首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Symbiotic microbes can dramatically impact host health and fitness, and recent research in a diversity of systems suggests that different symbiont community structures may result in distinct outcomes for the host. In amphibians, some symbiotic skin bacteria produce metabolites that inhibit the growth of Batrachochytrium dendrobatidis (Bd), a cutaneous fungal pathogen that has caused many amphibian population declines and extinctions. Treatment with beneficial bacteria (probiotics) prevents Bd infection in some amphibian species and creates optimism for conservation of species that are highly susceptible to chytridiomycosis, the disease caused by Bd. In a laboratory experiment, we used Bd-inhibitory bacteria from Bd-tolerant Panamanian amphibians in a probiotic development trial with Panamanian golden frogs, Atelopus zeteki, a species currently surviving only in captive assurance colonies. Approximately 30% of infected golden frogs survived Bd exposure by either clearing infection or maintaining low Bd loads, but this was not associated with probiotic treatment. Survival was instead related to initial composition of the skin bacterial community and metabolites present on the skin. These results suggest a strong link between the structure of these symbiotic microbial communities and amphibian host health in the face of Bd exposure and also suggest a new approach for developing amphibian probiotics.  相似文献   

2.
Metamorphosis is often characterized by profound changes in morphology and physiology that can affect the dynamics of species interactions. For example, the interaction between a pathogen and its host may differ depending on the life stage of the host or pathogen. One pathogen that infects hosts with complex life cycles is the emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd). We sought to determine how conditions at the larval stage can affect variation in development and patterns of Bd infection across amphibian life stages. We used outdoor experimental mesocosms to simulate natural pond habitats and manipulated the presence of Bd, the larval density, and the number of host species in larvae of two co-occurring amphibian species (Rana cascadae and Pseudacris regilla). We found that infection differed between species throughout development; P. regilla consistently had higher infection severity compared to R. cascadae. Additionally, while up to 100% of larvae were infected, only 18.2% of R. cascadae and 81.5% of P. regilla were infected after metamorphosis. This indicates that amphibians have the ability to recover from Bd infection as they undergo metamorphosis. Higher larval densities in P. regilla led to a shorter larval period, and individuals with a shorter larval period had lower infection severity. This led to a trend where P. regilla larvae reared at high densities tended to have lower infection prevalence after metamorphosis. We also found that exposure to Bd increased larval mortality and prolonged the larval period in P. regilla, indicating that P. regilla are susceptible to the negative effects of Bd as larvae. This study demonstrates that host density, species composition, and pathogen exposure may all interact to influence development and infection in hosts with complex life cycles.  相似文献   

3.
Numerous species of amphibians declined in Central America during the 1980s and 1990s. These declines mostly affected highland stream amphibians and have been primarily linked to chytridiomycosis, a deadly disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). Since then, the majority of field studies on Bd in the Tropics have been conducted in midland and highland environments (>800 m) mainly because the environmental conditions of mountain ranges match the range of ideal abiotic conditions for Bd in the laboratory. This unbalanced sampling has led researchers to largely overlook host–pathogen dynamics in lowlands, where other amphibian species declined during the same period. We conducted a survey testing for Bd in 47 species (n = 348) in four lowland sites in Costa Rica to identify local host–pathogen dynamics and to describe the abiotic environment of these sites. We detected Bd in three sampling sites and 70% of the surveyed species. We found evidence that lowland study sites exhibit enzootic dynamics with low infection intensity and moderate to high prevalence (55% overall prevalence). Additionally, we found evidence that every study site represents an independent climatic zone, where local climatic differences may explain variations in Bd disease dynamics. We recommend more detection surveys across lowlands and other sites that have been historically considered unsuitable for Bd occurrence. These data can be used to identify sites for potential disease outbreaks and amphibian rediscoveries.  相似文献   

