首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The ability to establish human induced pluripotent stem cells (hiPSCs) by reprogramming of adult fibroblasts and to coax their differentiation into cardiomyocytes opens unique opportunities for cardiovascular regenerative and personalized medicine. In the current study, we investigated the Ca2+-handling properties of hiPSCs derived-cardiomyocytes (hiPSC-CMs).

Methodology/Principal Findings

RT-PCR and immunocytochemistry experiments identified the expression of key Ca2+-handling proteins. Detailed laser confocal Ca2+ imaging demonstrated spontaneous whole-cell [Ca2+]i transients. These transients required Ca2+ influx via L-type Ca2+ channels, as demonstrated by their elimination in the absence of extracellular Ca2+ or by administration of the L-type Ca2+ channel blocker nifedipine. The presence of a functional ryanodine receptor (RyR)-mediated sarcoplasmic reticulum (SR) Ca2+ store, contributing to [Ca2+]i transients, was established by application of caffeine (triggering a rapid increase in cytosolic Ca2+) and ryanodine (decreasing [Ca2+]i). Similarly, the importance of Ca2+ reuptake into the SR via the SR Ca2+ ATPase (SERCA) pump was demonstrated by the inhibiting effect of its blocker (thapsigargin), which led to [Ca2+]i transients elimination. Finally, the presence of an IP3-releasable Ca2+ pool in hiPSC-CMs and its contribution to whole-cell [Ca2+]i transients was demonstrated by the inhibitory effects induced by the IP3-receptor blocker 2-Aminoethoxydiphenyl borate (2-APB) and the phosopholipase C inhibitor U73122.

Conclusions/Significance

Our study establishes the presence of a functional, SERCA-sequestering, RyR-mediated SR Ca2+ store in hiPSC-CMs. Furthermore, it demonstrates the dependency of whole-cell [Ca2+]i transients in hiPSC-CMs on both sarcolemmal Ca2+ entry via L-type Ca2+ channels and intracellular store Ca2+ release.  相似文献   

2.

Background

Ischemic heart disease is a leading cause of mortality. To study this disease, ischemia/reperfusion (I/R) models are widely used to mimic the process of transient blockage and subsequent recovery of cardiac coronary blood supply. We aimed to determine whether the presence of the growth hormone secretagogues, ghrelin and hexarelin, would protect/improve the function of heart from I/R injury and to examine the underlying mechanisms.

Methodology/Principal Findings

Isolated hearts from adult male mice underwent 20 min global ischemia and 30 min reperfusion using a Langendorff apparatus. Ghrelin (10 nM) or hexarelin (1 nM) was introduced into the perfusion system either 10 min before or after ischemia, termed pre- and post-treatments. In freshly isolated cardiomyocytes from these hearts, single cell shortening, intracellular calcium ([Ca2+]i) transients and caffeine-releasable sarcoplasmic reticulum (SR) Ca2+ were measured. In addition, RT-PCR and Western blots were used to examine the expression level of GHS receptor type 1a (GHS-R1a), and phosphorylated phospholamban (p-PLB), respectively. Ghrelin and hexarelin pre- or post-treatments prevented the significant reduction in the cell shortening, [Ca2+]i transient amplitude and caffeine-releasable SR Ca2+ content after I/R through recovery of p-PLB. GHS-R1a antagonists, [D-Lys3]-GHRP-6 (200 nM) and BIM28163 (100 nM), completely blocked the effects of GHS on both cell shortening and [Ca2+]i transients.

Conclusion/Significance

Through activation of GHS-R1a, ghrelin and hexarelin produced a positive inotropic effect on ischemic cardiomyocytes and protected them from I/R injury probably by protecting or recovering p-PLB (and therefore SR Ca2+ content) to allow the maintenance or recovery of normal cardiac contractility. These observations provide supporting evidence for the potential therapeutic application of ghrelin and hexarelin in patients with cardiac I/R injury.  相似文献   

3.

Background

Induced pluripotent stem cells (iPSC) provide means to study the pathophysiology of genetic disorders. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a malignant inherited ion channel disorder predominantly caused by mutations in the cardiac ryanodine receptor (RyR2). In this study the cellular characteristics of CPVT are investigated and whether the electrophysiological features of this mutation can be mimicked using iPSC -derived cardiomyocytes (CM).

