首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relaxin-3 is a neuropeptide that has roles in stress, memory and appetite regulation. The peptide acts on its cognate receptor RXFP3 to induce coupling to inhibitory G proteins to inhibit adenylyl cyclase and activate MAP-kinases such as ERK1/2, p38MAPK and JNK. Other relaxin family peptides can activate the receptor to produce alternative patterns of signalling and there is an allosteric modulator 135PAM1 that displays probe-selectivity. There are now a variety of selective peptide agonists and antagonists that will assist in the determination of the physiological roles of the relaxin-RXFP3 system and its potential as a drug target.  相似文献   

2.
Methamphetamine (METH) is a highly addictive psychostimulant, and cessation of use is associated with reduced monoamine signalling, and increased anxiety/depressive states. Neurons expressing the neuropeptide, relaxin-3 (RLN3), and its cognate receptor, RXFP3, constitute a putative ‘ascending arousal system’, which shares neuroanatomical and functional similarities with serotonin (5-HT)/dorsal raphe and noradrenaline (NA)/locus coeruleus monoamine systems. In light of possible synergistic roles of RLN3 and 5-HT/NA, endogenous RLN3/RXFP3 signalling may compensate for the temporary reduction in monoamine signalling associated with chronic METH withdrawal, which could alter the profile of ‘behavioural despair’, bodyweight reductions, and increases in anhedonia and anxiety-like behaviours observed following chronic METH administration. In studies to test this theory, Rln3 and Rxfp3 knockout (KO) mice and their wildtype (WT) littermates were injected once daily with saline or escalating doses of METH (2 mg/kg, i.p. on day 1, 4 mg/kg, i.p. on day 2 and 6 mg/kg, i.p. on day 3–10). WT and Rln3 and Rxfp3 KO mice displayed an equivalent sensitivity to behavioural despair (Porsolt swim) during the 2-day METH withdrawal and similar bodyweight reductions on day 3 of METH treatment. Furthermore, during a 3-week period after the cessation of chronic METH exposure, Rln3 KO, Rxfp3 KO and corresponding WT mice displayed similar behavioural responses in paradigms that measured anxiety (light/dark box, elevated plus maze), anhedonia (saccharin preference), and social interaction. These findings indicate that a whole-of-life deficiency in endogenous RLN3/RXFP3 signalling does not markedly alter behavioural sensitivity to chronic METH treatment or withdrawal, but leave open the possibility of a more significant interaction with global or localised manipulations of this peptide system in the adult brain.  相似文献   

3.
Relaxins are peptides similar in secondary structure to insulins. In teleost genomes, five or six relaxin genes have been identified. Two relaxins group closely with mammalian relaxin-3 on phylogenetic analysis and are named relaxin-3a and b. We refer to the remainder as relaxins c to f. Ovarian expression of relaxin-3a, d and f genes, and the relaxin-3 receptor gene Rxfp3, was studied in Danio rerio using RT-PCR. Immunohistochemistry was used to determine the distribution of relaxin-3 peptides and RXFP3 in the ovary of Fundulus heteroclitus (killifish). Thirdly, enzyme immunoassays and ovarian follicular culture were used to determine the effect of treatment with human recombinant relaxin-3 on the production of 17beta-estradiol and 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one in killifish ovarian follicles. Relaxin-3a, d, f, and Rxfp3 genes were expressed regardless of sex or reproductive condition. Relaxin-3 immunostaining was present in mid to late follicular stages within cortical alveoli of the oocyte cytopasm, whereas receptor staining was localized to follicular cells. Treatment with relaxin-3 enhanced 17beta-estradiol production in early and late maturing follicles, but did not have an effect in vitellogenic follicles. Relaxin-3 appeared to suppress the release of MIS production. This suggests that relaxin peptides may be involved with estradiol-dependant events in follicular development.  相似文献   

