首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. Thus, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize the cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton.  相似文献   

2.
Much evidence has accumulated to show that cellular membranes such as the plasma membrane, contain multiple "microdomains" of differing lipid and protein composition and function. These domains are sometimes enriched in cholesterol and sphingolipids and are believed to be important structures for the regulation of many biological and pathological processes. This review focuses on the use of fluorescent (Bodipy) labeled analogs of sphingolipids and cholesterol to study such domains. We discuss the similarities between the behavior of Bodipy-cholesterol and natural cholesterol in artificial bilayers and in cultured cells, and the use of Bodipy-sphingolipid analogs to visualize membrane domains in living cells based on the concentration-dependent monomer-excimer fluorescence properties of the Bodipy-fluorophore. The use of Bodipy-D-erythro-lactosylceramide is highlighted for detection of domains on the plasma membrane and endosome membranes, and the importance of the sphingolipid stereochemistry in modulating domain formation is discussed. Finally, we suggest that Bodipy-sphingolipids may be useful in future studies to examine the relationship between membrane domains at the cell surface and domains enriched in other lipids and proteins on the inner leaflet of the plasma membrane.  相似文献   

3.
Information about the distributions of cholesterol and sphingolipids within the plasma membranes of mammalian cells provides insight into the roles of these molecules in membrane function. In this report, high-resolution secondary ion mass spectrometry was used to image the distributions of metabolically incorporated rare isotope-labeled sphingolipids and cholesterol on the surfaces of nonpolarized epithelial cells. Sphingolipid domains that were not enriched with cholesterol were detected in the plasma membranes of subconfluent Madin-Darby canine kidney cells. Surprisingly, cholesterol-enriched sphingolipid patches were observed on the substrate adjacent to these cells. Based on the shapes of these cholesterol-enriched sphingolipid patches on the substrate and their proximity to cellular projections, we hypothesize that they are deposits of membranous particles released by the cell.  相似文献   

4.
Y Miura  K Hanada  T L Jones 《Biochemistry》2001,40(50):15418-15423
Membrane microdomains enriched in cholesterol and sphingolipids modulate a number of signal transduction pathways and provide a residence for heterotrimeric G proteins, their receptors, and their effectors. We investigated whether signaling through G(s) was dependent on these membrane domains, characterized by their resistance to detergents, by depleting cells of cholesterol and sphingolipids. For cholesterol depletion, rat salivary epithelial A5 cells were cultured under low-cholesterol conditions, and then treated with the cholesterol chelator methyl-beta-cyclodextrin. For sphingolipid depletion, LY-B cells, a mutant CHO cell line that is unable to synthesize sphingolipids, were incubated under low-sphingolipid conditions. Depletion of cholesterol or sphingolipid led to a loss or decrease, respectively, in the amount of Galpha(s) from the detergent-resistant membranes without any change in the cellular or membrane-bound amounts of Galpha(s). The cAMP accumulation in response to a receptor agonist was intact and the level slightly increased in cells depleted of cholesterol or sphingolipids compared to that in control cells. These results indicate that localization of Galpha(s) to detergent-resistant membranes was not required for G(s) signaling. Analysis of the role of lipid rafts on the kinetics of protein associations in the membrane suggests that compartmentalization in lipid rafts may be more effective in inhibiting protein interactions and, depending on the pathway, ultimately inhibit or promote signaling.  相似文献   

5.
Sterols are essential membrane components of eukaryotic cells. Interacting closely with sphingolipids, they provide the membrane surrounding required for membrane sorting and trafficking processes. Altering the amount and/or structure of free sterols leads to defects in endocytic pathways in mammalian cells and yeast. Plasma membrane structures functioning in the internalization step in mammalian cells, caveolae and clathrin-coated pits, are affected by cholesterol depletion. Accumulation of improper plasma membrane sterols prevents hyperphosphorylation of a plasma membrane receptor in yeast. Once internalized, sterols still interact with sphingolipids and are recycled to the plasma membrane to keep an intracellular sterol gradient with the highest amount of free sterols at the cell periphery. Interestingly, cells from patients suffering from sphingolipid storage diseases show high intracellular amounts of free cholesterol. We propose that the balanced interaction of sterols and sphingolipids is responsible for protein recruitment to specialized membrane domains and their functionality in the endocytic pathway.  相似文献   