Methodology/Principal Findings

Spontaneously beating CMs were differentiated from iPSCs derived from a CPVT patient carrying a P2328S mutation in RyR2 and from two healthy controls. Calcium (Ca2+) cycling and electrophysiological properties were studied by Ca2+ imaging and patch-clamp techniques. Monophasic action potential (MAP) recordings and 24h-ECGs of CPVT-P2328S patients were analyzed for the presence of afterdepolarizations. We found defects in Ca2+ cycling and electrophysiology in CPVT CMs, reflecting the cardiac phenotype observed in the patients. Catecholaminergic stress led to abnormal Ca2+ signaling and induced arrhythmias in CPVT CMs. CPVT CMs also displayed reduced sarcoplasmic reticulum (SR) Ca2+ content, indicating leakage of Ca2+ from the SR. Patch-clamp recordings of CPVT CMs revealed both delayed afterdepolarizations (DADs) during spontaneous beating and in response to adrenaline and also early afterdepolarizations (EADs) during spontaneous beating, recapitulating the changes seen in MAP and 24h-ECG recordings of patients carrying the same mutation.

Conclusions/Significance

This cell model shows aberrant Ca2+ cycling characteristic of CPVT and in addition to DADs it displays EADs. This cell model for CPVT provides a platform to study basic pathology, to screen drugs, and to optimize drug therapy.  相似文献   

4.

Background

Retinal ganglion cells expressing the photopigment melanopsin are intrinsically photosensitive (ipRGCs). These ganglion cell photoreceptors send axons to several central targets involved in a variety of functions. Within the retina ipRGCs provide excitatory drive to dopaminergic amacrine cells via glutamatergic signals and ipRGCs are coupled to wide-field GABAergic amacrine cells via gap junctions. However, the extent to which ipRGCs are coupled to other retinal neurons in the ganglion cell layer via gap junctions is unclear. Carbenoxolone, a widely employed gap junction inhibitor, greatly reduces the number of retinal neurons exhibiting non-rod, non-cone mediated light-evoked Ca2+ signals suggesting extensive intercellular coupling between ipRGCs and non-ipRGCs in the ganglion cell layer. However, carbenoxolone may directly inhibit light-evoked Ca2+ signals in ipRGCs independent of gap junction blockade.

Methodology/Principal Findings

To test the possibility that carbenoxolone directly inhibits light-evoked Ca2+ responses in ipRGCs, the light-evoked rise in intracellular Ca2+ ([Ca2+]i) was examined using fura-2 imaging in isolated rat ipRGCs maintained in short-term culture in the absence and presence of carbenoxolone. Carbenoxolone at 50 and 100 µM concentrations completely abolished the light-evoked rise in [Ca2+]i in isolated ipRGCs. Recovery from carbenoxolone inhibition was variable.

Conclusions/Significance

We demonstrate that the light-evoked rise in [Ca2+]i in isolated mammalian ganglion cell photoreceptors is inhibited by carbenoxolone. Since the light-evoked increase in [Ca2+]i in isolated ipRGCs is almost entirely due to Ca2+ entry via L-type voltage-gated calcium channels and carbenoxolone does not inhibit light-evoked action potential firing in ipRGCs in situ, carbenoxolone may block the light-evoked increase in [Ca2+]i in ipRGCs by blocking L-type voltage-gated Ca2+ channels. The ability of carbenoxolone to block evoked Ca2+ responses must be taken into account when interpreting the effects of this pharmacological agent on retinal or other neuronal circuits, particularly if a change in [Ca2+]i is the output being measured.  相似文献   

5.

Background

Statins (3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors) consumption provides beneficial effects on cardiovascular systems. However, effects of statins on vascular KATP channel gatings are unknown.

Methods

Pig left anterior descending coronary artery and human left internal mammary artery were isolated and endothelium-denuded for tension measurements and Western immunoblots. Enzymatically-dissociated/cultured arterial myocytes were used for patch-clamp electrophysiological studies and for [Ca2+]i, [ATP]i and [glucose]o uptake measurements.