4.
Human relaxin-3 is a neuropeptide that is structurally similar to human insulin with two chains (A and B) connected by three disulfide bonds. It is expressed primarily in the brain and has modulatory roles in stress and anxiety, feeding and metabolism, and arousal and behavioural activation. Structure-activity relationship studies have shown that relaxin-3 interacts with its cognate receptor RXFP3 primarily through its B-chain and that its A-chain does not have any functional role. In this study, we have investigated the effect of modification of the B-chain C-terminus on the binding and activity of the peptide. We have chemically synthesised and characterized H3 relaxin as C-termini acid (both A and B chains having free C-termini; native form) and amide forms (both chains’ C-termini were amidated). We have confirmed that the acid form of the peptide is more potent than its amide form at both RXFP3 and RXFP4 receptors. We further investigated the effects of amidation at the C-terminus of individual chains. We report here for the first time that amidation at the C-terminus of the B-chain of H3 relaxin leads to significant drop in the binding and activity of the peptide at RXFP3/RXFP4 receptors. However, modification of the A-chain C-terminus does not have any effect on the activity. We have confirmed using circular dichroism spectroscopy that there is no secondary structural change between the acid and amide form of the peptide, and it is likely that it is the local C-terminal carboxyl group orientation that is crucial for interacting with the receptors.  相似文献   

5.
Toll-like receptor 2 (TLR2) recognizes conserved molecular patterns associated with both gram-negative and gram-positive bacteria, and detects some endogenous ligands. Previous studies demonstrated that in ischemia-reperfusion (I/R) injury of the small intestine, the TLR2-dependent signaling exerted preventive effects on the damage in young mice, but did not have a significant effect in neonatal mice. We investigated the role of TLR2 in adult ischemia-reperfusion injury in the small intestine. Wild-type and TLR2 knockout mice at 16 weeks of age were subjected to intestinal I/R injury. Some wild-type mice received anti-Ly-6G antibodies to deplete circulating neutrophils. In wild-type mice, I/R induced severe small intestinal injury characterized by infiltration by inflammatory cells, disruption of the mucosal epithelium, and mucosal bleeding. Compared to wild-type mice, TLR2 knockout mice exhibited less severe mucosal injury induced by I/R, with a 35%, 33%, and 43% reduction in histological grading score and luminal concentration of hemoglobin, and the numbers of apoptotic epithelial cells, respectively. The I/R increased the activity of myeloperoxidase (MPO), a marker of neutrophil infiltration, and the levels of mRNA expression of tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and cyclooxygenase-2 (COX-2) in the small intestine of the wild-type mice by 3.3-, 3.2-, and 13.0-fold, respectively. TLR2 deficiency significantly inhibited the I/R-induced increase in MPO activity and the expression of mRNAs for TNF-α and ICAM-1, but did not affect the expression of COX-2 mRNA. I/R also enhanced TLR2 mRNA expression by 2.9-fold. TLR2 proteins were found to be expressed in the epithelial cells, inflammatory cells, and endothelial cells. Neutrophil depletion prevented intestinal I/R injury in wild-type mice. These findings suggest that TLR2 may mediate I/R injury of the small intestine in adult mice via induction of inflammatory mediators such as TNF-α and ICAM-1.  相似文献   

6.
Bombesin-like receptor 3 (BRS-3) is an X-linked G protein-coupled receptor involved in the regulation of energy homeostasis. Brs3 null (Brs3 -/y) mice become obese. To date, no high affinity endogenous ligand has been identified. In an effort to detect a circulating endogenous BRS-3 ligand, we generated parabiotic pairs of mice between Brs3 -/y and wild type (WT) mice or between WT controls. Successful parabiosis was demonstrated by circulatory dye exchange. The Brs3 -/y-WT and WT-WT pairs lost similar weight immediately after surgery. After 9 weeks on a high fat diet, the Brs3 -/y-WT pairs weighed more than the WT-WT pairs. Within the Brs3 -/y-WT pairs, the Brs3 -/y mice had greater adiposity than the WT mice, but comparable lean and liver weights. Compared to WT mice in WT-WT pairs, Brs3 -/y and WT mice in Brs3 -/y-WT pairs each had greater lean mass, and the Brs3 -/y mice also had greater adiposity. These results contrast to those reported for parabiotic pairs of leptin receptor null (Lepr db/db) and WT mice, where high leptin levels in the Lepr db/db mice cause the WT parabiotic partners to lose weight. Our data demonstrate that a circulating endogenous BRS-3 ligand, if present, is not sufficient to reduce adiposity in parabiotic partners of Brs3 -/y mice.  相似文献   

