首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Although L-DOPA is the drug of choice for Parkinson's disease, prolonged L-DOPA therapy results in decreased drug effectiveness and the appearance of motor complications. This may be due in part to the progressive loss of the enzyme, aromatic L-amino acid decarboxylase (AADC). We have developed an adeno-associated virus vector (AAV-hAADC) that contains human AADC cDNA under the control of the cytomegalovirus promoter. Infusion of this vector into the striatum of parkinsonian rats and monkeys improves L-DOPA responsiveness by improving AADC-mediated conversion of L-DOPA to dopamine. This is now the basis of a proposed therapy for advanced Parkinson's disease. A key concern has been that over-production of dopamine in striatal neurons could cause dopamine toxicity. To investigate this possibility in a controlled system, mixed striatal primary rat neuronal cultures were prepared. Exposure of cultures to high concentrations of L-DOPA induced the following changes: cell death in nigral and striatal neurons, aggregation of neurofilaments and focal axonal swellings, abnormal expression of DARPP-32, and activation of astroglia and microglial cells. Transduction of cultures with AAV-hAADC resulted in efficient and sustained neuronal expression of the AADC protein and prevented all the L-DOPA-induced toxicities. The protective effects were due primarily to AADC-dependent conversion of L-DOPA to dopamine and an increase in induction of vesicular monoamine transporter resulting in dopamine storage in cultured cells. These results suggest a neuroprotective role for AADC gene transfer against L-DOPA toxicity.  相似文献   

2.
Ozawa K 《Uirusu》2007,57(1):47-55
AAV (adeno-associated virus) vectors are considered to be promising gene-delivery vehicles for gene therapy, because they are derived from non-pathogenic virus, efficiently transduce non-dividing cells, and cause long-term gene expression. Appropriate AAV serotypes are utilized depending on the type of target cells. Among various neurological disorders, Parkinson's disease (PD) is one of the most promising candidates of gene therapy. PD is a progressive neurodegenerative disorder that predominantly affects dopaminergic neurons in the substantia nigra. One of the major approaches to gene therapy of PD is the intrastriatal expression of dopamine (DA)-synthesizing enzyme genes. As for the initial step of clinical application, AAV vector-mediated AADC (aromatic L-amino acid decarboxylase; the enzyme converting L-DOPA to DA) gene transfer in combination with oral administration of L-DOPA would be appropriate, since DA production can be regulated by adjusting the dose of L-DOPA. Second, intramuscular injection of AAV vectors is appropriate to protein-supplement gene therapy. Monogenic diseases such as hemophilia and Fabry disease are suitable candidates. Regarding cancer gene therapy, AAV vectors may be utilized to inhibit tumor angiogenesis, metastasis, and invasion. When long-term transgene expression in stem cells is needed, a therapeutic gene should be introduced with a minimal risk of insertional mutagenesis. To this end, site-specific integration into the AAVS1 locus on the chromosome 19 (19q13.4) by using the integration machinery of AAV would be particularly valuable.  相似文献   

3.
Abstract: To study the possibility that increasing striatal activity of aromatic l -amino acid decarboxylase (AADC; EC 4.1.1.28) can increase dopamine production in dopamine denervated striatum in response to l -3,4-dihydroxyphenylalanine ( l -DOPA) administration, we grafted Cos cells stably expressing the human AADC gene (Cos- haadc cells) into 6-hydroxydopamine denervated rat striatum. Before grafting, the catalytic activity of the enzyme was assessed in vitro via the generation of 14CO2 from l -[14C]DOPA. The K m value for l -DOPA in intact and disrupted cells was 0.60 and 0.56 m M , respectively. The cofactor, pyridoxal 5-phosphate, enhanced enzymatic activity with maximal effect at 0.1 m M . The pH optimum for enzyme activity was 6.8. Grafting Cos- haadc cells into denervated rat striatum enhanced striatal dopamine levels measured after systemic administration of l -DOPA. When measured 2 h after l -DOPA administration, the mean dopamine level in the striata of Cos- haadc -grafted animals was 2 µg/g of tissue, representing 31% of normal striatal dopamine concentration. The mean dopamine concentration in the striata grafted with untransfected Cos cells (Cos-ut cells) was 1 µg/g. At 6–8 h after l -DOPA administration, striatal dopamine content in the Cos- haadc -grafted animals was 0.67 µg/g of tissue weight, representing 9% of intact striatum dopamine content. By contrast, the average dopamine content in the Cos-ut-grafted animals was undetectable. These findings demonstrate that enhancing striatal AADC activity can improve dopamine bioformation in response to systemically administered l -DOPA.  相似文献   