6.
Treatment with methyl-beta-cyclodextrin (MCD) induced a time- and dose-dependent efflux of cholesterol, sphingolipids, and phosphatidylcholine (PC) from cerebellar neurons differentiated in culture. With a "mild" treatment, the loss of cell lipids induced a deep reorganization of the remaining membrane lipids. In fact, the amount of PC associated with a Triton X-100-insoluble membrane fraction (highly enriched in sphingolipids and cholesterol in nontreated cells) was lowered by the treatment. This suggested a reduction of the lipid domain area. However, the cholesterol and sphingolipid enrichment of this fraction remained substantially unchanged, suggesting the existence of dynamic processes aimed at preserving the segregation of cholesterol and sphingolipids in membrane domains. Under these conditions, the lipid membrane domains retained the ability to sort signaling proteins, such as Lyn and c-Src, but cells displayed deep alterations in their membrane permeability. However, normal membrane permeability was restored by loading cells with cholesterol. When MCD treatment was more stringent, a large loss of cell lipids occurred, and the lipid domains were much less enriched in cholesterol and lost the ability to sort specific proteins. The loss of the integrity and properties of lipid domains was accompanied by severe changes in the membrane permeability, distress, and eventually cell death.  相似文献   

7.
We have recently shown that two ATP binding cassette (ABC) transporters are enriched in Lubrol-resistant noncaveolar membrane domains in multidrug-resistant human cancer cells [Hinrichs, J. W. J., K. Klappe, I. Hummel, and J. W. Kok. 2004. ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in human multidrug-resistant cancer cells. J. Biol. Chem. 279: 5734-5738]. Here, we show that aminophospholipids are relatively enriched in Lubrol-resistant membrane domains compared with Triton X-100-resistant membrane domains, whereas sphingolipids are relatively enriched in the latter. Moreover, Lubrol-resistant membrane domains contain more protein and lipid mass. Based on these results, we postulate a model for detergent-insoluble glycosphingolipid-enriched membrane domains consisting of a Lubrol-insoluble/Triton X-100-insoluble region and a Lubrol-insoluble/Triton X-100-soluble region. The latter region contains most of the ABC transporters as well as lipids known to be necessary for their efflux activity. Compared with drug-sensitive cells, the detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in drug-resistant cells differ specifically in sphingolipid content and not in protein, phospholipid, or cholesterol content. In drug-resistant cells, sphingolipids with specific fatty acids (especially C24:1) are enriched in these membrane domains. Together, these data show that multidrug resistance-associated changes in both sphingolipids and ABC transporters occur in DIGs, but in different regions of these domains.  相似文献   

8.
The plasma membrane of polarized cells consists of distinct domains, the apical and basolateral membrane, that are characterized by a distinct lipid and protein content. Apical protein transport is largely mediated by (glyco)sphingolipid--cholesterol enriched membrane microdomains, so called rafts. In addition changes in the direction of polarized sphingolipid transport appear instrumental in cell polarity development. Knowledge is therefore required of the mechanisms that mediate sphingolipid sorting and the complexity of the trafficking pathways that are involved in polarized transport of both sphingolipids and proteins. Here we summarize specific biophysical properties that underly mechanisms relevant to sphingolipid sorting, cargo recruitment and polarized trafficking, and discuss the central role of a subapical compartment, SAC or common endosome (CE), as a major intracellular site involved in polarized sorting of sphingolipids, and in development and maintenance of membrane polarity.  相似文献   