7.
Several studies have shown that repeated stressful experiences during childhood increases the likelihood of developing depression- and anxiety-related disorders in adulthood; however, the underlying mechanisms are not well understood. We subjected drd3-EGFP and drd3-null mice to daily, two hour restraint stress episodes over a five day period during preadolescence (postnatal day 35 to 39), followed by social isolation. When these mice reached adulthood (post-natal day > 90), we assessed locomotor behavior in a novel environment, and assessed depression-related behavior in the Porsolt Forced Swim test. We also measured the expression and function of dopamine D3 receptor in limbic brain areas such as hippocampus, nucleus accumbens and amygdala in control and stressed drd3-EGFP mice in adulthood. Adult male mice subjected to restraint stress during preadolescence exhibited both anxiety- and depression-related behaviors; however, adult female mice subjected to preadolescent restraint stress exhibited only depression-related behaviors. The development of preadolescent stress-derived psychiatric disorders was blocked by D3 receptor selective antagonist, SB 277011-A, and absent in D3 receptor null mice. Adult male mice that experienced stress during preadolescence exhibited a loss of D3 receptor expression and function in the amygdala but not in hippocampus or nucleus accumbens. In contrast, adult female mice that experienced preadolescent stress exhibited increased D3 receptor expression in the nucleus accumbens but not in amygdala or hippocampus. Our results suggest that the dopamine D3 receptor is centrally involved in the etiology of adult anxiety- and depression-related behaviors that arise from repeated stressful experiences during childhood.  相似文献   

8.
Relaxin, an emerging pharmaceutical treatment for acute heart failure, activates the relaxin family peptide receptor (RXFP1), which is a class A G-protein-coupled receptor. In addition to the classic transmembrane (TM) domain, RXFP1 possesses a large extracellular domain consisting of 10 leucine-rich repeats and an N-terminal low density lipoprotein class A (LDLa) module. Relaxin-mediated activation of RXFP1 requires multiple coordinated interactions between the ligand and various receptor domains including a high affinity interaction involving the leucine-rich repeats and a predicted lower affinity interaction involving the extracellular loops (ELs). The LDLa is essential for signal activation; therefore the ELs/TM may additionally present an interaction site to facilitate this LDLa-mediated signaling. To overcome the many challenges of investigating relaxin and the LDLa module interactions with the ELs, we engineered the EL1 and EL2 loops onto a soluble protein scaffold, mapping specific ligand and loop interactions using nuclear magnetic resonance spectroscopy. Key EL residues were subsequently mutated in RXFP1, and changes in function and relaxin binding were assessed alongside the RXFP1 agonist ML290 to monitor the functional integrity of the TM domain of these mutant receptors. The outcomes of this work make an important contribution to understanding the mechanism of RXFP1 activation and will aid future development of small molecule RXFP1 agonists/antagonists.  相似文献   

