首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During mammalian spermatogenesis, the diploid spermatogonia mature into haploid spermatozoa through a highly controlled process of mitosis, meiosis and post-meiotic morphological remodeling (spermiogenesis). Despite important progress made in this area, the molecular mechanisms underpinning this transformation are poorly understood. Our analysis of the expression and function of the putative serine–threonine kinase Fused (Fu) provides critical insight into key steps in spermatogenesis. In this report, we demonstrate that conditional inactivation of Fu in male germ cells results in infertility due to diminished sperm count, abnormal head shaping, decapitation and motility defects of the sperm. Interestingly, mutant flagellar axonemes are intact but exhibit altered periaxonemal structures that affect motility. These data suggest that Fu plays a central role in shaping the sperm head and controlling the organization of the periaxonemal structures in the flagellum. We show that Fu localizes to multiple tubulin-containing or microtubule-organizing structures, including the manchette and the acrosome–acroplaxome complex that are involved in spermatid head shaping. In addition, Fu interacts with the outer dense fiber protein Odf1, a major component of the periaxonemal structures in the sperm flagellum, and Kif27, which is detected in the manchette. We propose that disrupted Fu function in these structures underlies the head and flagellar defects in Fu-deficient sperm. Since a majority of human male infertility syndromes stem from reduced sperm motility and structural defects, uncovering Fu?s role in spermiogenesis provides new insight into the causes of sterility and the biology of reproduction.  相似文献   

3.
The perinuclear cytoskeleton of mammalian spermatids is thought to play a major role in nucleus-acrosome association and in shape changes of the head during spermiogenesis. To test these hypotheses acrosome-less spermatids in blind-sterile mutant mice were investigated for the development of the subacrosomal layer. Immunogold procedures were used for the detection of actin and calmodulin. In addition to various other abnormalities many acrosome-less round and elongating spermatids developed a subacrosomal layer with an actin and calmodulin distribution similar to that observed in normal spermatids. However, in mutant elongating spermatids the apical part of the nucleus was truncated and/or folded. The expected elongation and shaping of the nucleus only occurred in its caudal part associated with an hypertrophied and somewhat ectopic manchette. These abnormalities and those previously observed in mutant and experimental models indicated that the subacrosomal layer may form independently of the acrosome. It is suggested that the subacrosomal filamentous actin is a transitory scaffolding which might be involved in the assemblage of other proteins of the perinuclear cytoskeleton. However, by itself, this layer is not sufficient to ensure a normal shaping of the nucleus. Acrosome-nucleus interactions mediated by the subacrosomal layer seem necessary to shape the cranial spermatid head. The manchette appears to be involved only in the caudal nuclear shaping.  相似文献   

4.
Intraperitoneally administered procarbazine caused, among other features previously reported (Russell et al., 1983), specific defects in the acrosome of cap phase spermatids of the rat seminiferous epithelium. The effect of procarbazine was to fragment and eventually cause resorption of the acrosomes of a small number of steps 5–9 spermatids. Although the acrosome was lost, dose union of the leaflets of the nuclear envelope underlying the acrosomal sac was maintained as was the marginal fossa and acrosomal zonule. Spermatids at steps 8 and 9 of development, which had lost their acrosomes, showed nuclei which were eccentric within the cell—a feature which normally occurs at these steps of spermiogenesis in acrosome intact cells. Even without an acrosomal sac, the plasma membrane of these cells (in stage VIII) became orientated to the region of the nuclear membrane which would have underlaid the acrosome. Although abundant, Sertoli ectoplasmic specialization did not become aligned with the spermatid head. The spermatid failed to become orientated within the seminiferous epithelium and failed to enter the crypts within the Sertoli cell as usually occurs during the elongation process. Thus, the presence of an acrosome is not likely related to the formation of an eccentric nucleus or the alignment of the surface of the nucleus which would normally underlay the acrosome with the cell's plasma membrane (internal alignment). The presence of an acrosome may be related to the alignment of the spermatid head with the ectoplasmic specialization, which in turn may influence the orientation and positioning of the late spermatids within the seminiferous epithelium (external alignment) and their position within recesses of the Sertoli cell. This study also suggests a role for the manchette in the process of elongation of the spermatid.  相似文献   