9.
Sphingolipids containing very long acyl chains are abundant in certain specialized tissues and minor components of plasma membranes in most mammalian cells. There are cellular processes in which these sphingolipids are required, and the function seems to be mediated through sphingolipid-rich membrane domains. This study was conducted to explore how very long acyl chains of sphingolipids influence their lateral distribution in membranes. Differential scanning calorimetry showed that 24:0- and 24:1-sphingomyelins, galactosylceramides and glucosylceramides exhibited complex thermotropic behavior and partial miscibility with palmitoyl sphingomyelin. The Tm was decreased by about 20 °C for all 24:1-sphingolipids compared to the corresponding 24:0-sphingolipids. The ability to pack tightly with ordered and extended acyl chains is a necessity for membrane lipids to partition into ordered domains in membranes and thus the 24:1-sphingolipids appeared less likely to do so. Fluorescence quenching measurements showed that the 24:0-sphingolipids formed ordered domains in multicomponent membranes, both as the only sphingolipid and mixed with palmitoyl sphingomyelin. These domains had a high packing density which appeared to hinder the partitioning of sterols into them, as reported by the fluorescent cholesterol analog cholestatrienol. 24:0-SM was, however, better able to accommodate sterol than the glycosphingolipids. The 24:1-sphingolipids could, depending on head group structure, either stabilize or disrupt ordered sphingolipid/cholesterol domains. We conclude that very long chain sphingolipids, when present in biological membranes, may affect the physical properties of or the distribution of sterols between lateral domains. It was also evident that not only the very long acyl chain but also the specific molecular structure of the sphingolipids was of importance for their membrane properties.  相似文献   

10.
Sulfatides (galactosylceramidesulfates) are negatively charged glycosphingolipids that are important constituents of brain myelin membranes. These membranes are also highly enriched in galactosylceramide and cholesterol. It has been implicated that sulfatides, together with other sphingolipids, take part in lateral domain formation in biological membranes. This study was conducted to characterize the lateral phase behavior of N-palmitoyl-sulfatide in mixed bilayer membranes. Going from simple lipid mixtures with sulfatide as the only sphingolipid in a fluid matrix of POPC, to more complex membranes including other sphingolipids, we have examined 1) ordered domain formation with sulfatide, 2) sterol enrichment in such domains and 3) stabilization of the domains against temperature by the addition of calcium. Using two distinct phase selective fluorescent probes, trans-parinaric acid and cholestatrienol, together with a quencher in the fluid phase, we were able to distinguish between ordered domains in general and ordered domains enriched in sterol. We found that N-palmitoyl-sulfatide formed ordered domains when present as the only sphingolipid in a fluid phospholipid bilayer, but these domains did not contain sterol and their stability was unaffected by calcium. However, at low, physiologically relevant concentrations, sulfatide partitioned favorably into domains enriched in other sphingolipids and cholesterol. These domains were stabilized against temperature in the presence of divalent cations. We conclude that sulfatides are likely to affect the lateral organization of biomembranes.  相似文献   

11.
The association of hemagglutinin (HA) with lipid rafts in the plasma membrane is an important feature of the assembly process of influenza virus A. Lipid rafts are thought to be small, fluctuating patches of membrane enriched in saturated phospholipids, sphingolipids, cholesterol and certain types of protein. However, raft-associating transmembrane (TM) proteins generally partition into Ld domains in model membranes, which are enriched in unsaturated lipids and depleted in saturated lipids and cholesterol. The reason for this apparent disparity in behavior is unclear, but model membranes differ from the plasma membrane in a number of ways. In particular, the higher protein concentration in the plasma membrane may influence the partitioning of membrane proteins for rafts. To investigate the effect of high local protein concentration, we have conducted coarse-grained molecular dynamics (CG MD) simulations of HA clusters in domain-forming bilayers. During the simulations, we observed a continuous increase in the proportion of raft-type lipids (saturated phospholipids and cholesterol) within the area of membrane spanned by the protein cluster. Lateral diffusion of unsaturated lipids was significantly attenuated within the cluster, while saturated lipids were relatively unaffected. On this basis, we suggest a possible explanation for the change in lipid distribution, namely that steric crowding by the slow-diffusing proteins increases the chemical potential for unsaturated lipids within the cluster region. We therefore suggest that a local aggregation of HA can be sufficient to drive association of the protein with raft-type lipids. This may also represent a general mechanism for the targeting of TM proteins to rafts in the plasma membrane, which is of functional importance in a wide range of cellular processes.  相似文献   

