首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phototactic behavior of individual cells of the cyanobacterium Synechocystis sp. strain PCC6803 was studied with a glass slide-based phototaxis assay. Data from fluence rate-response curves and action spectra suggested that there were at least two light input pathways regulating phototaxis. We observed that positive phototaxis in wild-type cells was a low fluence response, with peak spectral sensitivity at 645 and 704 nm. This red-light-induced phototaxis was inhibited or photoreversible by infrared light (760 nm). Previous work demonstrated that a taxD1 mutant (Cyanobase accession no. sll0041; also called pisJ1) lacked positive but maintained negative phototaxis. Therefore, the TaxD1 protein, which has domains that are similar to sequences found in both bacteriophytochrome and the methyl-accepting chemoreceptor protein, is likely to be the photoreceptor that mediates positive phototaxis. Wild-type cells exhibited negative phototaxis under high-intensity broad-spectrum light. This phenomenon is predominantly blue light responsive, with a maximum sensitivity at approximately 470 nm. A weakly negative phototactic response was also observed in the spectral region between 600 and 700 nm. A deltataxD1 mutant, which exhibits negative phototaxis even under low-fluence light, has a similar action maximum in the blue region of the spectrum, with minor peaks from green to infrared (500 to 740 nm). These results suggest that while positive phototaxis is controlled by the red light photoreceptor TaxD1, negative phototaxis in Synechocystis sp. strain PCC6803 is mediated by one or more (as yet) unidentified blue light photoreceptors.  相似文献   

2.
3.
4.
Many photosynthetic microorganisms have evolved the ability to sense light quality and/or quantity and can steer themselves into optimal conditions within the environment. Phototaxis and gliding motility in unicellular cyanobacteria require type IV pili, which are multifunctional cell surface appendages. Screens for cells exhibiting aberrant motility uncovered several non-motile mutants as well as some that had lost positive phototaxis (consequently, they were negatively phototactic). Several negatively phototactic mutants mapped to the tax1 locus, which contains five chemotaxis-like genes. This locus includes a gene that encodes a putative photoreceptor (TaxD1) for positive phototaxis. A second chemotaxis-like cluster (tax3 locus) appears to be involved in pilus biogenesis. The biosynthesis and regulation of type IV pilus-based motility as well as the communication between the pilus motor and photosensory molecules appear to be complex and tightly regulated. Furthermore, the discovery that cyclic AMP and novel gene products are necessary for phototaxis/motility suggests that there might be additional levels of communication and signal processing.  相似文献   

5.
Wild-type cells of Halobacterium cutirubrum show phototaxis. In negative phototaxis the cells are repelled by blue-near ultraviolet light, and in positive phototaxis the cells are attracted to green-red light. The extent of the responses are measured by monitoring the changes in the reversal frequency of the swimming direction of cells using a computer-linked automated method as described previously (Takahashi, T., and Y. Kobatake, 1982, Cell. Struct. Funct., 7:183-192). When the intensity of the background light (illumination for the observation) was dramatically reduced, the sensitivity of the cells to the repellent light decreased markedly. This result has been previously explained by Bogomolni and Spudich (1982, Proc. Natl. Acad. Sci. USA, 79:6250-6254), who proposed that the photoreceptor for negative phototaxis is the long-lifetime intermediate in the photocycle of slow-rhodospin. The behavioral response in the negative phototaxis is dependent upon the intensity of the actinic light and the background light. This agrees quantitatively with our model based on the aforementioned hypothesis.  相似文献   

6.
A behavior generally comprises multiple processes. Analyzing these processes helps to reveal more characteristics of the behavior. In this report, light/dark choice-based Drosophila larval phototaxis is analyzed with a simplistic mathematical model to reveal a fast phase and a slow phase response that are involved. Larvae of the strain w1118, which is photophobic in phototaxis tests, prefer darkness to light in an immediate light/dark boundary passing test and demonstrate a significant reduction in motility in the dark condition during phototaxis tests. For tim01 larvae, which show neutral performance in phototaxis tests, larvae unexpectedly prefer light to darkness in the immediate light/dark boundary passing test and demonstrate no significant motility alteration in the dark condition. It is proposed that Drosophila larval phototaxis is determined by a fast phase immediate light/dark choice and an independent slow phase light/dark-induced motility alteration that follows.  相似文献   

