首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mutations of the PKD1 and PKD2 genes, encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively, lead to autosomal dominant polycystic kidney disease. Interestingly, up-regulation or down-regulation of PKD1 or PKD2 leads to polycystic kidney disease in animal models, but their interrelations are not completely understood. We show here that full-length PC1 that interacts with PC2 via a C-terminal coiled-coil domain regulates PC2 expression in vivo and in vitro by down-regulating PC2 expression in a dose-dependent manner. Expression of the pathogenic mutant R4227X, which lacks the C-terminal coiled-coil domain, failed to down-regulate PC2 expression, suggesting that PC1-PC2 interaction is necessary for PC2 regulation. The proteasome and autophagy are two pathways that control protein degradation. Proteins that are not degraded by proteasomes precipitate in the cytoplasm and are transported via histone deacetylase 6 (HDAC6) toward the aggresomes. We found that HDAC6 binds to PC2 and that expression of full-length PC1 accelerates the transport of the HDAC6-PC2 complex toward aggresomes, whereas expression of the R4227X mutant fails to do so. Aggresomes are engulfed by autophagosomes, which then fuse with the lysosome for degradation; this process is also known as autophagy. We have now shown that PC1 overexpression leads to increased degradation of PC2 via autophagy. Interestingly, PC1 does not activate autophagy generally. Thus, we have now uncovered a new pathway suggesting that when PC1 is expressed, PC2 that is not bound to PC1 is directed to aggresomes and subsequently degraded via autophagy, a control mechanism that may play a role in autosomal dominant polycystic kidney disease pathogenesis.  相似文献   

3.
4.
  1. Download : Download high-res image (201KB)
  2. Download : Download full-size image
  相似文献   

5.
Uniquely expressed in the colon, MS4A12 exhibits store-operated Ca2+ entry (SOCE) activity. However, compared to MS4A1 (CD20), a Ca2+ channel and ideal target for successful leukaemia immunotherapy, MS4A12 has rarely been studied. In this study, we investigated the involvement of MS4A12 in Ca2+ influx and expression changes in MS4A12 in human colonic malignancy. Fluorescence of GCaMP-fused MS4A12 (GCaMP-M12) was evaluated to analyse MS4A12 activity in Ca2+ influx. Plasma membrane expression of GCaMP-M12 was achieved by homo- or hetero-complex formation with no-tagged MS4A12 (nt-M12) or Orai1, respectively. GCaMP-M12 fluorescence in plasma membrane increased only after thapsigargin-induced depletion of endoplasmic reticulum Ca2+ stores, and this fluorescence was inhibited by typical SOCE inhibitors and siRNA for Orai1. Furthermore, GCaMP-MS4A12 and Orai1 co-transfection elicited greater plasma membrane fluorescence than GCaMP-M12 co-transfected with nt-M12. Interestingly, the fluorescence of GCaMP-M12 was decreased by STIM1 over-expression, while increased by siRNA for STIM1 in the presence of thapsigargin and extracellular Ca2+. Moreover, immunoprecipitation assay revealed that Orai1 co-expression decreased protein interactions between MS4A12 and STIM1. In human colon tissue, MS4A12 was expressed in the apical region of the colonic epithelium, although its expression was dramatically decreased in colon cancer tissues. In conclusion, we propose that MS4A12 contributes to SOCE through complex formation with Orai1, but does not cooperate with STIM1. Additionally, we discovered that MS4A12 is expressed in the apical membrane of the colonic epithelium and that its expression is decreased with cancer progression.  相似文献   

6.
The stability of spheroplasts from the osmotrophic yeast Saccharomyces rouxii was studied in buffered solutions of mannitol and glucose. The plasma membranes from cells grown in high glucose concentrations were more stable to osmotic lysis than were membranes from cells grown in lower glucose concentrations. Mannitol was a better osmotic stabilizer than glucose, except when the cells were grown in a high glucose concentration. Spheroplasts from a glucose tolerant-deficient mutant were much less stable than the corresponding spheroplasts from the parent strain, especially when suspended in glucose solutions. These results suggest an involvement of the plasma membrane in the glucose-tolerant mechanism of S. rouxii.  相似文献   