9.
In social species, same‐sex individuals may form social bonds behaviourally expressed as individual preferences, resulting in fitness benefits such as increased offspring survival, longevity and group cohesion. As a result of individual preferences, female house mice (Mus musculus domesticus) form social affiliations while communally nursing and may do so with kin or non‐kin. However, the mechanisms behind the formation of such preferences are unknown. Oxytocin has been linked to a range of social behaviours including bond facilitation, social memory and parental care. Here, we experimentally increased oxytocin in pairs of unfamiliar, unrelated females and predicted that females with elevated oxytocin would demonstrate increased affiliative behaviours compared against a control. Subsequently, we tested for the formation of a social preference, using a preference test with the previous partner and a new unfamiliar female. Our results indicated no significant effect of treatment on positive and negative behaviours between females during the three initial cohabitation days. In both treatments, females demonstrated increased socio‐positive behaviours and cohabitation time with their partner and decreased socio‐negative behaviours and latency to meet, over the 3‐d period. During the partner preference test, control but not oxytocin females demonstrated a significant preference for their cohabitation partner, and oxytocin females spent similar amounts of time with both stimulus females. Therefore, increasing peripheral oxytocin appears not to be involved in the facilitation of initial encounters with a stranger but may hinder the formation of a preference for this new partner.  相似文献   

10.
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.  相似文献   

11.
The binding of renin or prorenin to the (pro)renin receptor (PRR) promotes angiotensin (Ang) II formation and mediates Ang II-independent signaling pathways. In the central nervous system (CNS), Ang II regulates blood pressure via inducing oxidative stress; however, the role of PRR-mediated Ang II-independent signaling pathways in oxidative stress in the CNS remains undefined. To address this question, Neuro-2A cells were infected with control virus or an adeno-associated virus encoding the human PRR. Human PRR over-expression alone increased ROS levels, NADPH oxidase activity, as well as NADPH oxidase (NOX) isoforms 2 and 4 mRNA expression levels and these effects were not blocked by losartan. Moreover, the increase in NOX 2 and NOX 4 mRNA levels, NADPH oxidase activity, and ROS levels induced by PRR over-expression was prevented by mitogen activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) inhibition, and phosphoinositide 3 kinase/Akt (IP3/Akt) inhibition, indicating that PRR regulates NOX activity and ROS formation in neuro-2A cells through Ang II-independent ERK1/2 and IP3/Akt activation. Interestingly, at a concentration of 2 nM or higher, prorenin promoted Ang II formation, and thus further increased the ROS levels in cultured Neuro-2A cells via PRR. In conclusion, human PRR over-expression induced ROS production through both angiotensin II-dependent and -independent mechanisms. We showed that PRR-mediated angiotensin II-independent ROS formation is associated with activation of the MAPK/ERK1/2 and PI3/Akt signaling pathways and up-regulation of mRNA level of NOX 2 and NOX4 isoforms in neuronal cells.  相似文献   

12.
Yin  Li- Tian  Xie  Xiao-Yan  Xue  Lin-Yuan  Yang  Xiao- Rong  Jia  Juan  Zhang  Yu  Zhang  Ce 《Neurochemical research》2020,45(8):1902-1912
Neurochemical Research - Brain matrix metalloproteinases (MMPs) have been recently implicated in alcohol addiction; however, the molecular mechanisms remain poorly understood. Matrix...  相似文献   

13.
14.
The peptide hormone relaxin is showing potential as a treatment for acute heart failure. Although it is known that relaxin mediates its actions through the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), little is known about the molecular mechanisms by which relaxin binding results in receptor activation. Previous studies have highlighted that the unique N-terminal low density lipoprotein class A (LDLa) module of RXFP1 is essential for receptor activation, and it has been hypothesized that this module is the true “ligand” of the receptor that directs the conformational changes necessary for G protein coupling. In this study, we confirmed that an RXFP1 receptor lacking the LDLa module binds ligand normally but cannot signal through any characterized G protein-coupled receptor signaling pathway. Furthermore, we comprehensively examined the contributions of amino acids in the LDLa module to RXFP1 activity using both gain-of-function and loss-of-function mutational analysis together with NMR structural analysis of recombinant LDLa modules. Gain-of-function studies with an inactive RXFP1 chimera containing the LDLa module of the human LDL receptor (LB2) demonstrated two key N-terminal regions of the module that were able to rescue receptor signaling. Loss-of-function mutations of residues in these regions demonstrated that Leu-7, Tyr-9, and Lys-17 all contributed to the ability of the LDLa module to drive receptor activation, and judicious amino acid substitutions suggested this involves hydrophobic interactions. Our results demonstrate that these key residues contribute to interactions driving the active receptor conformation, providing further evidence of a unique mode of G protein-coupled receptor activation.  相似文献   