4.
The purpose of this study was to examine whether monoamine oxidase type B (MAO-B) has a role in striatal dopamine metabolism in animals with a unilateral lesion of the medial forebrain bundle, and whether 2-phenylethylamine (PE) could have a role in amplification of dopamine (DA) responses in DA depleted striatum. Inhibition of MAO-B did not alter DA metabolism in lesioned striata. PE accumulation decreased with loss of DA as long as there was no DA dysfunction. In lesioned striata with dysfunction of DA transmission at the synaptic level, PE accumulation increased,suggesting a compensatory increase in PE synthesis. This increase in PE levels does not appear to be mediated by an increase in the total striatal aromaticl-amino acid decarboxylase (AADC) activity. We conclude that inhibition of MAO-B has no effect on DA metabolism in the hemi-parkinsonian rat striatum and that PE could be involved in the antiparkinsonian action of MAO-B inhibitors.  相似文献   

5.
L-DOPA is therapeutically efficacious in patients with Parkinson’s disease (PD), although dopamine (DA) neurons are severely degenerated. Since cortical astrocytes express neutral amino acid transporter (LAT) and DA transporter (DAT), the uptake and metabolism of L-DOPA and DA in striatal astrocytes may influence their availability in the dopaminergic system of PD. To assess possible L-DOPA- and DA-uptake and metabolic properties of striatal astrocytes, we examined the expression of L-DOPA, DA and DAT in striatal astrocytes of hemi-parkinsonian model rats after repeated L-DOPA administration, and measured the contents of L-DOPA, DA and their metabolite in primary cultured striatal astrocytes after L-DOPA/DA treatment. Repeated injections of L-DOPA induced apparent L-DOPA- and DA-immunoreactivities and marked expression of DAT in reactive astrocytes on the lesioned side of the striatum in hemi-parkinsonian rats. Exposure to DA for 4h significantly increased the levels of DA and its metabolite DOPAC in cultured striatal astrocytes. L-DOPA was also markedly increased in cultured striatal astrocytes after 4-h L-DOPA exposure, but DA was not detected 4 or 8h after L-DOPA treatment, despite the expression of aromatic amino acid decarboxylase in astrocytes. Furthermore, the intracellular level of L-DOPA in cultured striatal astrocytes decreased rapidly after removal of extracellular L-DOPA. The results suggest that DA uptaken into striatal astrocytes is rapidly metabolized and that striatal astrocytes act as a reservoir of L-DOPA that govern the uptake or release of L-DOPA depending on extracellular L-DOPA concentration, but are less capable of converting L-DOPA to DA.  相似文献   

6.
Aromatic L-amino acid decarboxylase (AADC) is necessary for conversion of L-DOPA to dopamine. Therefore, AADC gene therapy has been proposed to enhance pharmacological or gene therapies delivering L-DOPA. However, addition of AADC to the grafts of genetically modified cells expressing tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1), which produce L-DOPA in parkinsonian rats, resulted in decreased production of L-DOPA and dopamine owing to feedback inhibition of TH by dopamine. End-product feedback inhibition has been shown to be mediated by the regulatory domain of TH, and site-specific mutation of serine 40 makes TH less susceptible to dopamine inhibition. Therefore, we investigated the efficacy of using TH with serine 40 mutated to leucine (mTH) in an ex vivo gene-therapy paradigm. Primary fibroblasts (PF) from Fischer 344 rats were transduced with retrovirus to express mTH or wild-type rat TH cDNA (wtTH). Both cell types were also transduced with GCH1 to provide the obligate TH cofactor, tetrahydrobiopterin. PF transfected with AADC were used as coculture and cografting partners. TH activities and L-DOPA production in culture were comparable between PFwtTHGC and PFmTHGC cells. In cocultures with PFAADC cells, PFmTHGC cells showed significant reduction in the inhibitory effect of dopamine compared with PFwtTHGC cells. In vivo microdialysis measurement showed that cografting PFAADC cells with PFmTHGC cells resulted in smaller decreases in L-DOPA and no reduction in dopamine levels compared with cografts of PFAADC cells with PFwtTHGC cells, which decreased both L-DOPA and dopamine levels. Maintenance of dopamine levels with lower levels of L-DOPA would result in more focused local delivery of dopamine and less potential side-effects arising from L-DOPA diffusion into other structures. These data support the hypothesis that mutation of serine 40 attenuates TH end-product inhibition in vivo and illustrates the importance of careful consideration of biochemical pathways and interactions between multiple genes in gene therapy.  相似文献   