4.
5.
Many pathogens infect more than one host species, and clarifying how these different hosts contribute to pathogen dynamics can facilitate the management of pathogens and can lend insight into the functioning of pathogens in ecosystems. In this study, we investigated a suite of native and non-native amphibian hosts of the pathogen Batrachochytrium dendrobatidis (Bd) across multiple scales to identify potential mechanisms that may drive infection patterns in the Colorado study system. Specifically, we aimed to determine if: 1) amphibian populations vary in Bd infection across the landscape, 2) amphibian community composition predicts infection (e.g., does the presence or abundance of any particular species influence infection in others?), 3) amphibian species vary in their ability to produce infectious zoospores in a laboratory infection, 4) heterogeneity in host ability observed in the laboratory scales to predict patterns of Bd prevalence in the landscape. We found that non-native North American bullfrogs (Lithobates catesbeianus) are widespread and have the highest prevalence of Bd infection relative to the other native species in the landscape. Additionally, infection in some native species appears to be related to the density of sympatric L. catesbeianus populations. At the smaller host scale, we found that L. catesbeianus produces more of the infective zoospore stage relative to some native species, but that this zoospore output does not scale to predict infection in sympatric wild populations of native species. Rather, landscape level infection relates most strongly to density of hosts at a wetland as well as abiotic factors. While non-native L. catesbeianus have high levels of Bd infection in the Colorado Front Range system, we also identified Bd infection in a number of native amphibian populations allopatric with L. catesbeianus, suggesting that multiple host species are important contributors to the dynamics of the Bd pathogen in this landscape.  相似文献   

6.
The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes the disease chytridiomycosis, which is lethal to many species of amphibians worldwide. Many studies have investigated the epidemiology of chytridiomycosis in amphibian populations, but few have considered possible host-pathogen coevolution. More specifically, investigations focused on the evolution of Bd, and the link with Bd virulence, are needed. Such studies, which may be important for conservation management of amphibians, depend on access to Bd isolates. Here we provide a summary of known Bd isolates that have been collected and archived in various locations around the world. Of 257 Bd isolates, we found that 53% originate from ranids in the United States. In many cases, detailed information on isolate origin is unavailable, and it is unknown how many isolates are cryo-archived. We suggest the creation of a centralized database of isolate information, and we urge researchers and managers to isolate and archive Bd to facilitate future research on chytridiomycosis.  相似文献   

7.
The international amphibian trade is implicated in the emergence and spread of the amphibian fungal disease chytridiomycosis, which has resulted in amphibian declines and extinctions globally. The establishment of the causal pathogen, Batrachochytrium dendrobatidis (Bd), in the UK could negatively affect the survival of native amphibian populations. In recognition of the ongoing threat that it poses to amphibians, Bd was recently included in the World Organisation for Animal Health Aquatic Animal Health Code, and therefore is in the list of international notifiable diseases. Using standardised risk analysis guidelines, we investigated the likelihood that Bd would be introduced to and become established in wild amphibians in the UK through the importation of live amphibians. We obtained data on the volume and origin of the amphibian trade entering the UK and detected Bd infection in amphibians being imported for the pet and private collection trade and also in amphibians already held in captive pet, laboratory and zoological collections. We found that current systems for recording amphibian trade into the UK underestimate the volume of non-European Union trade by almost 10-fold. We identified high likelihoods of entry, establishment and spread of Bd in the UK and the resulting major overall impact. Despite uncertainties, we determined that the overall risk estimation for the introduction of Bd to the UK through the importation of live amphibians is high and that risk management measures are required, whilst ensuring that negative effects on legal trade are minimised.  相似文献   

8.
Museum collections provide indispensable repositories for obtaining information about the historical presence of disease in wildlife populations. The pathogenic amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has played a significant role in global amphibian declines, and examining preserved specimens for Bd can improve our understanding of its emergence and spread. Quantitative PCR (qPCR) enables Bd detection with minimal disturbance to amphibian skin and is significantly more sensitive to detecting Bd than histology; therefore, developing effective qPCR methodologies for detecting Bd DNA in formalin-fixed specimens can provide an efficient and effective approach to examining historical Bd emergence and prevalence. Techniques for detecting Bd in museum specimens have not been evaluated for their effectiveness in control specimens that mimic the conditions of animals most likely to be encountered in museums, including those with low pathogen loads. We used American bullfrogs (Lithobates catesbeianus) of known infection status to evaluate the success of qPCR to detect Bd in formalin-fixed specimens after three years of ethanol storage. Our objectives were to compare the most commonly used DNA extraction method for Bd (PrepMan, PM) to Macherey-Nagel DNA FFPE (MN), test optimizations for Bd detection with PM, and provide recommendations for maximizing Bd detection. We found that successful detection is relatively high (80–90%) when Bd loads before formalin fixation are high, regardless of the extraction method used; however, at lower infection levels, detection probabilities were significantly reduced. The MN DNA extraction method increased Bd detection by as much as 50% at moderate infection levels. Our results indicate that, for animals characterized by lower pathogen loads (i.e., those most commonly encountered in museum collections), current methods may underestimate the proportion of Bd-infected amphibians. Those extracting DNA from archived museum specimens should ensure that the techniques they are using are known to provide high-quality throughput DNA for later analysis.  相似文献   