15.
There are differences between osteoclasts and osteoblastic cells in their cytosolic calcium responses to purinergic receptor activation. Application of 50 or 100 μM extracellular ATP inhibits the calcium response to a second application of ATP in osteoblastic rat osteosarcoma UMR 106 cells, but not in rabbit osteoclasts. This shows that there is adaptation to the extracellular ATP in osteoclasts, but not in the UMR 106 cells. Extracellular washing of the UMR 106 cells restores the calcium response to ATP partially but not completely, indicating that there is a purinergic receptor activation-induced desensitisation of the receptor or its linked signalling pathways. In contrast to these results, if extracellular UTP is applied first, application of ATP produces no calcium response in osteoclasts, with or without washing, while in the UMR 106 cells there is some response to the ATP, which is greatly enhanced by washing. This indicates that UTP induces a complete desensitisation of the purinergic receptor/calcium signalling system in osteoclasts, but not in the osteoblastic cells, in which there is simply competition between UTP and ATP for the same receptors. Taken together, these results demonstrate that ATP and UTP could differentially regulate osteoblasts and osteoclasts.  相似文献   

16.

Background

It has been well documented that phosphodiesterase-5 inhibitor, sildenafil (SIL) protects against myocardial ischemia/reperfusion (I-R) injury. SIRT1 is part of the class III Sirtuin family of histone deacetylases that deacetylates proteins involved in cellular stress response including those related to I-R injury.

Objective/Hypothesis

We tested the hypothesis that SIL-induced cardioprotection may be mediated through activation of SIRT1.

Methods

Adult male ICR mice were treated with SIL (0.7 mg/kg, i.p.), Resveratrol (RSV, 5 mg/kg, a putative activator of SIRT1 used as the positive control), or saline (0.2 mL). The hearts were harvested 24 hours later and homogenized for SIRT1 activity analysis.

Results

Both SIL- and RSV-treated mice had increased cardiac SIRT1 activity (P<0.001) as compared to the saline-treated controls 24 hours after drug treatment. In isolated ventricular cardiomyocytes, pretreatment with SIL (1 µM) or RSV (1 µM) for one hour in vitro also upregulated SIRT1 activity (P<0.05). We further examined the causative relationship between SIRT1 activation and SIL-induced late cardioprotection. Pretreatment with SIL (or RSV) 24 hours prior to 30 min ischemia and 24 hours of reperfusion significantly reduced infarct size, which was associated with a significant increase in SIRT1 activity (P<0.05). Moreover, sirtinol (a SIRT1 inhibitor, 5 mg/kg, i.p.) given 30 min before I-R blunted the infarct-limiting effect of SIL and RSV (P<0.001).

Conclusion

Our study shows that activation of SIRT1 following SIL treatment plays an essential role in mediating the SIL-induced cardioprotection against I-R injury. This newly identified SIRT1-activating property of SIL may have enormous therapeutic implications.  相似文献   

