首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into neuron-like cells, but the precise mechanisms controlling this process are unclear. Using neuron-specific enolase (NSE) and nestin as neuronal markers, we examined the role of Wnt/β-catenin signaling in MSC neuronal differentiation in present study. The results indicated that the expression of β-catenin increased markedly during the neuronal differentiation of MSCs. Blocking Wnt signaling by treating MSCs with β-catenin siRNA could decrease the differentiation of MSCs into neuron-like cells and up-regulation of Wnt signaling by treating MSCs with Wnt-3a could promote neuronal differentiation of MSCs. Above results suggest that Wnt/β-catenin signaling may play a pivotal role in neuronal differentiation of MSCs. Our data broaden the knowledge of molecular mechanisms involved in the neuronal differentiation of MSCs and provide a potential target for directing differentiation of MSCs for clinical application.  相似文献   

2.
3.
4.
Implants that can enhance the stem cells differentiation in the absence of the chemical osteogenic growth factors will attract the great interest of orthopedic scientists. Inorganic polyphosphate (poly-P), as a ubiquitous biological polymer, is one of the factors that can be an alternative for osteogenic growth factors via activating Wnt/β-catenin signaling. In this study, poly-P was incorporated at the blend of polycaprolactone (PCL)/poly (l -lactic acid) (PLLA) electrospun nanofibers and then osteogenic differentiation potential of human-induced pluripotent stem cells (iPSCs) was investigated by the important bone markers. 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide (MTT) and scanning electron microscopy results confirmed the biocompatibility of the fabricated nanofibers, while higher proliferation rate of iPSCs was detected in PCL-PLLA(poly-P) group compared with the PCL-PLLA and tissue culture plate groups. Alkaline phosphatase activity, calcium content, and gene expression results demonstrated that osteogenic differentiation of iPSCs was increased when cultured on PCL-PLLA(poly-P) in comparison with other groups. According to the results, PCL-PLLA(poly-P) could be considered as a promising candidate for use as bone implants.  相似文献   

5.
Sun  Zhaoze  Yan  Kaixian  Liu  Shuang  Yu  Xijiao  Xu  Jingyi  Liu  Jinhua  Li  Shu 《Journal of molecular histology》2021,52(6):1245-1255
Journal of Molecular Histology - After periodontal treatment, the local inflammatory environment surrounding periodontal tissues cannot be entirely eliminated. The means by which alveolar bone...  相似文献   

6.
Mesenchymal stem cells (MSCs) have the ability to differentiate into osteoblasts and chondrocytes. In vitro osteogenic differentiation is critical but the molecular mechanism has yet to be further clarified. The role of TGF-β activated kinase 1 (TAK1) in MSCs osteogenesis differentiation has not been reported. By adding si-TAK1 and rhTAK1, the osteogenic differentiation of MSCs was measured. Expression levels of the osteoblastic marker genes during osteogenic differentiation of MSCs were checked. As well as molecules involved in BMP and Wnt/β-catenin signaling pathways. The phosphorylation of p38 and JNK was also checked. TAK1 is essential for mineralization of MSCs at low concentration, but excessive rhTAK1 inhibits mineralization of MSCs. It up regulates the expression levels of bone sialoprotein (BSP), osteocalcin (OSC), Alkaline phosphatase (ALP), and RUNX2 during osteogenic differentiation of MSCs. It can also promote TGF-β/BMP-2 gene expression and β-catenin expression, and down regulate GSK-3β expression. Meanwhile, TAK1 promotes the phosphorylation of p38 and JNK. Additionally, TAK1 up regulates the expression of BMP-2 at all concentration under the inhibition of p38 and JNK. Our results suggested that TAK1 is essential in MSCs osteogenesis differentiation, and functions as a double-edged sword, probably through regulation of β-catenin and p38/JNK.  相似文献   