7.
Usher syndrome type 1B is a combined deaf-blindness condition caused by mutations in the MYO7A gene. Loss of functional myosin VIIa in the retinal pigment epithelia (RPE) and/or photoreceptors leads to blindness. We evaluated the impact of subretinally delivered UshStat, a recombinant EIAV-based lentiviral vector expressing human MYO7A, on photoreceptor function in the shaker1 mouse model for Usher type 1B that lacks a functional Myo7A gene. Subretinal injections of EIAV-CMV-GFP, EIAV-RK-GFP (photoreceptor specific), EIAV-CMV-MYO7A (UshStat) or EIAV-CMV-Null (control) vectors were performed in shaker1 mice. GFP and myosin VIIa expression was evaluated histologically. Photoreceptor function in EIAV-CMV-MYO7A treated eyes was determined by evaluating α-transducin translocation in photoreceptors in response to low light intensity levels, and protection from light induced photoreceptor degeneration was measured. The safety and tolerability of subretinally delivered UshStat was evaluated in macaques. Expression of GFP and myosin VIIa was confirmed in the RPE and photoreceptors in shaker1 mice following subretinal delivery of the EIAV-CMV-GFP/MYO7A vectors. The EIAV-CMV-MYO7A vector protected the shaker1 mouse photoreceptors from acute and chronic intensity light damage, indicated by a significant reduction in photoreceptor cell loss, and restoration of the α-transducin translocation threshold in the photoreceptors. Safety studies in the macaques demonstrated that subretinal delivery of UshStat is safe and well-tolerated. Subretinal delivery of EIAV-CMV-MYO7A (UshStat) rescues photoreceptor phenotypes in the shaker1 mouse. In addition, subretinally delivered UshStat is safe and well-tolerated in macaque safety studies These data support the clinical development of UshStat to treat Usher type 1B syndrome.  相似文献   

8.
Light-dependent chloroplast movements are an actin-dependent cellular response to changes in the light environment that help plants maximize photosynthetic potential and reduce photodamage. Over a dozen proteins are known to be required for normal chloroplast movements, but the molecular mechanisms regulating the transformation of light perception into chloroplast motility are not fully understood. Here, we show that in Arabidopsis (Arabidopsis thaliana) the actin-bundling plasma membrane-associated proteins THRUMIN1, PLASTID MOVEMENT IMPAIRED1 (PMI1), and KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT1 (KAC1) interact through the 14-3-3 proteins KAPPA and OMEGA. We also show that the interaction of PMI1 with 14-3-3 KAPPA and OMEGA is regulated by blue light activation of the Phototropin2 photoreceptor. Live-cell confocal microscopy revealed light-induced dynamic changes in the cellular localizations of PMI1 and KAC1. In particular, PMI1 was relocated away from irradiated areas of the plasma membrane in less than a minute after blue light exposure, consistent with PMI1 playing a critical role in initiating light-dependent chloroplast movements. We present a modified conceptual model for high light-dependent chloroplast movements in which PMI1 acts as the mobile signal that initiates a coordinated sequence of changes in protein–protein and protein–plasma membrane interactions that initiate the chloroplast movement response and determine where in the cell chloroplasts are able to anchor to the plasma membrane.