Results

The cromakalim (10 nM to 10 µM)- and pinacidil (10 nM to 10 µM)-induced concentration-dependent relaxation of porcine coronary artery was inhibited by simvastatin (3 and 10 µM). Simvastatin (1, 3 and 10 µM) suppressed (in okadaic acid (10 nM)-sensitive manner) cromakalim (10 µM)- and pinacidil (10 µM)-mediated opening of whole-cell KATP channels of arterial myocytes. Simvastatin (10 µM) and AICAR (1 mM) elicited a time-dependent, compound C (1 µM)-sensitive [3H]-2-deoxy-glucose uptake and an increase in [ATP]i levels. A time (2–30 min)- and concentration (0.1–10 µM)-dependent increase by simvastatin of p-AMPKα-Thr172 and p-PP2A-Tyr307 expression was observed. The enhanced p-AMPKα-Thr172 expression was inhibited by compound C, ryanodine (100 µM) and KN93 (10 µM). Simvastatin-induced p-PP2A-Tyr307 expression was suppressed by okadaic acid, compound C, ryanodine, KN93, phloridzin (1 mM), ouabain (10 µM), and in [glucose]o-free or [Na+]o-free conditions.

Conclusions

Simvastatin causes ryanodine-sensitive Ca2+ release which is important for AMPKα-Thr172 phosphorylation via Ca2+/CaMK II. AMPKα-Thr172 phosphorylation causes [glucose]o uptake (and an [ATP]i increase), closure of KATP channels, and phosphorylation of AMPKα-Thr172 and PP2A-Tyr307 resulted. Phosphorylation of PP2A-Tyr307 occurs at a site downstream of AMPKα-Thr172 phosphorylation.  相似文献   

6.
Spontaneous, submembrane local Ca2+ releases (LCRs) generated by the sarcoplasmic reticulum in sinoatrial nodal cells, the cells of the primary cardiac pacemaker, activate inward Na+/Ca2+-exchange current to accelerate the diastolic depolarization rate, and therefore to impact on cycle length. Since LCRs are generated by Ca2+ release channel (i.e. ryanodine receptor) openings, they exhibit a degree of stochastic behavior, manifested as notable cycle-to-cycle variations in the time of their occurrence.

Aim

The present study tested whether variation in LCR periodicity contributes to intrinsic (beat-to-beat) cycle length variability in single sinoatrial nodal cells.

Methods

We imaged single rabbit sinoatrial nodal cells using a 2D-camera to capture LCRs over the entire cell, and, in selected cells, simultaneously measured action potentials by perforated patch clamp.

Results

LCRs begin to occur on the descending part of the action potential-induced whole-cell Ca2+ transient, at about the time of the maximum diastolic potential. Shortly after the maximum diastolic potential (mean 54±7.7 ms, n = 14), the ensemble of waxing LCR activity converts the decay of the global Ca2+ transient into a rise, resulting in a late, whole-cell diastolic Ca2+ elevation, accompanied by a notable acceleration in diastolic depolarization rate. On average, cells (n = 9) generate 13.2±3.7 LCRs per cycle (mean±SEM), varying in size (7.1±4.2 µm) and duration (44.2±27.1 ms), with both size and duration being greater for later-occurring LCRs. While the timing of each LCR occurrence also varies, the LCR period (i.e. the time from the preceding Ca2+ transient peak to an LCR’s subsequent occurrence) averaged for all LCRs in a given cycle closely predicts the time of occurrence of the next action potential, i.e. the cycle length.

Conclusion

Intrinsic cycle length variability in single sinoatrial nodal cells is linked to beat-to-beat variations in the average period of individual LCRs each cycle.  相似文献   

7.

Background

Atrial fibrillation (AF) is the most common arrhythmia in humans, yet; treatment has remained sub-optimal due to poor understanding of the underlying mechanisms. Cardiac alternans precede AF episodes, suggesting an important arrhythmia substrate. Recently, we demonstrated ventricular SERCA2a overexpression suppresses cardiac alternans and arrhythmias. Therefore, we hypothesized that atrial SERCA2a overexpression will decrease cardiac alternans and arrhythmias.

Methods

Adult rat isolated atrial myocytes where divided into three treatment groups 1) Control, 2) SERCA2a overexpression (Ad.SERCA2a) and 3) SERCA2a inhibition (Thapsigargin, 1μm). Intracellular Ca2+ was measured using Indo-1AM and Ca2+ alternans (Ca-ALT) was induced with a standard ramp pacing protocol.