12.
Ceramide is a novel lipid mediator involved in regulating cell growth, cell differentiation and cell death. Many studies have focused on characterizing the stimulus-induced production of ceramide and identifying putative downstream molecular targets. However, little remains known about the localization of the regulated production of ceramide through sphingomyelin metabolism in the plasma membrane. Additionally, it is unclear whether a localized increase in ceramide concentration is necessary to facilitate downstream signalling events initiated by this lipid. Recent studies have suggested that detergent-insoluble plasma membrane domains may be highly localized sites for initiating signal transduction cascades by both tyrosine kinase and sphingolipid signalling pathways. These domains are typically enriched in both sphingolipids and cholesterol and have been proposed to form highly ordered lipid rafts floating in a sea of glycerophospholipids. Alternatively, upon integration of the cholesterol binding protein caveolin, these domains may also form small cave-like structures called caveolae. Emerging evidence suggests that the enhanced sphingomyelin content of these lipid domains make them potential substrate pools for sphingomyelinases to produce a high local concentration of ceramide. The subsequent formation of ceramide microdomains in the plasma membrane may be a critical factor in regulating downstream signalling through this lipid messenger.  相似文献   

13.
Sulfatides (galactosylceramidesulfates) are negatively charged glycosphingolipids that are important constituents of brain myelin membranes. These membranes are also highly enriched in galactosylceramide and cholesterol. It has been implicated that sulfatides, together with other sphingolipids, take part in lateral domain formation in biological membranes. This study was conducted to characterize the lateral phase behavior of N-palmitoyl-sulfatide in mixed bilayer membranes. Going from simple lipid mixtures with sulfatide as the only sphingolipid in a fluid matrix of POPC, to more complex membranes including other sphingolipids, we have examined 1) ordered domain formation with sulfatide, 2) sterol enrichment in such domains and 3) stabilization of the domains against temperature by the addition of calcium. Using two distinct phase selective fluorescent probes, trans-parinaric acid and cholestatrienol, together with a quencher in the fluid phase, we were able to distinguish between ordered domains in general and ordered domains enriched in sterol. We found that N-palmitoyl-sulfatide formed ordered domains when present as the only sphingolipid in a fluid phospholipid bilayer, but these domains did not contain sterol and their stability was unaffected by calcium. However, at low, physiologically relevant concentrations, sulfatide partitioned favorably into domains enriched in other sphingolipids and cholesterol. These domains were stabilized against temperature in the presence of divalent cations. We conclude that sulfatides are likely to affect the lateral organization of biomembranes.  相似文献   

14.
This review is focused on the formation of lateral domains in model bilayer membranes, with an emphasis on sphingolipids and their interaction with cholesterol. Sphingolipids in general show a preference for partitioning into ordered domains. One of the roles of cholesterol is apparently to modulate the fluidity of the sphingolipid domains and also to help segregate the domains for functional purposes. Cholesterol shows a preference for sphingomyelin over phosphatidylcholine with corresponding acyl chains. The interaction of cholesterol with different sphingolipids is largely dependent on the molecular properties of the particular sphingolipid in question. Small head group size clearly has a destabilizing effect on sphingolipid/cholesterol interaction, as exemplified by studies with ceramide and ceramide phosphoethanolamine. Ceramides actually displace sterol from ordered domains formed with saturated phosphatidylcholine or sphingomyelin. The N-linked acyl chain is known to be an important stabilizer of the sphingolipid/cholesterol interaction. However, N-acyl phosphatidylethanolamines failed to interact favorably with cholesterol and to form cholesterol-enriched lateral domains in bilayer membranes. Glycosphingolipids also form ordered domains in membranes but do not show a strong preference for interacting with cholesterol. It is clear from the studies reviewed here that small changes in the structure of sphingolipids alter their partitioning between lateral domains substantially.  相似文献   