7.
8.
9.
10.
Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.  相似文献   

11.
12.
Periodontal ligament (PDL) is a specialized connective tissue that influences the lifespan of the tooth. Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine, but little is known about the effects of TGF-β1 on PDL cells. Our aim has been to demonstrate the expression of TGF-β1 in rat PDL tissues and to evaluate its effects on the proliferation and gene expression in human PDL cells (HPLCs) and a human PDL stem/progenitor cell line, line 1-11, that we have recently developed. The expression of TGF-β1 in the entire PDL tissue was confirmed immunohistochemically, and both HPLCs and cell line 1-11 expressed mRNA from the TGF-β1, TGF-β type I receptor, and TGF-β type II receptor genes. Although exogenous TGF-β1 stimulated the proliferation of HPLCs, it did not upregulate the expression of alpha-smooth muscle actin (α-SMA), type I collagen (Col I), or fibrillin-1 (FBN1) mRNA or of α-SMA protein in HPLCs, whereas expression for these genes was attenuated by an anti-TGF-β1 neutralizing antibody. In contrast, exogenous TGF-β1 reduced the proliferation of cell line 1-11, although it upregulated the expression of α-SMA, Col I, and FBN1 mRNA and of α-SMA protein in this cell line. In addition, interleukin-1 beta stimulation significantly reduced the expression of TGF-β1 mRNA and protein in HPLCs. Thus, TGF-β1 seems to play an important role in inducing fibroblastic differentiation of PDL stem/progenitor cells and in maintaining the PDL apparatus under physiological conditions.  相似文献   

13.
Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/β-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/β-catenin signaling were determined, suggested down-regulation of Wnt/β-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3α can inhibit the epithelial differentiation of MSCs. A loss of β-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated β-catenin expression and subsequently decreased β-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/β-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.  相似文献   

14.
Ghrelin plays a neuroprotective role in the process of dopaminergic (DAergic) neurons degeneration in Parkinson's disease (PD). However, it still largely unknown whether ghrelin could affect the midbrain neural stem cells (mbNSCs) from which DAergic neurons are originated. In the present study, we observed that ghrelin enhanced mbNSCs proliferation, and promoted neuronal differentiation especially DAergic neuron differentiation both in vitro and ex vivo. The messenger RNA levels of Wnt1, Wnt3a, and glial cell line-derived neurotrophic factor were increased in response to the ghrelin treatment. Results showed that Wnt/β-catenin pathway was relevant to this DAergic neuron differentiation induced by ghrelin. Our finding gave a new evidence that ghrelin may enable clinical therapies for PD by its neurogenesis role.  相似文献   

15.
《Cellular signalling》2014,26(11):2333-2342
Colorectal cancer (CRC) is one of the most common causes of cancer-related death worldwide. The leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is a newly identified surface marker of colorectal cancer stem cells (CSCs). Expression level of LGR5 is commonly elevated in human CRCs. Our previous study demonstrated that the elevated expression of LGR5 is associated with CRC initiation and progression. However, the role of LGR5 in CRC pathogenesis has not been sufficiently established. In this study, we aimed to characterize the role of LGR5 in CRC pathogenesis using the loss-of-function approach. Depletion of LGR5 suppressed the growth of several cultured CRC cells and caused an increase in the fraction of apoptotic cells, which were analyzed using Annexin V/PI staining and DNA fragmentation assay. Furthermore, depleting LGR5 induced apoptosis through the loss of mitochondrial membrane potential. Additionally, depletion of LGR5 suppressed β-catenin nuclear translocation and blocked the activity of Wnt/β-catenin signaling as manifested in the reduced expression of c-myc and cyclin D, two Wnt/β-catenin targets in CRC cells. Treatment with Wnt3a considerably alleviated the growth inhibition and apoptotic cell death induced by LGR5 depletion in CRC cells. These data suggested that LGR5 regulates cell proliferation and survival by targeting the Wnt/β-catenin signaling pathway. Thus, the findings of this study suggest that LGR5 plays a vital role in CRC pathogenesis and has the potential to serve as a diagnostic marker and a therapeutic target for CRC patients.  相似文献   

16.