Results

As predicted, SR Ca2+ reuptake was enhanced with SERCA2a overexpression (p< 0.05) and reduced with SERCA2a inhibition (p<0.05). Surprisingly, there was no difference in susceptibility to Ca-ALT with either SERCA2a overexpression or inhibition when compared to controls (p = 0.73). In contrast, SERCA2a overexpression resulted in increased premature SR Ca2+ (SCR) release compared to control myocytes (28% and 0%, p < 0.05) and concomitant increase in SR Ca2+ load (p<0.05). Based on these observations we tested in-vivo atrial arrhythmia inducibility in control and Ad.SERCA2a animals using an esophageal atrial burst pacing protocol. There were no inducible atrial arrhythmias in Ad.GFP (n = 4) animals though 20% of Ad.SERCA2a (n = 5) animals had inducible atrial arrhythmias (p = 0.20).

Conclusions

Our findings suggest that unlike the ventricle, SERCA2a is not a key regulator of cardiac alternans in the atrium. Importantly, SERCA2a overexpression in atrial myocytes can increase SCR, which may be arrhythmogenic.  相似文献   

8.

Background

The aim of the present work was to characterize the electrophysiological effects of the non-steroidal anti-inflammatory drug diclofenac and to study the possible proarrhythmic potency of the drug in ventricular muscle.

Methods

Ion currents were recorded using voltage clamp technique in canine single ventricular cells and action potentials were obtained from canine ventricular preparations using microelectrodes. The proarrhythmic potency of the drug was investigated in an anaesthetized rabbit proarrhythmia model.

Results

Action potentials were slightly lengthened in ventricular muscle but were shortened in Purkinje fibers by diclofenac (20 µM). The maximum upstroke velocity was decreased in both preparations. Larger repolarization prolongation was observed when repolarization reserve was impaired by previous BaCl2 application. Diclofenac (3 mg/kg) did not prolong while dofetilide (25 µg/kg) significantly lengthened the QTc interval in anaesthetized rabbits. The addition of diclofenac following reduction of repolarization reserve by dofetilide further prolonged QTc. Diclofenac alone did not induce Torsades de Pointes ventricular tachycardia (TdP) while TdP incidence following dofetilide was 20%. However, the combination of diclofenac and dofetilide significantly increased TdP incidence (62%). In single ventricular cells diclofenac (30 µM) decreased the amplitude of rapid (IKr) and slow (IKs) delayed rectifier currents thereby attenuating repolarization reserve. L-type calcium current (ICa) was slightly diminished, but the transient outward (Ito) and inward rectifier (IK1) potassium currents were not influenced.

Conclusions

Diclofenac at therapeutic concentrations and even at high dose does not prolong repolarization markedly and does not increase the risk of arrhythmia in normal heart. However, high dose diclofenac treatment may lengthen repolarization and enhance proarrhythmic risk in hearts with reduced repolarization reserve.  相似文献   

9.

Background

There is limited knowledge about atrial myocyte Ca2+ handling in the failing hearts. The aim of this study was to examine atrial myocyte contractile function and Ca2+ handling in rats with post-infarction heart failure (HF) and to examine whether aerobic interval training could reverse a potential dysfunction.

Methods and results

Post-infarction HF was induced in Sprague Dawley rats by ligation of the left descending coronary artery. Atrial myocyte shortening was depressed (p<0.01) and time to relaxation was prolonged (p<0.01) in sedentary HF-rats compared to healthy controls. This was associated with decreased Ca2+ amplitude, decreased SR Ca2+ content, and slower Ca2+ transient decay. Atrial myocytes from HF-rats had reduced sarcoplasmic reticulum Ca2+ ATPase activity, increased Na+/Ca2+-exchanger activity and increased diastolic Ca2+ leak through ryanodine receptors. High intensity aerobic interval training in HF-rats restored atrial myocyte contractile function and reversed changes in atrial Ca2+ handling in HF.

Conclusion

Post infarction HF in rats causes profound impairment in atrial myocyte contractile function and Ca2+ handling. The observed dysfunction in atrial myocytes was partly reversed after aerobic interval training.  相似文献   

10.

Background

The extracellular calcium-sensing receptor (CaSR) belongs to family C of the G protein coupled receptors. Whether the CaSR is expressed in the pulmonary artery (PA) is unknown.

Methods

The expression and distribution of CaSR were detected by RT-PCR, Western blotting and immunofluorescence. PA tension was detected by the pulmonary arterial ring technique, and the intracellular calcium concentration ([Ca2+]i) was detected by a laser-scanning confocal microscope.