7.
The dopamine transporter (DAT) regulates synaptic dopamine (DA) in striatum and modulation of DAT can affect locomotor activity. Thus, in Parkinson’s disease (PD), DAT loss could affect DA clearance and locomotor activity. The locomotor benefits of L-DOPA may be mediated by transport through monoamine transporters and conversion to DA. However, its impact upon DA reuptake is unknown and may modulate synaptic DA. Using the unilateral 6-OHDA rat PD model, we examined [3H]DA uptake dynamics in relation to striatal DAT and tyrosine hydroxylase (TH) protein loss compared with contralateral intact striatum. Despite >70% striatal DAT loss, DA uptake decreased only ∼25% and increased as DAT loss approached 99%. As other monoamine transporters can transport DA, we determined if norepinephrine (NE) and serotonin (5-HT) differentially modulated DA uptake in lesioned striatum. Unlabeled DA, NE, and 5-HT were used, at a concentration that differentially inhibited DA uptake in intact striatum, to compete against [3H]DA uptake. In 6-OHDA lesioned striatum, DA was less effective, whereas NE was more effective, at inhibiting [3H]DA uptake. Furthermore, norepinephrine transporter (NET) protein levels increased and desipramine was ∼two-fold more effective at inhibiting NE uptake. Serotonin inhibited [3H]DA uptake, but without significant difference between lesioned and contralateral striatum. L-DOPA inhibited [3H]DA uptake two-fold more in lesioned striatum and inhibited NE uptake ∼five-fold more than DA uptake in naïve striatum. Consequently, DA uptake may be mediated by NET when DAT loss is at PD levels. Increased inhibition of DA uptake by L-DOPA and its preferential inhibition of NE over DA uptake, indicates that NET-mediated DA uptake may be modulated by L-DOPA when DAT loss exceeds 70%. These results indicate a novel mechanism for DA uptake during PD progression and provide new insight into how L-DOPA affects DA uptake, revealing possible mechanisms of its therapeutic and side effect potential.  相似文献   

8.
Alpha-synuclein is a presynaptic protein strongly implicated in Parkinson's disease (PD). Because dopamine neurons are invariably compromised during pathogenesis in PD, we have been exploring the functions of alpha-synuclein with particular relevance to dopaminergic neuronal cells. We previously discovered reduced tyrosine hydroxylase (TH) activity and minimal dopamine synthesis in stably-transfected MN9D cells overexpressing either wild-type or A53T mutant (alanine to threonine at amino acid 53) alpha-synuclein. TH, the rate-limiting enzyme in dopamine synthesis, converts tyrosine to l-dihydroxyphenylalanine (L-DOPA), which is then converted to dopamine by the enzyme, aromatic amino acid decarboxylase (AADC). We confirmed an interaction between alpha-synuclein and AADC in striatum. We then sought to determine whether wild-type or A53T mutant alpha-synuclein might have affected AADC activity in dopaminergic cells. Using HPLC with electrochemical detection, we measured dopamine and related catechols after L-DOPA treatments to bypass the TH step. We discovered that while alpha-synuclein did not reduce AADC protein levels, it significantly reduced AADC activity and phosphorylation in our cells. These novel findings further support a role for alpha-synuclein in dopamine homeostasis and may explain, at least in part, the selective vulnerability of dopamine neurons that occurs in PD.  相似文献   

9.
U J Kang  W Y Lee  J W Chang 《Human cell》2001,14(1):39-48
This article reviews the mechanism of dopamine delivery in the CNS in order to determine the optimal set of genes for effective gene therapy in Parkinson's disease (PD). Systematic neurobiological investigation of the biochemical steps has revealed that tyrosine hydroxylase (TH), which has been used in earlier studies, functions only when the essential cofactor, tetrahydrobiopterin (BH1) is present. Transduction of the gene for GTP cyclohydrolase I, the first and rate-limiting step in BH1 synthesis, along with the TH gene, generated cells that are capable of producing L-DOPA spontaneously both in vitro and in vivo. When the aromatic L-amino acid decarboxylase (AADC) gene was added as a third gene, in an attempt to increase the conversion of L-DOPA to dopamine, feedback inhibition by the end product, dopamine, on TH activity resulted. To circumvent this problem, we employed a complementary strategy. Gene transfer of the vesicular monoamine transporter was combined with AADC and produced genetically modified cells that can convert L-DOPA to dopamine and store it for gradual release. This approach provided a means to regulate final dopamine delivery by controlling precursor doses and to achieve more sustained delivery of dopamine. Our investigation into determining the genes necessary for optimal dopamine delivery has been facilitated by in vivo biochemical assays using microdialysis. This technique has provided us with a clear and quantitative tool to compare the effects of various genes involved in dopamine synthesis and processing.  相似文献   