9.
Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), have accelerated recently, given the pathogen’s role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39), and one recently thawed from cryopreserved stock (JEL427-P9). In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.  相似文献   

10.
The virulence of a pathogen can vary strongly through time. While cyclical variation in virulence is regularly observed, directional shifts in virulence are less commonly observed and are typically associated with decreasing virulence of biological control agents through coevolution. It is increasingly appreciated, however, that spatial effects can lead to evolutionary trajectories that differ from standard expectations. One such possibility is that, as a pathogen spreads through a naive host population, its virulence increases on the invasion front. In Central America, there is compelling evidence for the recent spread of pathogenic Batrachochytrium dendrobatidis (Bd) and for its strong impact on amphibian populations. Here, we re-examine data on Bd prevalence and amphibian population decline across 13 sites from southern Mexico through Central America, and show that, in the initial phases of the Bd invasion, amphibian population decline lagged approximately 9 years behind the arrival of the pathogen, but that this lag diminished markedly over time. In total, our analysis suggests an increase in Bd virulence as it spread southwards, a pattern consistent with rapid evolution of increased virulence on Bd''s invading front. The impact of Bd on amphibians might therefore be driven by rapid evolution in addition to more proximate environmental drivers.  相似文献   

11.
Population declines and extinctions of amphibians have been attributed to the chytrid fungus Batrachochytrium dendrobatidis (Bd), especially one globally emerging recombinant lineage (‘Bd‐GPL’). We used PCR assays that target the ribosomal internal transcribed spacer region (ITS) of Bd to determine the prevalence and genetic diversity of Bd in South Korea, where Bd is widely distributed but is not known to cause morbidity or mortality in wild populations. We isolated Korean Bd strains from native amphibians with low infection loads and compared them to known worldwide Bd strains using 19 polymorphic SNP and microsatellite loci. Bd prevalence ranged between 12.5 and 48.0%, in 11 of 17 native Korean species, and 24.7% in the introduced bullfrog Lithobates catesbeianus. Based on ITS sequence variation, 47 of the 50 identified Korean haplotypes formed a group closely associated with a native Brazilian Bd lineage, separated from the Bd‐GPL lineage. However, multilocus genotyping of three Korean Bd isolates revealed strong divergence from both Bd‐GPL and the native Brazilian Bd lineages. Thus, the ITS region resolves genotypes that diverge from Bd‐GPL but otherwise generates ambiguous phylogenies. Our results point to the presence of highly diversified endemic strains of Bd across Asian amphibian species. The rarity of Bd‐GPL‐associated haplotypes suggests that either this lineage was introduced into Korea only recently or Bd‐GPL has been outcompeted by native Bd strains. Our results highlight the need to consider possible complex interactions among native Bd lineages, Bd‐GPL and their associated amphibian hosts when assessing the spread and impact of Bd‐GPL on worldwide amphibian populations.  相似文献   

12.
Pathogen spread can cause population declines and even species extinctions. Nonetheless, in the absence of tailored monitoring schemes, documenting pathogen spread can be difficult. In the case of worldwide amphibian declines the best present understanding is that the chytrid fungus Batrachochytrium dendrobatidis (Bd) has recently spread, causing amphibian declines and extinction in the process. However, good evidence demonstrating pathogen arrival followed by amphibian decline is rare, and analysis of putative evidence is often inadequate. Here we attempt to examine the relationship between Bd arrival and amphibian decline across north-eastern Australia, using sites where a wave-like pattern of amphibian decline was first noticed and at which intensive research has since been conducted. We develop an analytical framework that allows rigorous estimation of pathogen arrival date, which can then be used to test for a correlation between the time of pathogen arrival and amphibian decline across sites. Our results show that, with the current dataset, the earliest possible arrival date of Bd in north-eastern Australia is completely unresolved; Bd could have arrived immediately before sampling commenced or may have arrived thousands of years earlier, the present data simply cannot say. The currently available data are thus insufficient to assess the link between timing of pathogen arrival and population decline in this part of the world. This data insufficiency is surprising given that there have been decades of research on chytridiomycosis in Australia and that there is a general belief that the link between Bd arrival and population decline is well resolved in this region. The lack of data on Bd arrival currently acts as a major impediment to determining the role of environmental factors in driving the global amphibian declines, and should be a major focus of future research.  相似文献   