7.
Microsome, plasma membrane vesicles and tonoplast membrane vesicles were isolated from the hypocotyles of Phaseolus vulgaris L. 85CT-49762, with very high heat tolerance potential. Comparing the H+-pump heat stability in vitro of the vesicles from the heat acclimated cells and the cells in which protein synthesis was inhibited by actidion during heat acclimation with that of normal cells, the authors found that heat acclimation could increase the heat stability of membrane vesicles, and that the heat shock proteins synthesized during heat acclimation were related to the effect. The authors further analysed the role of membrane peripheral proteins on H+-pump thermotolerance of membrane vesicles, and proved that heat shock protein HSP 70 and low molecular weight heat shock protein (LMW HSP) were able to protect H+-pump from heat destruction.  相似文献   

8.
Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent genetic disorder largely caused by mutations in the PKD1 and PKD2 genes that encode the transmembrane proteins polycystin-1 and -2, respectively. Both proteins appear to be involved in the regulation of cell growth and maturation, but the precise mechanisms are not yet well defined. Polycystin-2 has recently been shown to function as a Ca(2+)-permeable, non-selective cation channel. Polycystin-2 interacts through its cytoplasmic carboxyl-terminal region with a coiled-coil motif in the cytoplasmic tail of polycystin-1 (P1CC). The functional consequences of this interaction on its channel activity, however, are unknown. In this report, we show that P1CC enhanced the channel activity of polycystin-2. R742X, a disease-causing polycystin-2 mutant lacking the polycystin-1 interacting region, fails to respond to P1CC. Also, P1CC containing a disease-causing mutation in its coiled-coil motif loses its stimulatory effect on wild-type polycystin-2 channel activity. The modulation of polycystin-2 channel activity by polycystin-1 may be important for the various biological processes mediated by this molecular complex.  相似文献   

9.
The plasma membrane calcium pump, which ejects Ca2+ from the cell, is regulated by calmodulin. In the absence of calmodulin, the pump is relatively inactive; binding of calmodulin to a specific domain stimulates its activity. Phosphorylation of the pump with protein kinase C or A may modify this regulation. Most of the regulatory functions of the enzyme are concentrated in a region at the carboxyl terminus. This region varies substantially between different isoforms of the pump, causing substantial differences in regulatory properties. The pump shares some motifs of the carboxyl terminus with otherwise unrelated proteins: The calmodulin-binding domain is a modified IQ motif (a motif which is present in myosins) and the last 3 residues of isoform 4b are a PDZ target domain. The pump is ubiquitous, with isoforms 1 and 4 of the pump being more widely distributed than 2 and 3. In some kinds of cells isoform 1 or 4 is missing, and is replaced by another isoform. Received: 26 January 1998/Revised: 6 April 1998  相似文献   

