in bacteria remain largely unknown. We and others have used a proteomics approach to identify Kac substrates in bacteria (26, 30, 31, 52). The Sir2-like enzyme CobB is the best-studied protein deacetylase in bacteria (8). CobB was initially identified as an enzyme required for the activation of acetyl-CoA synthetase (8). Recently, CobB was shown to play roles in bacterial energy metabolism (31) and stress response (32). Those studies indicated that Kac is an evolutionarily conserved PTM with a role in energy metabolism in prokaryotes. Nevertheless, dynamic changes of lysine acetylation in bacteria have not been studied. In addition, substrates of lysine succinylation and their regulatory enzymes are not known.In this paper, we report a quantitative proteomic approach based on stable isotope labeling by amino acids in cell culture (SILAC) to identify and quantify changes in bacterial lysine succinylation, as well as lysine acetylation, in response to glucose, a major energy source. Our screening detected 2,580 lysine-succinylated sites in 670 proteins and 2,803 Kac sites in 782 proteins in Escherichia coli. Our quantitative proteomics data show that glucose had a more profound effect on Ksucc than on Kac. In addition, we found that CobB, a known prokaryotic deacetylase, had dual enzymatic activities to catalyze the removal of two structurally different lysine acyl groups, acetyl and succinyl, from the modified lysine residues.  相似文献   

19.
A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号