13.
Chytridiomycosis is an emerging infectious disease of amphibians caused by a chytrid fungus, Batrachochytrium dendrobatidis. This panzootic does not equally affect all amphibian species within an assemblage; some populations decline, others persist. Little is known about the factors that affect disease resistance. Differences in behavior, life history, biogeography, or immune function may impact survival. We found that an innate immune defense, antimicrobial skin peptides, varied significantly among species within a rainforest stream amphibian assemblage that has not been exposed to B. dendrobatidis. If exposed, all amphibian species at this central Panamanian site are at risk of population declines. In vitro pathogen growth inhibition by peptides from Panamanian species compared with species with known resistance (Rana pipiens and Xenopus laevis) or susceptibility (Bufo boreas) suggests that of the nine species examined, two species (Centrolene prosoblepon and Phyllomedusa lemur) may demonstrate strong resistance, and the other species will have a higher risk of disease-associated population declines. We found little variation among geographically distinct B. dendrobatidis isolates in sensitivity to an amphibian skin peptide mixture. This supports the hypothesis that B. dendrobatidis is a generalist pathogen and that species possessing an innate immunologic defense at the time of disease emergence are more likely to survive.  相似文献   

14.
15.
The introduction of next‐generation sequencing has allowed for greater understanding of community composition of symbiotic microbial communities. However, determining the function of individual members of these microbial communities still largely relies on culture‐based methods. Here, we present results on the phylogenetic distribution of a defensive functional trait of cultured symbiotic bacteria associated with amphibians. Amphibians are host to a diverse community of cutaneous bacteria and some of these bacteria protect their host from the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) by secreting antifungal metabolites. We cultured over 450 bacterial isolates from the skins of Panamanian amphibian species and tested their interactions with Bd using an in vitro challenge assay. For a subset of isolates, we also completed coculture experiments and found that culturing isolates with Bd had no effect on inhibitory properties of the bacteria, but it significantly decreased metabolite secretion. In challenge assays, approximately 75% of the bacterial isolates inhibited Bd to some extent and these inhibitory isolates were widely distributed among all bacterial phyla. Although there was no clear phylogenetic signal of inhibition, three genera, Stenotrophomonas, Aeromonas and Pseudomonas, had a high proportion of inhibitory isolates (100%, 77% and 73%, respectively). Overall, our results demonstrate that antifungal properties are phylogenetically widespread in symbiotic microbial communities of Panamanian amphibians and that some functional redundancy for fungal inhibition occurs in these communities. We hope that these findings contribute to the discovery and development of probiotics for amphibians that can mitigate the threat of chytridiomycosis.  相似文献   

16.
Batrachochytrium dendrobatidis (Bd), the causative agent of the amphibian disease chytridiomycosis, is an important factor in the global decline of amphibians. Within Europe, animals that exhibit clinical signs of the disease have only been reported in Spain despite the pathogen’s wide, but patchy, distribution on the continent. Recently, another occurrence of chytridiomycosis was reported in Euproctus platycephalus, the Sardinian brook newt, on the Mediterranean island of Sardinia, but without any evidence of fatal disease. We report further evidence of the emergence of Bd on Sardinia and the first evidence of lethal chytridiomycosis outside of Spain. Unusual mortalities of the Tyrrhenian painted frog (Discoglossus sardus) were found at three sites in the Limbara mountains of northern Sardinia. Molecular and histological screens of corpses, frogs, and tadpoles from these sites revealed infection with Bd. Infection and mortality occurred at locations that are unusual in terms of the published habitat requirements of the pathogen. Given the endemicity, the IUCN Red List status of the amphibian species on Sardinia, and the occurrence of infection and mortality caused by chytridiomycosis, there is serious reason for concern for the impact that disease emergence may have on the conservation of the amphibians of the island.  相似文献   