10.
Calcium is an ambivalent signal: it is essential for the correct functioning of cell life, but may also become dangerous to it. The plasma membrane Ca2+ ATPase (PMCA) and the plasma membrane Na+/Ca2+ exchanger (NCX) are the two mechanisms responsible for Ca2+ extrusion. The NCX has low Ca2+ affinity but high capacity for Ca2+ transport, whereas the PMCA has a high Ca2+ affinity but low transport capacity for it. Thus, traditionally, the PMCA pump has been attributed a housekeeping role in maintaining cytosolic Ca2+, and the NCX the dynamic role of counteracting large cytosolic Ca2+ variations (especially in excitable cells). This view of the roles of the two Ca2+ extrusion systems has been recently revised, as the specific functional properties of the numerous PMCA isoforms and splicing variants suggests that they may have evolved to cover both the basal Ca2+ regulation (in the 100 nM range) and the Ca2+ transients generated by cell stimulation (in the μM range).Ca2+ controls critical cellular responses in all eukaryotic organisms. It controls both short-term biological processes that occur in milliseconds, such as muscle contraction, as well as long-term processes that require longer times, such as cell proliferation and organ development. The specificity of cellular Ca2+ signals is controlled by a sophisticated “toolkit” comprising numerous ion channels, pumps, and exchangers that drive the fluxes of Ca2+ ions across the plasma membrane and across the membranes of intracellular organelles (Berridge et al. 2003).The plasma membrane contains several types of channels that mediate Ca2+ entry from the extracellular ambient, and two systems for Ca2+ extrusion: a low affinity, high capacity Na+/Ca2+ exchanger (NCX), and a high-affinity, low-capacity Ca2+-ATPase (the plasma membrane Ca2+ pump (PMCA)) (Fig. 1). The type of channels and the relative proportions of NCX and PMCA vary with the cell type, the NCX being particularly abundant in excitable tissues, e.g., heart and brain. The regulated opening of the Ca2+ channels by either voltage gating, interaction with ligands or the emptying of intracellular stores, allows a limited amount of Ca2+ to enter the cell to transmit signals to its designated targets. Thereafter, the Ca2+ transients must be dissipated: its extrusion from the cell is mediated by the NCX and the PMCA pump, but Ca2+ is also restored to basal levels by sequestration in the endo/sarcoplasmic reticulum via the SERCA pump and in the mitochondria by the electrophoretic uniporter. The NCX has also been found at the inner membrane of the nuclear envelope (NE) and has been proposed to mediate Ca2+ flux between the nucleoplasm and the NE (Xie et al. 2002), and then to the ER (Wu et al. 2009) in neuronal and certain other cell types. Ca2+ binding proteins also contributed to Ca2+ buffering: In this review, we will not cover them, as we will only discuss the systems that extrude Ca2+ out of the cell.Open in a separate windowFigure 1.A schematic representation of the structures involved in cellular Ca2+ homeostasis. The model shows a cell with its Ca2+-transporting systems: Ca2+-ATPases (plasma membrane and sarco/endoplasmic reticulum, PMCA and SERCA), plasma membrane (PM) Ca2+ channels, Na+/Ca2+ exchangers (NCX and NCLX), 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR), the electrophoretic mitochondrial uptake uniporter (U). Mitochondria are drawn as yellow ellipses, nucleus as orange circle and endoplasmic reticulum is colored in red. The different Ca2+-transporting systems cooperate to maintain the Ca2+ concentration gradient between the extracellular and the intracellular ambient.The PMCA pump is a minor component of the total protein of the plasma membrane (less than 0.1% of it). Quantitatively, it is overshadowed by the more powerful NCX in excitable tissue like heart; however, even cells in which the NCX predominates, the PMCA pump is likely to be the fine tuner of cytosolic Ca2+, as it can operate in a concentration range in which the low affinity NCX is relatively very inefficient.The PMCA was discovered in erythrocytes (Schatzmann 1966), and was then described and characterized in numerous other cell types. It was purified in 1979 using a calmodulin affinity column (Niggli et al. 1979), and cloned about 10 years later (Shull and Greeb 1988; Verma et al. 1988). It shows the same essential membrane topology properties of the SERCA pump. Molecular modeling work using the structure of the SERCA pump as a template (Toyoshima et al. 2000) predicts the same general features of the latter, with 10 transmembrane domains and the large cytosolic headpiece divided into the three main cytosolic A, N, and P domains. The Na+/Ca2+ cotransport process was discovered at about the same time as PMCA by two independent groups working on heart (Reuter and Seitz 1968) and on the squid giant axon (Baker et al. 1969). The exchanger was cloned in 1990 (Nicoll et al. 1990). The sequence was initially predicted to correspond to a protein with 11 transmembrane domains and one large cytosolic loop linking transmembrane domain five and six but a revised model predicting only nine transmembrane domains is now generally accepted.  相似文献   

11.
Ras GTPases signal by orchestrating a balance among several effector pathways, of which those driven by the GTPases RalA and RalB are essential to Ras oncogenic functions. RalA and RalB share the same effectors but support different aspects of oncogenesis. One example is the importance of active RalA in anchorage-independent growth and membrane raft trafficking. This study has shown a new post-translational modification of Ral GTPases: nondegradative ubiquitination. RalA (but not RalB) ubiquitination increases in anchorage-independent conditions in a caveolin-dependent manner and when lipid rafts are endocytosed. Forcing RalA mono-ubiquitination (by expressing a protein fusion consisting of ubiquitin fused N-terminally to RalA) leads to RalA enrichment at the plasma membrane and increases raft exposure. This study suggests the existence of an ubiquitination/de-ubiquitination cycle superimposed on the GDP/GTP cycle of RalA, involved in the regulation of RalA activity as well as in membrane raft trafficking.  相似文献   

12.
Whey protein (WP) and whey protein hydrolysate (WPH) have the recognized capacity to increase glycogen stores. The objective of this study was to verify if consuming WP and WPH could also increase the concentration of the glucose transporters GLUT-1 and GLUT-4 in the plasma membrane (PM) of the muscle cells of sedentary and exercised animals. Forty-eight Wistar rats were divided into 6 groups (n = 8 per group), were treated and fed with experimental diets for 9 days as follows: a) control casein (CAS); b) WP; c) WPH; d) CAS exercised; e) WP exercised; and f) WPH exercised. After the experimental period, the animals were sacrificed, muscle GLUT-1 and GLUT-4, p85, Akt and phosphorylated Akt were analyzed by western blotting, and the glycogen, blood amino acids, insulin levels and biochemical health indicators were analyzed using standard methods. Consumption of WPH significantly increased the concentrations of GLUT-4 in the PM and glycogen, whereas the GLUT-1 and insulin levels and the health indicators showed no alterations. The physical exercise associated with consumption of WPH had favorable effects on glucose transport into muscle. These results should encourage new studies dealing with the potential of both WP and WPH for the treatment or prevention of type II diabetes, a disease in which there is reduced translocation of GLUT-4 to the plasma membrane.  相似文献   