5.
Spermiogenesis, in particular the head differentiation of Diplometopon zarudnyi, was studied at the ultrastructural level by Transmission Electron Microscope (TEM). The process includes acrosomal vesicle development, nuclear elongation, chromatin condensation and exclusion of excess cytoplasm. In stage I, the proacrosomal vesicle occurs next to a shallow fossa of the nucleus, and a dense acrosomal granule forms beneath it. This step commences with an acrosome vesicle forming from Golgi transport vesicles; simultaneously, the nucleus begins to move eccentrically. In stage II, the round proacrosomal vesicle is flattened by projection of the nuclear fossa, and the dense acrosomal granule diffuses into the vesicle as the fibrous layer forms the subacrosomal cone. Circular manchettes surrounded by mitochondria develop around the nucleus, and the chromatin coagulates into small granules. The movement of the nucleus causes rearrangement of the cytoplasm. The nucleus has uniform diffuse chromatin with small indices of heterochromatin. The subacrosome space develops early, enlarges during elongation, and accumulates a thick layer of dark staining granules. In stage III, the front of the elongating nucleus protrudes out of the spermatid and is covered by the flat acrosome; coarse granules replace the small ones within the nucleus. One endonuclear canal is present where the perforatorium resides. In stage IV, the chromatin concentrates to dense homogeneous phase. The circular manchette is reorganized longitudinally. The Sertoli process covers the acrosome and the residues of the cytoplasmic lobes are removed. In stage V, the sperm head matures.  相似文献   

6.
Nuclear shaping is a critical event during sperm development as demonstrated by the incidence of male infertility associated with abnormal sperm ad shaping. Herein, we demonstrate that mouse and rat spermatids assemble in the subacrosomal space a cytoskeletal scaffold containing F-actin and Sak57, a keratin ortholog. The cytoskeletal plate, designated acroplaxome, anchors the developing acrosome to the nuclear envelope. The acroplaxome consists of a marginal ring containing keratin 5 10-nm-thick filaments and F-actin. The ring is closely associated with the leading edge of the acrosome and to the nuclear envelope during the elongation of the spermatid head. Anchorage of the acroplaxome to the gradually shaping nucleus is not disrupted by hypotonic treatment and brief Triton X-100 extraction. By examining spermiogenesis in the azh mutant mouse, characterized by abnormal spermatid/sperm head shaping, we have determined that a deformity of the spermatid nucleus is restricted to the acroplaxome region. These findings lead to the suggestion that the acroplaxome nucleates an F-actin-keratin-containing assembly with the purpose of stabilizing and anchoring the developing acrosome during spermatid nuclear elongation. The acroplaxome may also provide a mechanical planar scaffold modulating external clutching forces generated by a stack of Sertoli cell F-actin-containing hoops encircling the elongating spermatid nucleus.  相似文献   

7.
Hinsch GW 《Tissue & cell》1993,25(5):743-749
With the onset of spermiogenesis, many changes become apparent in the crayfish spermatid during its transition to mature sperm. The nucleus passes through a series of stages, excess cytoplasm is removed, the acrosome develops, and nuclear arms form and become wrapped around the sperm prior to its enclosure in a capsule. Changes are also apparent in the Sertoli cells surrounding the germ cells in the crayfish testis. The amount of cytoplasm of individual Sertoli cells appears to increase in quantity and changes in the intracellular organelles become apparent. As spermiogenesis commences, the cytoplasm along one side of Sertoli cells adjacent to the spermatids is devoid of obvious organelles. Numerous finger/like projections of Sertoli cytoplasm penetrate into the spermatid and appear to isolate portions of the sperm cytoplasm. During later stages of spermiogenesis, several vesicles in the Sertoli cells which appear to contain droplets of this isolated sperm cytoplasm. appear to undergo lytic changes, As the amount of cytoplasm of the spermatid is reduced, contact is maintained between the spermatid and Sertoli cell in the area of the acrosome. The nuclear arms of the sperm extend into the Sertoli cell during their formation and later become wrapped around the acrosomal area of the sperm. At this time, very little space exists between the Sertoli cell and its many sperm. Large vesicles of electron dense material appear to be released by the Sertoli cells into the space between the sperm and Sertoli cell. This material completely surrounds the sperm and forms the sperm capsule. Spermiation involves the gradual dissolution of the points of contact between the sperm capsule and the Sertoli cell.  相似文献   