17.
Chytridiomycosis, an infectious disease of amphibians caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), poses an imminent conservation threat. The global spread of Bd has led to mass mortality events in many amphibian species, resulting in at least 90 species'' extinctions to date. Exposure to Bd metabolites (i.e. non-infectious antigenic chemicals released by Bd) partially protects frogs during subsequent challenges with live Bd, suggesting its use as a prophylactic treatment and potential vaccine. However, we do not know whether Bd metabolite exposure protects against strains beyond the one used for treatment. To address this knowledge gap, we conducted a 3 × 2 experiment where we exposed adult Cuban treefrogs, Osteopilus septentrionalis, to one of three treatments (Bd metabolites from California-isolated strain JEL-270, Panamá-isolated strain JEL-419, or an artificial spring water control) and then challenged individuals with live Bd from either strain. We found that exposure to Bd metabolites from the California-isolated strain significantly reduced Bd loads of frogs challenged with the live Panamá-isolated strain, but no other treatments were found to confer protective effects. These findings demonstrate asymmetric cross-protection of a Bd metabolite prophylaxis and suggest that work investigating multiple, diverse strains is urgently needed.  相似文献   

18.
Infectious pathogens can disrupt the microbiome in addition to directly affecting the host. Impacts of disease may be dependent on the ability of the microbiome to recover from such disturbance, yet remarkably little is known about microbiome recovery after disease, particularly in nonhuman animals. We assessed the resilience of the amphibian skin microbial community after disturbance by the pathogen, Batrachochytrium dendrobatidis (Bd). Skin microbial communities of laboratory-reared mountain yellow-legged frogs were tracked through three experimental phases: prior to Bd infection, after Bd infection (disturbance), and after clearing Bd infection (recovery period). Bd infection disturbed microbiome composition and altered the relative abundances of several dominant bacterial taxa. After Bd infection, frogs were treated with an antifungal drug that cleared Bd infection, but this did not lead to recovery of microbiome composition (measured as Unifrac distance) or relative abundances of dominant bacterial groups. These results indicate that Bd infection can lead to an alternate stable state in the microbiome of sensitive amphibians, or that microbiome recovery is extremely slow—in either case resilience is low. Furthermore, antifungal treatment and clearance of Bd infection had the additional effect of reducing microbial community variability, which we hypothesize results from similarity across frogs in the taxa that colonize community vacancies resulting from the removal of Bd. Our results indicate that the skin microbiota of mountain yellow-legged frogs has low resilience following Bd-induced disturbance and is further altered by the process of clearing Bd infection, which may have implications for the conservation of this endangered amphibian.Subject terms: Microbial ecology, Community ecology  相似文献   

19.
Invasive species can be a threat to native species in several ways, including transmitting lethal infections caused by the parasites they carry. However, invasive species may also be plagued by novel and lethal infections they acquire when invading, making inferences regarding the ability of an invasive host to vector disease difficult from field observations of infection and disease. This is the case for the pathogenic fungus Batrachochytrium dendrobatidis (Bd) in Europe and one invasive host species, the North American bullfrog Lithobates catesbeianus, hypothesized to be responsible for vectoring lethal infection to European native amphibians. We tested this hypothesis experimentally using the alpine newt Ichthyosaura alpestris as our model native host. Our results show that infected bullfrog tadpoles are effective vectors of Bd. Native adult newts co-housed with experimentally infected bullfrog tadpoles became Bd infected (molecular and histological tests). Moreover, the exposed adult newts suffered mortality while the majority of infected bullfrog tadpoles survived until metamorphosis. These results cannot resolve the historical role of alien species in establishing the distribution of Bd across Europe or other regions in the world where this species was introduced, but they show its potential role as a Bd reservoir capable of transmitting lethal infections to native amphibians. Finally, our results also suggest that the removal of infected bullfrogs from aquatic environments may serve to reduce the availability of Bd in European amphibian communities, offering another justification for bullfrog eradication programmes that are currently underway or may be considered.  相似文献   

20.
Batrachochytrium dendrobatidis (Bd) is a chytrid fungus, which has been associated with numerous amphibian mortality events around the world. It is hypothesized that Bd was inadvertently spread through human activities. We have developed a basic risk assessment tool to better understand the potential risk of transferring Bd between water bodies through field activities, and to target disinfection strategies which reduce the risk of spreading Bd. The questions in the risk assessment focus on the likelihood of Bd being present at sites, the likelihood of transferring the pathogen from one site to another, and the impact of transferring the pathogen. Identified risk factors include the presence of amphibians in the visited areas, the presence of Bd in one or more of the sites and in the surrounding area, the number of visitors to the sites, direct contact with amphibians, and the sharing of equipment between sites. The risk assessment tool can be found on the Internet at: .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号