High light intensity-induced chloroplast movements in Arabidopsis thaliana mesophyll cells involves protein interaction changes and requires movement of the protein PMI1 from the plasma membrane.  相似文献   

9.
The ascidian larva has a pigmented ocellus comprised of a cup-shaped array of approximately 30 photoreceptor cells, a pigment cell, and three lens cells. Morphological, physiological and molecular evidence has suggested evolutionary kinship between the ascidian larval photoreceptors and vertebrate retinal and/or pineal photoreceptors. Rx, an essential factor for vertebrate photoreceptor development, has also been suggested to be involved in the development of the ascidian photoreceptor cells, but a recent revision of the photoreceptor cell lineage raised a crucial discrepancy between the reported expression patterns of Rx and the cell lineage. Here, we report spatio-temporal expression patterns of Rx at single-cell resolution along with mitotic patterns up to the final division of the photoreceptor-lineage cells in Ciona. The expression of Rx commences in non-photoreceptor a-lineage cells on the right side of the anterior sensory vesicle at the early tailbud stage. At the mid tailbud stage, Rx begins to be expressed in the A-lineage photoreceptor cell progenitors located on the right side of the posterior sensory vesicle. Thus, Rx is specifically but not exclusively expressed in the photoreceptor-lineage cells in the ascidian embryo. Two cis-regulatory modules are shown to be important for the photoreceptor-lineage expression of Rx. The cell division patterns of the photoreceptor-lineage cells rationally explain the generation of the cup-shaped structure of the pigmented ocellus. The present findings demonstrate the complete cell lineage of the ocellus photoreceptor cells and provide a framework elucidating the molecular and cellular mechanisms of photoreceptor development in Ciona.  相似文献   

10.
11.
Aberrant cell migration leads to the dispersal of malignant cells. The ubiquitous lipid mediator lysophosphatidic acid (LPA) modulates cell migration and is implicated in tumor progression. Yet, the signaling cascades that regulate LPA's effect on cell motility remain unclear. Using time-lapse imaging and quantitative analyses, we studied the role of signaling cascades that act downstream of LPA on the motility of MCF10CA1a breast cancer cells. We found that LPA alters cell motility via two major signaling pathways. The Rho/ROCK signaling cascade is the predominant pathway that increases E-Cadherin containing cell–cell adhesions and cortical arrangement of actomyosin to promote slow, directional, spatially coherent and temporally consistent movement. In contrast, Gαi/o- and Gαq/11-dependent signaling cascades lessen directionality and support the independent movement of cells. The net effect of LPA on breast cancer cell migration therefore results from the integrated signaling activity of the Rho/ROCK and Gαi/o- and Gαq/11-dependent pathways, thus allowing for a dynamic migratory response to changes in the cellular or microenvironmental context.  相似文献   

12.
Peter Hegemann 《Planta》1997,203(3):265-274
Flagellate green algae such as Chlamydomonas and related genera are guided by their eyes to places where light conditions are optimal for photosynthetic growth. These eyes constitute the simplest and most common visual system found in nature. The eyes contain optics, photoreceptors and the elementary components of a signal-transduction chain. Rhodopsin serves as the photoreceptor, as it does in animal vision. Upon light stimulation, its all-trans-retinal chromophore isomerizes into 13-cis and activates a photoreceptor channel which leads to a rapid Ca2+ influx into the eyespot region. At low light levels, the depolarization activates small flagellar currents which induce in both flagella small but slightly different beating changes resulting in distinct directional changes. In continuous light, Ca2+ fluxes serve as the molecular basis for phototaxis. In response to flashes of higher energy the larger photoreceptor currents trigger a massive Ca2+ influx into the flagella which causes the well-known phobic response. The identification of proteins contributing to this signalling system has just begun with the isolation and cloning of the opsins from Chlamydomonas and Volvox. These plant opsins are highly charged, are not typical seven-helix receptors, and are believed to form a protein complex with the photoreceptor channel. In Spermatozopsis, a G-protein has been found which interacts either directly with the rhodopsin or with the rhodopsin-ion channel complex. By using insertional mutagenesis, genes coding for proteins that are involved in signalling have been tagged. One of them is connected to the flagellar channel and crucial for the flagellar action potential. Elucidation of photoreception in flagellated algae will provide deeper insight into the development of visual systems, starting from single-celled organisms and moving up through higher animals. Received: 10 March 1997 / Accepted: 18 April 1997  相似文献   