8.
9.
The perinuclear theca (PT) is a unique cytoskeletal mammalian sperm structure that surrounds the nucleus. Using negatively stained whole-mount preparations, we detected a PT substructure on the apical region of the postacrosomal theca layer of guinea pig spermatozoa. The PT substructure consists of projections resembling eyelashes, circling the sperm head. The PT substructure was absent in caput but appeared in corpus epidydimal spermatozoa. The same finding was observed in sheep and rabbit spermatozoa. The PT substructure persisted in capacitating spermatozoa, but was absent in acrosome reacted gametes. No labeling of the PT substructure was observed by the immunogold technique using antibodies against calmodulin, spectrin, myosin, and vimentin. A 34-kDa band appeared as a possible PT substructure protein. The PT was positive to the antibodies and the presence of the above-mentioned proteins was confirmed by Western blot. F-actin gold label was observed in mature spermatozoa on the PT substructure base zone. Results using cytochalasin D and phalloidin point to a role of F-actin in the PT substructure formation/disassembly processes. Ca(2+), bicarbonate, and proteases might be involved in the mechanism of the substructure disassembly. Novel PT morphological changes occurring during sperm epidydimal maturation and at acrosome reaction, respectively, are discussed in relation to the PT stability and function.  相似文献   

10.
Failure of acrosome assembly in a male sterile mouse mutant   总被引:4,自引:0,他引:4  
Blind-sterile (bs) is a new autosomal recessive mutation of the mouse that causes sterility in males and bilenticular cataracts in both sexes. Sterile bs/bs males exhibited normal copulatory behavior, reduced testis weights, and few or no epididymal sperm. The effects of the bs mutation on spermatogenesis were examined by light and electron microscopy. All sperm present were morphologically abnormal with aberrant head shape. Adult bs/bs testes were characterized by germ cell depletion that resulted in profound alterations of the typical germ cell associations. Only 30% of the tubules contained relatively normal germ cell associations while 39% were extensively depleted, showing only Sertoli cells or Sertoli cells and spermatogonia. The most striking effect of the bs mutation on spermiogenesis was the failure of acrosome formation. Disorganized proacrosomic granules were detected up to step 3 of spermiogenesis by both periodic acid-Schiff staining and ultrastructural analysis. In over 3500 spermatids scored past steps 3-4 of spermiogenesis not a single acrosomal cap or fully developed acrosome was detected. Electron microscopy revealed a thickening of the nuclear envelope of elongating spermatids in the region where the acrosome should have been located; however, no acrosome was present. Chromatin condensation and nuclear elongation did occur in these acrosomeless spermatids, suggesting that caudal growth of the acrosome is not a mechanistic factor in these events.  相似文献   

11.
Mammalian spermatogenesis involves drastic morphological changes leading to the development of the mature sperm. Sperm development includes formation of the acrosome and flagellum, translocation of nucleus-acrosome to the cell surface, and condensation and elongation of the nucleus. In addition, spermatogenic cell progenies differentiate as cohorts of units interconnected by intercellular bridges. Little is known about the structural components involved in the establishment of conjoined spermatogenic cells and the mechanism of nuclear shaping of the male gamete. We identified two isoforms of delta-tubulin and found that the long isoform is predominantly expressed in testis, while the short isoform is expressed in all tissues examined. We also found that delta-tubulin forms intercellular bridges conjoining sister spermatogenic cells. In addition, delta-tubulin is a component of the perinuclear ring of the manchette, which acts on translocation and elongation of the nucleus. Furthermore, small rings clearly distinct from the intercellular bridges, which might mature to perinuclear ring of the manchette in later stages of spermatogenesis, were detected on the cell surface of round spermatids. These results suggest that delta-tubulin is a component of two types of ring, the intercellular bridges and the perinuclear rings, which may be involved in morphological changes of spermatid to mature sperm.  相似文献   