10.
To investigate whether adaptive changes of glutamatergic transmission underlie dysfunction of the cholinergic system in experimental parkinsonism, the effects of group-II metabotropic glutamate and NMDA receptor ligands on acetylcholine release was studied in striatal slices and synaptosomes obtained from naive rats, 6-hydroxydopamine hemi-lesioned rats and 6-hydroxydopamine hemi-lesioned rats chronically treated with levodopa (L-DOPA) plus benserazide (non-dyskinetic). Group-II metabotropic glutamate receptor agonists LY354740, DCG-IV and L-CCG-I inhibited the electrically-evoked endogenous acetylcholine release from slices, while NMDA facilitated it. LY354740 also inhibited K+-evoked acetylcholine release from synaptosomes. LY354740-induced inhibition was prevented by the group-II metabotropic glutamate receptor antagonist LY341495. In hemi-parkinsonian rats, sensitivity towards LY354740 was reduced while that to NMDA was enhanced in the lesioned (denervated) compared with unlesioned striatum. Moreover, dizocilpine inhibited acetylcholine release in the lesioned compared with unlesioned striatum. Chronic treatment with L-DOPA normalized sensitivity towards glutamatergic agonists. We conclude that striatal dopamine denervation results in plastic changes at group-II metabotropic glutamate and NMDA receptors that may shift glutamatergic control of acetylcholine release towards facilitation. From a clinical perspective, L-DOPA and NMDA antagonists appear effective in counteracting overactivity of striatal cholinergic interneurones associated with Parkinson's disease.  相似文献   

11.
Espejo  M.  Ambrosio  S.  Llorens  J.  Cutillas  B. 《Neurochemical research》1998,23(10):1217-1223
The striatum of rats was lesioned by unilateral administration of MPP+. Two weeks later, a suspension of fetal mesencephalic cells (FMC), obtained from 14-day rat embryos, was injected into the lesioned striatum. Two weeks after grafting, the success of implantation and recovery of dopamine function were assessed by tyrosine hydroxylase immunocytochemistry (TH) and the measurement of striatal dopamine content. In addition, the extracellular concentrations of dopamine and dopamine metabolites were studied by microdialysis in vivo before and after perfusion of MPP+ to induce dopamine release from vesicular stores. TH+ cell bodies were seen in the lesioned grafted striata, indicating that fetal cells survived in these striata. In addition, there was a marked increase in TH-immunoreactivity in the neuronal fibers and terminals in the area surrounding the cell implant, suggesting a compensatory response of the host tissue which may involve fiber sprouting. Grafting induced a recovery in indices of dopamine function, including recovery in dopamine content, and basal and MPP+-induced dopamine release. Thus, grafts of FMC may provide a significant recovery of dopamine function in MPP+-lesioned striata.  相似文献   

12.
Su Y  Duan CL  Zhao CL  Zhao HY  Xu QY  Yang H 《生理学报》2003,55(5):583-588
由于在帕金森病中合成多巴胺所需的酪氨酸羟化酶(tyrosine hydroxylase,TH)和左旋芳香族氨基酸脱羧酶(aromatic L-amino acid decarboxylase,AADC)活性明显降低,所以补充多巴胺合成酶成为基因治疗帕金森病研究的主要手段。我们分别构建了重组逆转录病毒载体pLHCX/TH及pLNCX2/AADC,通过脂质体介导将带有目的基因的载体分别转到包装细胞PA317中,经筛选得到产病毒的细胞PA317/TH和PA317/AADC,采用免疫组化、原位杂交方法检测目的基因表达;细胞经裂解后进行的酶促反应产物多巴胺以高压液相电化学方法检测证明所克隆的T‘H及AADC基因具有功能活性;这两种基因工程改造细胞可以完成酶促动力学的功能,使L-dopa及多巴胺产生明显增加。本研究为用TH和AADC双基因对帕金森病进行基因治疗提供了一定的依据。  相似文献   