Results

The expressions of CaSR mRNA and protein were found in both rat pulmonary artery smooth muscle cells (PASMCs) and PAs. Increased levels of [Ca2+]o (extracellular calcium concentration) or Gd3+ (an agonist of CaSR) induced an increase of [Ca2+]i and PAs constriction in a concentration-dependent manner. In addition, the above-mentioned effects of Ca2+ and Gd3+ were inhibited by U73122 (specific inhibitor of PLC), 2-APB (specific antagonist of IP3 receptor), and thapsigargin (blocker of sarcoplasmic reticulum calcium ATPase).

Conclusions

CaSR is expressed in rat PASMCs, and is involved in regulation of PA tension by increasing [Ca2+]i through G-PLC-IP3 pathway.  相似文献   

11.

Objective

Computational models of calcium (Ca2+) signaling have been constructed for several cell types. There are, however, no such models for retinal pigment epithelium (RPE). Our aim was to construct a Ca2+ signaling model for RPE based on our experimental data of mechanically induced Ca2+ wave in the in vitro model of RPE, the ARPE-19 monolayer.

Methods

We combined six essential Ca2+ signaling components into a model: stretch-sensitive Ca2+ channels (SSCCs), P2Y2 receptors, IP3 receptors, ryanodine receptors, Ca2+ pumps, and gap junctions. The cells in our epithelial model are connected to each other to enable transport of signaling molecules. Parameterization was done by tuning the above model components so that the simulated Ca2+ waves reproduced our control experimental data and data where gap junctions were blocked.

Results

Our model was able to explain Ca2+ signaling in ARPE-19 cells, and the basic mechanism was found to be as follows: 1) Cells near the stimulus site are likely to conduct Ca2+ through plasma membrane SSCCs and gap junctions conduct the Ca2+ and IP3 between cells further away. 2) Most likely the stimulated cell secretes ligand to the extracellular space where the ligand diffusion mediates the Ca2+ signal so that the ligand concentration decreases with distance. 3) The phosphorylation of the IP3 receptor defines the cell’s sensitivity to the extracellular ligand attenuating the Ca2+ signal in the distance.

Conclusions

The developed model was able to simulate an array of experimental data including drug effects. Furthermore, our simulations predict that suramin may interfere ligand binding on P2Y2 receptors or accelerate P2Y2 receptor phosphorylation, which may partially be the reason for Ca2+ wave attenuation by suramin. Being the first RPE Ca2+ signaling model created based on experimental data on ARPE-19 cell line, the model offers a platform for further modeling of native RPE functions.  相似文献   

12.

Background

Hepatic encephalopathy (HE) is a complex disorder associated with increased ammonia levels in the brain. Although astrocytes are believed to be the principal cells affected in hyperammonemia (HA), endothelial cells (ECs) may also play an important role by contributing to the vasogenic effect of HA.

Methods

Following acute application and removal of NH4Cl on astrocytes and endothelial cells, we analyzed pH changes, using fluorescence imaging with BCECF/AM, and changes in intracellular Ca2+ concentration ([Ca2+]i), employing fluorescence imaging with Fura-2/AM. Using confocal microscopy, changes in cell volume were observed accompanied by changes of [Ca2+]i in astrocytes and ECs.

Results

Exposure of astrocytes and ECs to 1 – 20 mM NH4Cl resulted in rapid concentration-dependent alkalinization of cytoplasm followed by slow recovery. Removal of the NH4Cl led to rapid concentration-dependent acidification, again followed by slow recovery. Following the application of NH4Cl, a transient, concentration-dependent rise in [Ca2+]i in astrocytes was observed. This was due to the release of Ca2+ from intracellular stores, since the response was abolished by emptying intracellular stores with thapsigargin and ATP, and was still present in the Ca2+-free bathing solution. The removal of NH4Cl also led to a transient concentration-dependent rise in [Ca2+]i that resulted from Ca2+ release from cytoplasmic proteins, since removing Ca2+ from the bathing solution and emptying intracellular Ca2+ stores did not eliminate the rise. Similar results were obtained from experiments on ECs. Following acute application and removal of NH4Cl no significant changes in astrocyte volume were detected; however, an increase of EC volume was observed after the administration of NH4Cl, and EC shrinkage was demonstrated after the acute removal of NH4Cl.

Conclusions

This study reveals new data which may give a more complete insight into the mechanism of development and treatment of HE.
  相似文献   

13.