12.
Spermiogenesis in Xenopus laevis: from late spermatids to spermatozoa   总被引:1,自引:0,他引:1  
Spermatogenesis is a complex morphogenetic process in which microfilaments and microtubules have been shown to play an important role. The last steps of Xenopus spermatogenesis, i.e., the corkscrew shaping of the sperm head, have been followed to study actin and microtubule distribution by conventional and immunoelectron microscopy. During sperm head morphogenesis, actin is absent in the elongating spermatids, but it is present in the Sertoli cells where results localized at the periphery of their cytoplasm that surrounds the developing germ cells. Sertoli cell actin and microtubules may assist the elongation and the shaping of the spermatids and function in maintaining the Sertoli-spermatid association.  相似文献   

13.
Structural features of the mouse and rat manchette and the role of the manchette in shaping the spermatid nucleus were investigated. Rod-like elements about 10 nm in diameter and 40-70 nm in length were seen linking the innermost microtubules of the manchette and the outer leaflet of the nuclear envelope in step 8 through step 11 rat and mouse spermatids that either had been routinely fixed for electron microscopy or had been isolated and detergent extracted. Rod-like linkers were also seen joining the nuclear ring to the plasma membrane and nuclear envelope. These linkers may ensure that under normal conditions the manchette remains in a defined position relative to these membranous components. A variety of compounds (taxol, cytoxan, and 5-fluorouracil) were found to perturb the manchette and to affect nuclear shaping. In addition, sys and azh mutant mice were used to determine the consequences of defective manchette formation. These genetic conditions and chemical treatments either produced manchettes that were not in their normal position (azh, sys, and taxol) and/or caused the manchette to appear abnormal (azh, sys, cytoxan, 5-fluorouracil, and taxol), and all resulted in a deformation of the step 9-11 spermatid nucleus. In all instances where the manchette was present, either in normal or ectopic locations, the sectioned nuclear envelope was parallel to the long axis of the microtubules of the manchette. In general, areas of the nuclear envelope where the manchette was not present, or where it was expected to be present but was not, were rounded (normal animals, sys, cytoxan). In addition, there are indications using certain compounds (cytoxan and 5-fluorouracil) as well as in the azh and sys mouse that the manchette may exert pressure to deform the nucleus. It is suggested that the rod-like linkages of the manchette ensure that the nuclear envelope remains at a constant distance from the manchette microtubules and that this is a major factor acting to impart nuclear shape changes on a region of the head caudal to the acrosome during the early elongation phase of spermiogenesis. The manchette microtubules, which are also known to be linked together, may act as a scaffold to deform this part of the nucleus from its spherical shape, perhaps in concert with forces initiated by other structural elements. Evidence from sys animals indicates that structural elements, such as the acrosomal complex over the anterior head (acrosome-actin-nuclear envelope), may affect nuclear shaping over the acrosome-covered portion of the spermatid head.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Abnormal manchette development in spermatids of azh/azh mutant mice   总被引:4,自引:0,他引:4  
A study of manchette development during spermiogenesis in azh/azh mutant mice was carried out by thin-section transmission electron microscopy with the goal of determining which of the initial steps in spermatid development are aberrant. In the homozygous mutant, spermatogenesis was quantitatively normal; but 100% of the sperm nuclei produced had abnormal shapes. The first defect, observed in steps 8-9, was the abnormal positioning of many manchette microtubules. These microtubules were directed towards regions of the plasma membrane not normally associated with manchette formation, in addition to being located at the caudal rim of the acrosome in the normal region of manchette formation. At steps 10-12, sheets of manchette microtubules were often in ectopic positions along the plasma membrane, rather than in association with the nuclear membrane as well. The fine structural appearance of the manchette was generally normal; the defect appeared to be in its positioning within the cell. In many step 8-10 spermatids nuclear invaginations and evaginations were observed, always associated with irregularities in the position of some of the manchette microtubules; these illustrate the capacity of manchette microtubules to deform nuclear shape. The nuclear irregularities remained throughout spermiogenesis. These observations are consistent with the hypothesis that the manchette is involved in at least some aspects of sperm nuclear shaping and that the improper positioning of manchette formation is a likely candidate for the primary abnormality resulting from a defective allele at the azh locus.  相似文献   