13.
An in vivo voltammetric technique was used to determine whether striatal nondopaminergic neurons take up and decarboxylate exogenous L-3,4-dihydroxyphenylalanine (L-DOPA) and release it as dopamine. After the striatal serotonergic neurons of the rat had been destroyed by intraventricular injection of 5,7-dihydroxytryptamine, L-DOPA was administered intraperitoneally. It was found that changes in the dopamine concentration in the striatal extracellular fluid of the rat were the same as those in the nonlesioned rat. L-DOPA was also administered to the rat after the striatal perikarya had been destroyed by the intrastriatal injection of kainate. The striatal dopamine concentrations of the lesioned rat changed in parallel with 5,7-dihydroxytryptamine-lesioned rats, as well as the nonlesioned rats. Moreover, when normal rats were administered L-DOPA, the dopamine concentration was not increased in the cerebellum, where dopamine neurons do not exist. From these observations, it is concluded that exogenous L-DOPA is taken up, decarboxylated to dopamine, and released only in the striatal dopamine neurons.  相似文献   

14.
15.
Recent results have suggested that some products of mercapturic acid pathway (MAP) metabolism of oxidized dopamine (DA) may contribute to mesostriatal dopaminergic neurodegeneration, and that at least one product, 5-S-cysteinyldopamine (Cys-DA), is elevated in patients with advanced Parkinson's disease (PD) who have been treated with L-DOPA. Here we investigated MAP enzymes and products in the midbrain and striatum of control individuals and patients with dementia with Lewy bodies (DLB) who had less severe dopaminergic degeneration than PD patients and who were not treated with L-DOPA. We also determined the biological activity of MAP metabolites of oxidized DA using primary rat mesencephalic cultures, rat cerebral synaptosomes, and rat striatum in vivo microdialysis. Our results showed that the human mesostriatal dopaminergic pathway generates Cys-DA but has limited enzymatic capacity for mercapturate formation, that striatal levels of MAP products of oxidized DA are not elevated in DLB patients compared with controls, and that Cys-DA interferes with trafficking of DA in vitro and in vivo. These results indicate that while Cys-DA is not increased in striatum of patients with mild dopaminergic neurodegeneration, it may interfere with uptake of DA in patients with advanced PD.  相似文献   

16.
We explored possible differences in the peripheral and central pharmacokinetics of L-DOPA as a basis for individual variation in the liability to dyskinesia. Unilaterally, 6-hydroxydopamine (6-OHDA) lesioned rats were treated chronically with L-DOPA for an induction and monitoring of abnormal involuntary movements (AIMs). Comparisons between dyskinetic and non-dyskinetic cases were then carried out with regard to plasma and striatal L-DOPA concentrations, tissue levels of dopamine (DA), DA metabolites, and serotonin. After a single intraperitoneal injection of L-DOPA, plasma L-DOPA concentrations did not differ between dyskinetic and non-dyskinetic animals, whereas peak levels of L-DOPA in the striatal extracellular fluid were about fivefold larger in the former compared with the latter group. Interestingly, the time course of the AIMs paralleled the surge in striatal L-DOPA levels. Intrastriatal infusion of L-DOPA by reverse dialysis concentration dependently induced AIMs in all 6-OHDA lesioned rats, regardless of a previous priming for dyskinesia. Steady-state levels of DA and its metabolites in striatal and cortical tissue did not differ between dyskinetic and non-dyskinetic animals, indicating that the observed difference in motor response to L-DOPA did not depend on the extent of lesion-induced DA depletion. These results show that an elevation of L-DOPA levels in the striatal extracellular fluid is necessary and sufficient for the occurrence of dyskinesia. Individual differences in the central bioavailability of L-DOPA may provide a clue to the varying susceptibility to dyskinesia in Parkinson's disease.  相似文献   

17.
Rats were fed maximally tolerated doses of L-3,4-Dihydroxyphenylalanine (L-DOPA) and carbidopa daily for 120 days in order to achieve a sustained elevation in brain dopamine levels. Some animals were also given buthionine sulfoximine, a gamma-glutamylcysteine synthetase inhibitor, in an unsuccessful effort to reduce brain glutathione contents. L-DOPA- and carbidopa-treated animals displayed no behavioral changes suggestive of nigrostriatal dopaminergic neuronal loss. When sacrificed 60 days after L-DOPA treatment ended, all rats had normal tyrosine hydroxylase activities and dopamine contents in their striata, and cell counts were normal in the substantia nigra. It therefore seems unlikely that a model of Parkinson's disease, suitable for exploring the etiological importance of glutathione deficiency, can be produced in rats merely by administering the largest tolerable doses of L-DOPA.  相似文献   