Introduction

Acid-sensing ion channel 3 (ASIC3) is expressed in synoviocytes, activated by decreases in pH, and reduces inflammation in animal models of inflammatory arthritis. The purpose of the current study was to characterize potential mechanisms underlying the control of inflammation by ASIC3 in fibroblast-like synoviocytes (FLS).

Methods

Experiments were performed in cultured FLS from wild-type (WT) and ASIC3-/- mice, ASIC1-/- mice, and people with rheumatoid arthritis. We assessed the effects of acidic pH with and without interleukin-1β on FLS and the role of ASICs in modulating intracellular calcium [Ca2+]i, mitogen activated kinase (MAP kinase) expression, and cell death. [Ca2+]i was assessed by fluorescent calcium imaging, MAP kinases were measured by Western Blots; ASIC, cytokine and protease mRNA expression were measured by quantitative PCR and cell death was measured with a LIVE/DEAD assay.

Results

Acidic pH increased [Ca2+]i and decreased p-ERK expression in WT FLS; these effects were significantly smaller in ASIC3-/- FLS and were prevented by blockade of [Ca2+]i. Blockade of protein phosphatase 2A (PP2A) prevented the pH-induced decreases in p-ERK. In WT FLS, IL-1β increases ASIC3 mRNA, and when combined with acidic pH enhances [Ca2+]i, p-ERK, IL-6 and metalloprotienase mRNA, and cell death. Inhibitors of [Ca2+]i and ERK prevented cell death induced by pH 6.0 in combination with IL-1β in WT FLS.

Conclusions

Decreased pH activates ASIC3 resulting in increased [Ca2+]i, and decreased p-ERK. Under inflammatory conditions, acidic pH results in enhanced [Ca2+]i and phosphorylation of extracellular signal-regulated kinase that leads to cell death. Thus, activation of ASIC3 on FLS by acidic pH from an inflamed joint could limit synovial proliferation resulting in reduced accumulation of inflammatory mediators and subsequent joint damage.  相似文献   

14.

Background

Mitochondrial large-conductance Ca2+-sensitive potassium (mBKCa) channels are involved in myocardial ischemic preconditioning. Their role in sildenafil-induced cardioprotection is unknown. We investigated whether sildenafil-induced acute cardioprotection is mediated by activation of mBKCa channels in the rat heart in vitro.

Methods

Male Wistar rats (n = 8 per group) were randomized and anesthetized with pentobarbital (90 mg/kg). Hearts were isolated, mounted on a Langendorff system and perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. Hearts underwent 30 min of global ischemia followed by 60 min of reperfusion. At the end of the experiments infarct size was determined by TTC staining. In the control group rats were not further treated. Sildenafil (3 μM) was administered over 10 min before the beginning of ischemia. The mBKCa channel inhibitor paxilline (1 μM) was administered with and without sildenafil before the onset of ischemia. The pathway underlying sildenafil-induced cardioprotection was further investigated with the protein kinase G blocker KT5823 (1 μM). Myocardial cGMP concentration was measured by ELISA. Data (mean±SD) were analysed with a one and two-way analysis of variance as appropriate.

Results

In control animals infarct size was 52±8%. Sildenafil increased cGMP concentration and reduced infarct size to 35±6% (P<0.05 vs. control). Paxilline and KT5823 completely blocked sildenafil-induced cardioprotection (paxilline+sildenafil: 50±8%, KT5823+sildenafil: 45±8%; both P<0.05 vs. sildenafil). Functional heart parameters and coronary flow were not different between the study groups.

Conclusion

This study shows that in male rats protein kinase G-dependent opening of mBKCa channels plays a pivotal role in sildenafil-induced cardioprotection.  相似文献   

15.

Rationale

In ventricular myocytes of large mammals, not all ryanodine receptor (RyR) clusters are associated with T-tubules (TTs); this fraction increases with cellular remodeling after myocardial infarction (MI).

Objective

To characterize RyR functional properties in relation to TT proximity, at baseline and after MI.

Methods

Myocytes were isolated from left ventricle of healthy pigs (CTRL) or from the area adjacent to a myocardial infarction (MI). Ca2+ transients were measured under whole-cell voltage clamp during confocal linescan imaging (fluo-3) and segmented according to proximity of TTs (sites of early Ca2+ release, F>F50 within 20 ms) or their absence (delayed areas). Spontaneous Ca2+ release events during diastole, Ca2+ sparks, reflecting RyR activity and properties, were subsequently assigned to either category.