15.
16.
Male infertility affects at least 5% of reproductive age males. The most common pathology is a complex presentation of decreased sperm output and abnormal sperm shape and motility referred to as oligoasthenoteratospermia (OAT). For the majority of OAT men a precise diagnosis cannot be provided. Here we demonstrate that leucine-rich repeats and guanylate kinase-domain containing isoform 1 (LRGUK-1) is required for multiple aspects of sperm assembly, including acrosome attachment, sperm head shaping and the initiation of the axoneme growth to form the core of the sperm tail. Specifically, LRGUK-1 is required for basal body attachment to the plasma membrane, the appropriate formation of the sub-distal appendages, the extension of axoneme microtubules and for microtubule movement and organisation within the manchette. Manchette dysfunction leads to abnormal sperm head shaping. Several of these functions may be achieved in association with the LRGUK-1 binding partner HOOK2. Collectively, these data establish LRGUK-1 as a major determinant of microtubule structure within the male germ line.  相似文献   

17.
The tubulin-containing axoneme and manchette develop consecutively during mammalian spermiogenesis. The nature of their molecular components and developmental sequence are not completely known. The azh/azh (for abnormal sperm headshape) mouse mutant is an ideal model for analyzing tubulin isotypes and microtubule-associated proteins of the manchette and axoneme in light of a potential role of the manchette in the shaping of the sperm head and formation of the tail. We have searched for possible differences in tubulin isotype variants in fractionated manchettes and axonemes of wildtype and azh/azh mutant mice using isotype-specific tubulin antibodies as immunoprobes. Manchettes from wild-type and azh/azh mutant mouse spermatids were fractionated from spermatogenic stage-specific seminiferous tubules and axonemes were isolated from epididymal sperm. We have found that: (1) Fractionated manchettes of azh/azh mutants are longer than in wild-type mice; (2) Manchette and sperm tail axonemes display a remarkable variety of posttranslationally modified tubulins (acetylated, glutamylated, tyrosinated, alpha-3/7 tubulins). Acetylated tubulin was more abundant in manchette than in axonemes; (3) An acidic 62 kDa protein was identified as the main component of the perinuclear ring of the manchette in wild-type and azh/azh mice; (4) Bending and looping of the mid piece of the tail of azh/azh sperm, accompanied by a dislocation of the connecting piece from head attachment sites, were visualized by phase-contrast, immunofluorescence and transmission electron microscopy in about 35% of spermatids/sperm; and (5) A lasso-like tail configuration was predominant in epididymal sperm of azh/azh mutants. We speculate that spermatid and sperm tail abnormalities in the azh/azh mutant could reflect structural and/or assembly deficiencies of peri-axonemal proteins responsible for maintaining a stiffened tail during spermiogenesis and sperm maturation.  相似文献   