15.
Detergent insoluble sphingolipid-cholesterol enriched 'raft'-like membrane microdomains have been implicated in a variety of biological processes including sorting, trafficking, and signaling. Mutant cells and knockout animals of sphingolipid biosynthesis are clearly useful to understand the biological roles of lipid components in raft-like domains. It is suggested that raft-like domains distribute in internal vacuolar membranes as well as plasma membranes. In addition to sphingolipid-cholesterol-rich membrane domains, recent studies suggest the existence of another lipid-membrane domain in the endocytic pathway. This domain is enriched with a unique phospholipid, lysobisphosphatidic acid (LBPA) and localized in the internal membrane of multivesicular endosome. LBPA-rich membrane domains are involved in lipid and protein sorting within the endosomal system. Possible interaction between sphingolipids and LBPA in sphingolipid-storage disease is discussed.  相似文献   

16.
This review is focused on the formation of lateral domains in model bilayer membranes, with an emphasis on sphingolipids and their interaction with cholesterol. Sphingolipids in general show a preference for partitioning into ordered domains. One of the roles of cholesterol is apparently to modulate the fluidity of the sphingolipid domains and also to help segregate the domains for functional purposes. Cholesterol shows a preference for sphingomyelin over phosphatidylcholine with corresponding acyl chains. The interaction of cholesterol with different sphingolipids is largely dependent on the molecular properties of the particular sphingolipid in question. Small head group size clearly has a destabilizing effect on sphingolipid/cholesterol interaction, as exemplified by studies with ceramide and ceramide phosphoethanolamine. Ceramides actually displace sterol from ordered domains formed with saturated phosphatidylcholine or sphingomyelin. The N-linked acyl chain is known to be an important stabilizer of the sphingolipid/cholesterol interaction. However, N-acyl phosphatidylethanolamines failed to interact favorably with cholesterol and to form cholesterol-enriched lateral domains in bilayer membranes. Glycosphingolipids also form ordered domains in membranes but do not show a strong preference for interacting with cholesterol. It is clear from the studies reviewed here that small changes in the structure of sphingolipids alter their partitioning between lateral domains substantially.  相似文献   

17.
To maintain cell membrane homeostasis, lipids must be dynamically redistributed during the formation of transport intermediates, but the mechanisms driving lipid sorting are not yet fully understood. Lowering sphingolipid concentration can reduce the bending energy of a membrane, and this effect could account for sphingolipid depletion along the retrograde pathway. However, sphingolipids and cholesterol are enriched along the anterograde pathway, implying that other lipid sorting mechanisms, such as protein-mediated sorting, can dominate. To characterize the influence of protein binding on the lipid composition of highly curved membranes, we studied the interactions of the B-subunit of Shiga toxin (STxB) with giant unilamellar vesicles containing its glycosphingolipid receptor [globotriaosylceramide (Gb3)]. STxB binding induced the formation of tubular membrane invaginations, and fluorescence microscopy images of these highly curved membranes were consistent with co-enrichment of Gb3 and sphingolipids. In agreement with theory, sorting was stronger for membrane compositions close to demixing. These results strongly support the hypothesis that proteins can indirectly mediate the sorting of lipids into highly curved transport intermediates via interactions between lipids and the membrane receptor of the protein.  相似文献   