17.
Chemotactic migration of fibroblasts toward growth factors relies on their capacity to sense minute extracellular gradients and respond to spatially confined receptor-mediated signals. Currently, mechanisms underlying the gradient sensing of fibroblasts remain poorly understood. Using single-particle tracking methodology, we determined that a lysophosphatidic acid (LPA) gradient induces a spatiotemporally restricted decrease in the mobility of LPA receptor 2 (LPA2) on chemotactic fibroblasts. The onset of decreased LPA2 mobility correlates to the spatial recruitment and coupling to LPA2-interacting proteins that anchor the complex to the cytoskeleton. These localized PDZ motif-mediated macromolecular complexes of LPA2 trigger a Ca2+ puff gradient that governs gradient sensing and directional migration in response to LPA. Disruption of the PDZ motif-mediated assembly of the macromolecular complex of LPA2 disorganizes the gradient of Ca2+ puffs, disrupts gradient sensing, and reduces the directional migration of fibroblasts toward LPA. Our findings illustrate that the asymmetric macromolecular complex formation of chemoattractant receptors mediates gradient sensing and provides a new mechanistic basis for models to describe gradient sensing of fibroblasts.  相似文献   

18.
Inflammatory bowel diseases are a critical public health issue, and as treatment options remain limited, there is a need to unravel the underlying pathomechanisms in order to identify new therapeutic targets. Complement activation was found in patients suffering from inflammatory bowel disease, and the complement anaphylatoxin C5a and its receptor C5aR have been implicated in disease pathogenesis in animal models of bowel inflammation. To further characterize complement-related pathomechanisms in inflammatory bowel disease, we have investigated the role of the anaphylatoxin C3a receptor in acute dextran sulfate sodium-induced colitis in mice. For this, colitis was induced in C3a receptor-deficient BALB/c and C57BL/6 mice, and disease severity was evaluated by clinical and histological examination, and by measuring the mRNA expression or protein levels of inflammatory mediators in the tissue. C3a receptor deficiency was partially protective in BALB/c mice, which had significantly reduced weight loss, clinical and histological scores, colon shortening, and CXCL-1/KC mRNA, myeloperoxidase and interleukin-6 tissue levels compared to the corresponding wild type mice. In C57BL/6 mice the differences between wild type and C3a receptor-deficient animals were much smaller and reached no significance. Our data demonstrate that the contribution of C3a receptor to disease pathogenesis and severity of dextran sulfate sodium-induced colitis in mice depends on the genetic background. Further studies will be required to clarify whether targeting of C3a receptor, possibly in combination with C5a receptor, might be considered as a therapeutic strategy for inflammatory bowel disease.  相似文献   

19.
Alcohol dependence is a heterogeneous disorder where several signalling systems play important roles. Recent studies implicate that the gut-brain hormone ghrelin, an orexigenic peptide, is a potential mediator of alcohol related behaviours. Ghrelin increases whereas a ghrelin receptor (GHS-R1A) antagonist decreases alcohol consumption as well as operant self-administration of alcohol in rodents that have consumed alcohol for twelve weeks. In the present study we aimed at investigating the effect of acute and repeated treatment with the GHS-R1A antagonist JMV2959 on alcohol intake in a group of rats following voluntarily alcohol consumption for two, five and eight months. After approximately ten months of voluntary alcohol consumption the expression of the GHS-R1A gene (Ghsr) as well as the degree of methylation of a CpG island found in Ghsr was examined in reward related brain areas. In a separate group of rats, we examined the effect of the JMV2959 on alcohol relapse using the alcohol deprivation paradigm. Acute JMV2959 treatment was found to decrease alcohol intake and the effect was more pronounced after five, compared to two months of alcohol exposure. In addition, repeated JMV2959 treatment decreased alcohol intake without inducing tolerance or rebound increase in alcohol intake after the treatment. The GHS-R1A antagonist prevented the alcohol deprivation effect in rats. There was a significant down-regulation of the Ghsr expression in the ventral tegmental area (VTA) in high- compared to low-alcohol consuming rats after approximately ten months of voluntary alcohol consumption. Further analysis revealed a negative correlation between Ghsr expression in the VTA and alcohol intake. No differences in methylation degree were found between high- compared to low-alcohol consuming rats. These findings support previous studies showing that the ghrelin signalling system may constitute a potential target for development of novel treatment strategies for alcohol dependence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号