18.
The perinuclear theca (PT) is an important accessory structure of the sperm head, yet its biogenesis is not well defined. To understand the developmental origins of PT-derived somatic histones during spermiogenesis, we used affinity-purified antibodies against somatic-type histones H3, H2B, H2A, and H4 to probe bovine testicular tissue using three different immunolocalization techniques. While undetectable in elongating spermatid nuclei, immunoperoxidase light microscopy showed all four somatic histones remained associated to the caudal head region of spermatids from steps 11 to 14 of the 14 steps in bovine spermiogenesis. Immunogold electron microscopy confirmed the localization of somatic histones on two nonnuclear structures, namely transient manchette microtubules of step-9 to step-11 spermatids and the developing postacrosomal sheath of step-13 and -14 spermatids. Immunofluorescence demonstrated somatic histone immunoreactivity in the developing postacrosomal sheath, and on anti-beta-tubulin decorated manchette microtubules of step-12 spermatids. Focal antinuclear pore complex labeling on the base of round spermatid nuclei was detected by electron microscopy and immunofluorescence, occurring before the nucleoprotein transition period during spermatid elongation. This indicated that, if nuclear histone export precedes their degradation, this process could only occur in this region, thereby questioning the proposed role of the manchette in nucleocytoplasmic trafficking. Somatic histone immunodetection on the manchette during postacrosomal sheath formation supports a role for the manchette in PT assembly, signifying that some PT components have origins in the distal spermatid cytoplasm. Furthermore, these findings suggest that somatic histones are de novo synthesized in late spermiogenesis for PT assembly.  相似文献   

19.
Acrosomeless round-headed spermatozoa from three men were studied under electron microscopy and indirect immunofluorescene microscopy using the anti-calicin antibody that recognizes a basic protein of the sperm perinuclear theca (Longo et al., 1987). Electron microscopy revealed the existence of anomalies of the nuclear envelope, the nuclear matrix underlying the nuclear envelope, and the perinuclear layer. The absence of sperm labeling with the anti-calicin antibody confirmed that the formation of the perinuclear theca was impaired. Data obtained from both mature spermatozoa and ejaculated spermatids suggest that i) round-headed sperm head anomalies result from a failure of differentiation of the sperm-specific skeletal complex related to the nucleus, and ii) the acrosome spreading over the nucleus, the nuclear elongation and the post-acrosomal sheath formation are dependent on such nuclear-perinuclear differentiations. In contrast, chromatin condensation, cytokinesis and some events of the acrosomal shaping appear not to depend on those nuclear-related differentiations. The possible processes allowing the maintenance of the sperm head structures and their subsequent morphogenesis are discussed.  相似文献   

20.
The sperm of Spio setosa (Polychaeta, Spionidae) are known to be very unusual in form; here, spermiogenesis and the structure of the spermatozoon in this species are described by transmission electron microscopy. While spermiogenesis is similar to that described for many other polychaetes, two notable exceptions to this process include the synthesis of abundant ring‐shaped and tubular, membrane‐bounded cytoplasmic inclusions in the midpiece, and the differentiation of a spirally shaped sperm head. Spermatids develop as free‐floating tetrads in the male's coelom. A microtubular manchette does not develop during chromatin condensation and nuclear elongation, and the spiral acrosome forms as a single Golgi‐derived vesicle that migrates anteriorly to become housed in a deep anterior nuclear fossa. Early in spermiogenesis, numerous Golgi‐derived, membrane‐bounded cytoplasmic inclusions appear in the cytoplasm; these ultimately occupy the sperm midpiece only. The mature spermatozoon in the male has a 15‐μm‐long head consisting of a nucleus coiled like a spring and a spiral acrosome with differentiated substructure, the posterior two thirds of which sits in an anterior nuclear fossa. The midpiece is wider than the rest of the spermatozoon and contains 9–10 spherical mitochondria surrounding the two centrioles, as well as numerous membrane‐bounded conoid and tubular cytoplasmic inclusions. The axoneme has a 9 + 2 arrangement of microtubules. By contrast, stored sperm in the female's seminal receptacles have lost the midpiece inclusions but contain an abundance of glycogen. The function of the midpiece inclusions remains unresolved, and the significance of their absence in stored sperm within the seminal receptacle and the appearance of midpiece glycogen stores remains unclear and requires additional investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号