18.
Rod and cone photoreceptor cyclic nucleotide-gated (CNG) channels play pivotal roles in phototransduction. This work investigates the functional significance of photoreceptor CNG channel association with membrane microdomains enriched in raft lipids, cholesterol and sphingolipids. The primary subunits of cone and rod CNG channels, CNGA3 and CNGA1, respectively, were heterologously expressed in HEK 293 cells, and channel activity was determined by ratiometric measurement of [Ca (2+)] i in response to cyclic guanosine monophosphate (cGMP) stimulation. CNGA3 was found to be largely insoluble following Triton X-100 extraction and cofractionationed with biochemically isolated membrane domains enriched in caveolin-1. Cofractionation of both natively expressed CNGA3 and CNGB1 (the modulatory subunit of the rod CNG channel) with the low buoyant density, caveolin-1-enriched membranes was also confirmed in mouse retinas. The functional significance of this association was established by the observed negative effects of depletion of raft lipids on the channel activity. Treatment with the cholesterol depleting agent, methyl-beta-cyclodextrin (MCD), significantly inhibited CNGA3 and CNGA1 activation in response to cGMP stimulation. MCD treatment lowered cellular cholesterol levels by approximately 45% without altering fatty acid composition, suggesting that the inhibition of channel activity by MCD treatment is not due to perturbation of other membrane lipids. Treatment with the sphingolipid biosynthesis inhibitor myriocin resulted in impaired activation and cytosolic redistribution of CNGA3, suggesting that the integrity of the membrane domains is critical for the channel cellular processing and plasma membrane localization. This study demonstrates the association of photoreceptor CNG channels with membrane domains enriched in raft lipids and indicates, for the first time, that raft lipids modulate the plasma membrane localization and functional activity of photoreceptor CNG channels.  相似文献   

19.
Cholesterol is believed to be an important component in compositionally distinct lipid domains in the cellular plasma membrane, which are referred to as lipid rafts. Insight into how cholesterol influences the interactions that contribute to plasma membrane organization can be acquired from model lipid membranes. Here we characterize the lipid mixing and phase behavior exhibited by (15)N-dilaurolyphosphatidycholine ((15)N-DLPC)/deuterated distearoylphosphatiylcholine (D(70)-DSPC) membranes with various amounts of cholesterol (0, 3, 7, 15 or 19mol%) at room temperature. The microstructures and compositions of individual membrane domains were determined by imaging the same membrane locations with both atomic force microscopy (AFM) and high-resolution secondary ion mass spectrometry (SIMS) performed with a Cameca NanoSIMS 50. As the cholesterol composition increased from 0 to 19mol%, the circular ordered domains became more elongated, and the amount of (15)N-DLPC in the gel-phase domains remained constant at 6-7mol%. Individual and micron-sized clusters of nanoscopic domains enriched in D(70)-DSPC were abundant in the 19mol% cholesterol membrane. AFM imaging showed that these lipid domains had irregular borders, indicating that they were gel-phase domains, and not non-ideally mixed lipid clusters or nanoscopic liquid-ordered domains.  相似文献   

20.
The external membrane leaflet plays a key role in the organization of the cell plasma membrane as a mosaic of ordered microdomains enriched in sphingolipids and cholesterol and of fluid domains. In this study, the thermotropic behavior and the topology of bilayers made of a phosphatidylcholine/sphingomyelin mixture, which mimicks the lipid composition of the external leaflet of renal brush-border membranes, were examined by differential scanning calorimetry and atomic force microscopy. In the absence of cholesterol, a broad phase separation process occurred where ordered gel phase domains of size varying from the mesoscopic to the microscopic scale, enriched in sphingomyelin, occupied half of the bilayer surface at room temperature. Increasing amounts of cholesterol progressively decreased the enthalpy of the transition and modified the topology of membranes domains up to a concentration of 33 mol % for which no membrane domains were detected. These results strongly suggest that, in membranes highly enriched in sphingolipids like renal and intestinal brush borders, there is a threshold close to the physiological concentration above which cholesterol acts as a suppressor rather than as a promoter of membrane domains. They also suggest that cholesterol depletion does not abolish the lateral heterogenity in brush-border membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号