18.
Summary This study examines the hypothesis that glutamate tonically suppresses the activity of the enzyme aromatic L-amino acid decarboxylase (AADC), and hence the biosynthesis of dopamine, to explain how antagonists of glutamate receptors might potentiale the motor actions of L-DOPA in animal models of Parkinson's disease. A variety of glutamate antagonists were therefore administered acutely to normal rats, which were sacrificed 30–60 min later and AADC activity assayed in the substantia nigra pars reticulate (SNr) and corpus striatum (CS). The NMDA receptor-ion channel antagonists MK 801, budipine, amantadine, memantine and dextromethorphan all caused a pronounced in creased in AADC activity, more especially in the SNr than CS. The NMDA glycine site antagonist (R)-HA 966 produced a modest increase in AADC activity in the CS but not SNr, whilst the NMDA polyamine site antagonist eliprodil, the NMDA competitive antagonist CGP 40116 and the AMPA antagonist NBQX were without effect. The results suggest that an increase in dopamine synthesis might contribute to the L-DOPA-facilitating actions of some glutamate antagonists.  相似文献   

19.
Decarboxylation of phenylalanine by aromatic L-amino acid decarboxylase (AADC) is the rate-limiting step in the synthesis of 2-phenylethylamine (PE), a putative modulator of dopamine transmission. Because neuroleptics increase the rate of accumulation of striatal PE, these studies were performed to determine whether this effect may be mediated by a change in AADC activity. Administration of the D1 antagonist SCH 23390 at doses of 0.01-1 mg/kg significantly increased rat striatal AADC activity in an in vitro assay (by 16-33%). Pimozide, a D2-receptor antagonist, when given at doses of 0.01-3 mg/kg, also increased AADC activity in the rat striatum (by 25-41%). In addition, pimozide at doses of 0.3 and 1 mg/kg increased AADC activity in the nucleus accumbens (by 33% and 45%) and at doses of 0.1, 0.3, and 1 mg/kg increased AADC activity in the olfactory tubercles (by 23%, 30%, and 28%, respectively). Analysis of the enzyme kinetics indicated that the Vmax increased with little change in the Km with L-3,4-dihydroxyphenylalanine as substrate. The AADC activity in the striatum showed a time-dependent response after the administration of SCH 23390 and pimozide: the activity was increased within 30 min and the increases lasted 2-4 h. Inhibition of protein synthesis by cycloheximide (10 mg/kg, 0.5 h) had no effect on the striatal AADC activity or on the increases in striatal AADC activity produced by pimozide or SCH 23390. The results indicate that the increases in AADC activity induced by dopamine-receptor blockers are not due to de novo synthesis of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
(1) The treatment of choice for Parkinson’s disease (PD) is 3,4-dihydroxyphenylalanine (L-DOPA) with peripheral decarboxylase inhibitor, but long-term therapy leads to motor and psychiatric complications. In the present study we investigated 5-hydroxytryptamine (5-HT) and dopamine concentrations in serotonergic and dopaminergic nuclei following chronic administration of L-DOPA to find whether the neurotransmitter synthesis in these brain areas are compensated. (2) Rats were administered L-DOPA (250 mg/kg) and carbidopa (25 mg/kg) daily for 59 and 60 days, and killed on the 60th day, respectively at 24 h and 30 min after the last dose. L-DOPA, norepinephrine, 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), dopamine, homovanillic acid (HVA), and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured in striatum, nucleus raphe dorsalis (NRD), nucleus accumbens (NAc), substantia nigra, cerebellum, and cortex employing HPLC-electrochemical procedure. (3) Prolonged treatment of L-DOPA caused depression in the animals as revealed in a forced swim test. Serotonin content was significantly decreased in all brain regions studied 30 min after long-term L-DOPA, except in NAc. The cortex and striatum showed lowered levels of this indoleamine 24 h after 59 doses of L-DOPA. Dopamine, HVA, and DOPAC concentrations were significantly higher in all the regions studied after 30 min, and in the cerebellum after 24 h of L-DOPA. The levels of DOPAC were elevated in all the brain areas studied 24 h after prolonged L-DOPA treatment. (4) The present results suggest that long-term L-DOPA treatment results in significant loss of 5-HT in serotonergic and dopaminergic regions of the brain. Furthermore, while L-DOPA metabolism per se was uninfluenced, dopamine synthesis was severely impaired in all the regions. The imbalance of serotonin and dopamine formation may be the cause of overt cognitive, motor, and psychological functional aberrations seen in parkinsonian patients following prolonged L-DOPA treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号