13.
利用多种原核表达系统、真核体外翻译系统和细菌/杆状病毒(Bac to Bac)的昆虫表达系统对一个具有重要生理功能的人的膜蛋白LASS2(Homo sapienslongevity assurance homologue 2 of yeastLAG1)进行表达研究。在原核表达系统中仅能够表达其羧基端胞外区片段却不能表达完整的LASS2蛋白,并制备了该片段的抗体。完整的LASS2蛋白能够在两种真核表达系统中进行表达,SDS-PAGE分析结果表明,表达产物分子量为约28kD的LASS蛋白, Western印迹分析也证实了这一结果, 并利用Ni-NTA树脂亲和层析将该蛋白纯化,纯度达到90%以上。  相似文献   

14.
Astrocytes regulate neuronal activity and blood brain barrier through tiny plasma membrane branches or astrocytic processes (APs) making contact with synapses and brain vessels. Several transmitters released by astrocytes and exerting their action on several receptor classes expressed by astrocytes themselves influence their physiology. Here we found that APs are dynamically modulated by purines. In live imaging experiments carried out in rat hippocampal astrocytes, Gq-coupled P2Y1 receptor blockade with the selective antagonist MRS2179 (1 μM) or inhibition of its effector phospholipase C using U73122 (3 μM) produced APs retraction, while stimulation of the same receptor with the selective agonist 2MeSADP (100 μM) increased their number. Since astrocytes, among other transmitters, release ATP by several mechanisms including connexin hemichannels, we used the connexin hemichannel inhibitor carbenoxolone (100 μM) and APs retraction was observed. In our system we then measured expression or function of channels important for modulation of volume transmission and K+ buffering, aquaporin-4, and K+ inward rectifying (Kir) channels, respectively. Aquaporin-4 expression level did not change whereas, in whole-cell patch-clamp recordings performed to measure Kir current, we observed an increase in K+ current in all conditions where APs number was reduced. These data are supporting the idea of a dynamic modulation of astrocytic processes by purinergic signal, strengthening the role of purines in brain homeostasis.  相似文献   

15.
An immunoglobulin Mk monoclonal (F8IVE9) antibody raised against oat (Avena sativa cv Garry) root homogenate has been produced and characterized. The predominant target bound by this antibody is a 62-kilodalton protein (p62) that is expressed in both oat root and oat shoot cells. Treatment of the oat antigen with periodate, or with recombinant N-glycanase, affects the F8IVE9 binding to the antigen, suggesting that the specific epitope for this monoclonal antibody involves a carbohydrate determinant. Levels of p62 present in cells of the oat root increase approximately twofold as the root tissue matures during the first 11 days postgermination. In contrast, levels of expression in shoot tissue remain relatively constant during the same period. The p62 antigen has been shown to be expressed at the plasma membrane by immunohistochemical means, by immunofluorescent labeling of protoplasts, and by enzyme-linked immunosorbent assay analysis of purified plasma membrane. The F8IVE9 antigenic target appears to be uniformly distributed through root tissue but is differentially expressed in specific sections of the shoot. F8IVE9 antibody also binds to antigens expressed in a number of other species, including clover, corn, pea, broccoli, mustard, and bean, and has been shown to bind to Samanea protoplast plasma membranes. This monoclonal antibody may prove to be useful for a variety of investigations, including an analysis of the specific patterns of cellular differentiation that occur during early morphogenesis, and the characterization of plasma membrane-associated elements in plants.  相似文献   