Background

Stem cells are mainly characterized by two properties: self-renewal and the potency to differentiate into diverse cell types. These processes are regulated by different growth factors including members of the Wnt protein family. Wnt proteins are secreted glycoproteins that can activate different intracellular signaling pathways.

Scope of review

Here we summarize our current knowledge on the role of Wnt/β-catenin signaling with respect to these two main features of stem cells.

Major conclusions

A particular focus is given on the function of Wnt signaling in embryonic stem cells. Wnt signaling can also improve reprogramming of somatic cells towards iPS cells highlighting the importance of this pathway for self-renewal and pluripotency. As an example for the role of Wnt signaling in adult stem cell behavior, we furthermore focus on intestinal stem cells located in the crypts of the small intestine.

General significance

A broad knowledge about stem cell properties and the influence of intrinsic and extrinsic factors on these processes is a requirement for the use of these cells in regenerative medicine in the future or to understand cancer development in the adult. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

17.
18.
Background

Recently, more and more circular RNAs (circRNAs) have been identified in osteogenesis. In this study, we aimed to explore the effect of circ_FBLN1 on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs).

Methods

The protein levels of osteogenesis-related genes, let-7i-5p, frizzled class receptor 4 (FZD4), Ki67, Wnt6 and β-catenin were measured by western blot assay. The levels of circ_FBLN1, FBLN1 mRNA and FZD4 mRNA were determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. The feature of circ_FBLN1 was investigated by RNase R and Actinomycin D assays. Cell proliferation ability was evaluated by colony formation assay and 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The targeting relationship between let-7i-5p and circ_FBLN1 or FZD4 was verified by dual-luciferase reporter assay.

Results

Circ_FBLN1 level was enhanced during the osteogenic differentiation of hBMSCs. Silencing of circ_FBLN1 repressed cell proliferation and osteogenic differentiation in hBMSCs. For mechanism analysis, circ_FBLN1 was found to act as a sponge for let-7i-5p and FZD4 served as a direct target gene of let-7i-5p. Let-7i-5p was downregulated during the osteogenic differentiation of hBMSCs and let-7i-5p inhibition restored the effects of circ_FBLN1 knockdown on the proliferation and osteogenesis of hBMSCs. Moreover, let-7i-5p overexpression suppressed cell proliferation and osteogenesis in hBMSCs through targeting FZD4. In addition, circ_FBLN1 knockdown reduced the levels of Wnt6 and β-catenin in hBMSCs, indicating the inactivation of Wnt/β-catenin pathway.

Conclusion

Knockdown of circ_FBLN1 inhibited the proliferation and osteogenesis of hBMSCs by regulating let-7i-5p/FZD4 axis and repressing Wnt/β-catenin pathway.

  相似文献   

19.
Tax1 binding protein 3 (Tax1bp3) is a PDZ domain-containing protein that is overexpressed in cancer. Previous studies recognized Tax1bp3 as an inhibitor of β-catenin. Till now it is not known whether Tax1bp3 regulates osteogenic and adipogenic differentiation of mesenchymal progenitor cells. In the current study, the data showed that Tax1bp3 was expressed in bone and was increased in the progenitor cells when induced toward osteoblast and adipocyte differentiation. The overexpression of Tax1bp3 in the progenitor cells inhibited osteogenic differentiation and conversely stimulated adipogenic differentiation, and the knockdown of Tax1bp3 affected the differentiation of the progenitor cells oppositely. Ex vivo experiments using the primary calvarial osteoblasts from osteoblast-specific Tax1bp3 knock-in mice also demonstrated the anti-osteogenic and pro-adipogenic function of Tax1bp3. Mechanistic investigations revealed that Tax1bp3 inhibited the activation of canonical Wnt/β-catenin and bone morphogenetic proteins (BMPs)/Smads signalling pathways. Taken together, the current study has provided evidences demonstrating that Tax1bp3 inactivates Wnt/β-catenin and BMPs/Smads signalling pathways and reciprocally regulates osteogenic and adipogenic differentiation from mesenchymal progenitor cells. The inactivation of Wnt/β-catenin signalling may be involved in the reciprocal role of Tax1bp3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号