Results

In CTRL, spark frequency was higher in proximity of TTs, but spark duration was significantly shorter. Block of Na+/Ca2+ exchanger (NCX) prolonged spark duration selectively near TTs, while block of Ca2+ influx via Ca2+ channels did not affect sparks properties. In MI, total spark mass was increased in line with higher SR Ca2+ content. Extremely long sparks (>47.6 ms) occurred more frequently. The fraction of near-TT sparks was reduced; frequency increased mainly in delayed sites. Increased duration was seen in near-TT sparks only; Ca2+ removal by NCX at the membrane was significantly lower in MI.

Conclusion

TT proximity modulates RyR cluster properties resulting in intracellular heterogeneity of diastolic spark activity. Remodeling in the area adjacent to MI differentially affects these RyR subpopulations. Reduction of the number of sparks near TTs and reduced local NCX removal limit cellular Ca2+ loss and raise SR Ca2+ content, but may promote Ca2+ waves.  相似文献   

16.

Purpose

Calcification is an important prognostic factor in aortic valve stenosis. However, there is no ultrasound (US) method available to accurately quantify calcification in this setting to date. We aimed to validate a new US method for measuring the amount of calcium in an in vitro model, and compare it to computed tomography (CT), the current imaging gold standard.

Materials and Methods

An agar phantom (2% agar) was made, containing 9 different amounts of calcium-hydroxyapatite Ca5(PO4)3OH (2 to 50mg). The phantoms were imaged with micro-CT and US (10 MHz probe). The calcium area (areacalcium) and its maximum pixel value (PVmax) were obtained. These values were summed to calculate CT and US calcium scores (∑(areacalcium × PVmax)) and volumes (∑areacalcium). Both US- and CT-calcium scores were compared with the calcium amounts, and with each other.

Results

Both calcium scores correlated significantly with the calcium amount (R2 = 0.9788, p<0.0001 and R2 = 0.8154, p<0.0001 for CT and US respectively). Furthermore, there was a significant correlation between US and CT for calcium volumes (R2 = 0.7392, p<0.0001) and scores (R2 = 0.7391, p<0.0001).

Conclusion

We developed a new US method that accurately quantifies the amount of calcium in an in vitro model. Moreover it is strongly correlated with CT.  相似文献   

17.

Objective

Adenylyl cyclases (ACs) play important role in regulating pancreatic beta cell growth, survival and secretion through the synthesis of cyclic AMP (cAMP). MDL-12,330A and SQ 22536 are two AC inhibitors used widely to establish the role of ACs. The goal of this study was to examine the effects of MDL-12,330A and SQ 22536 on insulin secretion and underlying mechanisms.

Methods

Patch-clamp recording, Ca2+ fluorescence imaging and radioimmunoassay were used to measure outward K+ currents, action potentials (APs), intracellular Ca2+ ([Ca2+]i) and insulin secretion from rat pancreatic beta cells.

Results

MDL-12,330A (10 µmol/l) potentiated insulin secretion to 1.7 times of control in the presence of 8.3 mmol/l glucose, while SQ 22536 did not show significant effect on insulin secretion. MDL-12,330A prolonged AP durations (APDs) by inhibiting voltage-dependent K+ (KV) channels, leading to an increase in [Ca2+]i levels. It appeared that these effects induced by MDL-12,330A did not result from AC inhibition, since SQ 22536 did not show such effects. Furthermore, inhibition of the downstream effectors of AC/cAMP signaling by PKA inhibitor H89 and Epac inhibitor ESI-09, did not affect KV channels and insulin secretion.

Conclusion

The putative AC inhibitor MDL-12,330A enhances [Ca2+]i and insulin secretion via inhibition of KV channels rather than AC antagonism in beta cells, suggesting that the non-specific effects is needed to be considered for the right interpretation of the experimental results using this agent in the analyses of the role of AC in cell function.  相似文献   

18.

Background

Calreticulin, a Ca2+-buffering chaperone of the endoplasmic reticulum, is highly expressed in the embryonic heart and is essential for cardiac development. After birth, the calreticulin gene is sharply down regulated in the heart, and thus, adult hearts have negligible levels of calreticulin. In this study we tested the role of calreticulin in the adult heart.