16.
Global biodiversity losses provide an immediate impetus to elucidate the relationships between biodiversity, productivity and stability. In this study, we quantified the effects of species richness and species combination on the productivity and stability of phytoplankton communities subject to predation by a single rotifer species. We also tested one mechanism of the insurance hypothesis: whether large, slow-growing, potentially-defended cells would compensate for the loss of small, fast-growing, poorly-defended cells after predation. There were significant effects of species richness and species combination on the productivity, relative yield, and stability of phytoplankton cultures, but the relative importance of species richness and combination varied with the response variables. Species combination drove patterns of productivity, whereas species richness was more important for stability. Polycultures containing the most productive single species, Dunaliella, were consistently the most productive. Yet, the most species rich cultures were the most stable, having low temporal variability in measures of biomass. Polycultures recovered from short-term negative grazing effects, but this recovery was not due to the compensation of large, slow-growing cells for the loss of small, fast-growing cells. Instead, polyculture recovery was the result of reduced rotifer grazing rates and persisting small species within the polycultures. Therefore, although an insurance effect in polycultures was found, this effect was indirect and unrelated to grazing tolerance. We hypothesize that diverse phytoplankton assemblages interfered with efficient rotifer grazing and that this “interference effect” facilitated the recovery of the most productive species, Dunaliella. In summary, we demonstrate that both species composition and species richness are important in driving patterns of productivity and stability, respectively, and that stability in biodiverse communities can result from an alteration in consumer functioning. Our findings underscore the importance of predator-prey dynamics in determining the relationships between biodiversity, productivity and stability in producer communities.  相似文献   

17.
质膜Ca2+-ATPase (PMCA)是P型ATPase家族的一员,在真核细胞中主要负责信号刺激后胞内高浓度Ca2+的清除扫尾工作,并对维持静息状态下较低Ca2+浓度起着重要的调节作用.PMCA的一级结构已被确定,拓扑学结构显示,它有10个跨膜区和3个胞浆功能区.它的4个编码基因可产生4种亚型(PMCA 1~4),这些亚型在功能与分布上存在差异.PMCA的活性可被钙调蛋白等多种因素调节,这与其结构特征息息相关.近年来,PMCA已被证实与脂筏结构有一定关联,它在信号传导和细胞凋亡中的作用也成为目前科学研究的焦点.本文主要对PMCA的结构、亚型和功能的研究现状进行综述.  相似文献   

18.
19.
Recruitment of cytosolic proteins to individual membranes is governed by a combination of protein–protein and protein–membrane interactions. Many proteins recognize phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the cytosolic surface of the plasma membrane (PM). Here, we show that a protein–lipid interaction can also serve as a dominant signal for the sorting of integral membrane proteins. Interaction with phosphatidly-inositolphosphates (PIPs) at the PM is involved in the targeting of the polytopic yeast protein Ist2 to PM-associated domains of the cortical endoplasmic reticulum (ER). Moreover, binding of PI(4,5)P2 at the PM functions as a dominant mechanism that targets other integral membrane proteins to PM-associated domains of the cortical ER. This sorting to a subdomain of the ER abolishes proteasomal degradation and trafficking along the classical secretory (sec) pathway. In combination with the localization of IST2 mRNA to the bud tip and other redundant signals in Ist2, binding of PIPs leads to efficient accumulation of Ist2 at domains of the cortical ER from where the protein may reach the PM independently of the function of the sec-pathway.  相似文献   

20.
We have analyzed brain coated vesicles and synaptic plasma membrane for the presence of the plasma membrane proteolipid protein. Coated vesicles were isolated from calf brain gray matter with a final purification on Sephacryl S-1000 and reisolated twice by chromatography to ensure homogeneity. Fractions were analyzed by gel electrophoresis, immunoblotting for clathrin heavy chain, and by electron microscopy. Using an immunoblotting assay we were able to demonstrate the presence of the plasma membrane proteolipid protein in these coated vesicles at a significant level (i.e., approximately 1% of the bilayer protein of these vesicles). Reisolation of coated vesicles did not diminish the concentration of the protein in this fraction. Removal of the clathrin coat proteins or exposure of the coated vesicles to 0.1 M Na2CO3 showed that the plasma membrane proteolipid protein is not removed during uncoating and lysis but is intrinsic to the membrane bilayer of these vesicles. These studies demonstrate that plasma membrane proteolipid protein represents a significant amount of the bilayer protein of coated vesicles, suggesting that these vesicles may be a transport vehicle for the intracellular movement of the plasma membrane proteolipid protein. Isolation of synaptic plasma membranes proteolipid adult rat brain and estimation of the plasma membrane proteolipid protein content using the immunoblotting method confirmed earlier studies that show this protein is present in this membrane fraction at high levels as well (approximately 1-2%). The level of this protein in the synaptic plasma membrane suggests that the synaptic plasma membrane is one major site to which these vesicles may be targeted or from which the protein is being retrieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号