Methodology/Principal Findings

We generated an inducible transgenic mouse in which calreticulin is targeted to the cardiac tissue using a Cre/loxP system and can be up-regulated in adult hearts. Echocardiography analysis of hearts from transgenic mice expressing calreticulin revealed impaired left ventricular systolic and diastolic function and impaired mitral valve function. There was altered expression of Ca2+ signaling molecules and the gap junction proteins, Connexin 43 and 45. Sarcoplasmic reticulum associated Ca2+-handling proteins (including the cardiac ryanodine receptor, sarco/endoplasmic reticulum Ca2+-ATPase, and cardiac calsequestrin) were down-regulated in the transgenic hearts with increased expression of calreticulin.

Conclusions/Significance

We show that in adult heart, up-regulated expression of calreticulin induces cardiomyopathy in vivo leading to heart failure. This is due to an alternation in changes in a subset of Ca2+ handling genes, gap junction components and left ventricle remodeling.  相似文献   

19.

Objectives

Sarcoplasmic reticulum (SR) Ca2+-handling proteins play an important role in myocardial dysfunction after acute ischemia/reperfusion injury. We hypothesized that nitrite would improve postresuscitation myocardial dysfunction by increasing nitric oxide (NO) generation and that the mechanism of this protection is related to the modulation of SR Ca2+-handling proteins.

Methods

We conducted a randomized prospective animal study using male Sprague-Dawley rats. Cardiac arrest was induced by intravenous bolus of potassium chloride (40 µg/g). Nitrite (1.2 nmol/g) or placebo was administered when chest compression was started. No cardiac arrest was induced in the sham group. Hemodynamic parameters were monitored invasively for 90 minutes after the return of spontaneous circulation (ROSC). Echocardiogram was performed to evaluate cardiac function. Myocardial samples were harvested 5 minutes and 1 hour after ROSC.

Results

Myocardial function was significantly impaired in the nitrite and placebo groups after resuscitation, whereas cardiac function (i.e., ejection fraction and fractional shortening) was significantly greater in the nitrite group than in the placebo group. Nitrite administration increased the level of nitric oxide in the myocardium 5 min after resuscitation compared to the other two groups. The levels of phosphorylated phospholamban (PLB) were decreased after resuscitation, and nitrite increased the phosphorylation of phospholamban compared to the placebo. No significant differences were found in the expression of sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) and ryanodine receptors (RyRs).

Conclusions

postresuscitation myocardial dysfunction is associated with the impairment of PLB phosphorylation. Nitrite administered during resuscitation improves postresuscitation myocardial dysfunction by preserving phosphorylated PLB protein during resuscitation.  相似文献   

20.

Background

Although high aerobic capacity is associated with effective cardiac function, the effect of aerobic capacity on atrial function, especially in terms of cellular mechanisms, is not known. We aimed to investigate whether rats with low inborn maximal oxygen uptake (VO2 max) had impaired atrial myocyte contractile function when compared to rats with high inborn VO2 max.

Methods and Results

Atrial myocyte function was depressed in Low Capacity Runners (LCR) relative to High Capacity Runners (HCR) which was associated with impaired Ca2+ handling. Fractional shortening was 52% lower at 2 Hz and 60% lower at 5 Hz stimulation while time to 50% relengthening was 43% prolonged and 55% prolonged, respectively. Differences in Ca2+ amplitude and diastolic Ca2+ level were observed at 5 Hz stimulation where Ca2+ amplitude was 70% lower and diastolic Ca2+ level was 11% higher in LCR rats. Prolonged time to 50% Ca2+ decay was associated with reduced sarcoplasmic reticulum (SR) Ca2+ ATPase function in LCR (39%). Na+/Ca2+ exchanger activity was comparable between the groups. Diastolic SR Ca2+ leak was increased by 109%. This could be partly explained by increased ryanodine receptors phosphorylation at the Ca2+-calmodulin-dependent protein kinase-II specific Ser-2814 site in LCR rats. T-tubules were present in 68% of HCR cells whereas only 33% LCR cells had these structures. In HCR, the significantly higher numbers of cells with T-tubules were combined with greater numbers of myocytes where Ca2+ release in the cell occurred simultaneously in central and peripheral regions, giving rise to faster and more spatial homogenous Ca2+-signal onset.

Conclusion

This data demonstrates that contrasting for low or high aerobic capacity leads to diverse functional and structural remodelling of atrial myocytes, with impaired contractile function in LCR compared to HCR rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号