13.
Mutant derivatives of Halobacterium halobium previously isolated by using a procedure that selected for defective phototactic response to white light were examined for an array of phenotypic characteristics related to phototaxis and chemotaxis. The properties tested were unstimulated swimming behavior, behaviorial responses to temporal gradients of light and spatial gradients of chemoattractants, content of photoreceptor pigments, methylation of methyl-accepting taxis proteins, and transient increases in rate of release of volatile methyl groups induced by tactic stimulation. Several distinct phenotypes were identified, corresponding to a mutant missing photoreceptors, a mutant defective in the methyltransferase, a mutant altered in control of the methylesterase, and mutants apparently defective in intracellular signaling. All except the photoreceptor mutant were defective in both chemotaxis and phototaxis.  相似文献   

14.
The eyeless C. elegans exhibits robust phototaxis behavior in response to short-wavelength light, particularly UV light. C. elegans senses light through LITE-1, a unique photoreceptor protein that belongs to the invertebrate taste receptor family. However, it remains unclear how LITE-1 is regulated. Here, we performed a forward genetic screen for genes that when mutated suppress LITE-1 function. One group of lite-1 suppressors are the genes required for producing the two primary antioxidants thioredoxin and glutathione, suggesting that oxidization of LITE-1 inhibits its function. Indeed, the oxidant hydrogen peroxide (H2O2) suppresses phototaxis behavior and inhibits the photoresponse in photoreceptor neurons, whereas other sensory behaviors are relatively less vulnerable to H2O2. Conversely, antioxidants can rescue the phenotype of lite-1 suppressor mutants and promote the photoresponse. As UV light illumination generates H2O2, we propose that upon light activation of LITE-1, light-produced H2O2 then deactivates LITE-1 to terminate the photoresponse, while antioxidants may promote LITE-1’s recovery from its inactive state. Our studies provide a potential mechanism by which H2O2 and antioxidants act synergistically to regulate photosensation in C. elegans.  相似文献   

15.
Light stimulation of locust (Schistocerca gregaria) photoreceptors results in an actin-dependent translocation of mitochondria towards the photoreceptive microvilli and an antagonistic movement of endoplasmic reticulum towards the cell body. Using immunocytochemical techniques, we have tried to identify myosin-like motors that may drive the light-induced organelle motility. A monoclonal antibody against the motor domain of Acanthamoeba myosin identifies a prominent 110-kDa protein on Western blots of locust retina. Cross-reactivity with two polyclonal anti-myosin antibodies and a monoclonal anti-myosin-I-antibody, together with ATP-dependent binding to actin filaments, provides evidence that the 110-kDa protein is an unconventional myosin. By indirect immunofluorescence, the 110-kDa protein has been localized to both photoreceptors and pigment cells within the retina. In the photoreceptor cells, the 110-kDa protein is bound to the surface of mitochondria. This putative unconventional myosin may thus be a motor protein involved in the light-induced translocation of mitochondria in photoreceptors.  相似文献   

16.
All 3 photoreceptor types in the compound eye of Drosophila can evoke positive phototaxis. Here we describe input from R1–6 receptors which are very sensitive. Previous reports in this series of studies described input from R7 and R8, the other less sensitive receptors. Here we studied fast-walking phototaxis using extremely dim stimuli. We also studied input from the simple ocellar eyes. Thus, we can now summarize a complete synthesis of inputs and interactions among all compound eye and ocellar receptor types. Receptor-deficient mutants were used to establish receptor-specific input. Two other findings are presented: (1) eye colour pigments affect the spectral sensitivity for phototaxis; and (2) the ocelli interact to facilitate input from the compound eye receptor types. Possible mechanisms of receptor interaction are discussed in the light of these findings of positive input from all photoreceptor types in Drosophila.  相似文献   

17.
SYNOPSIS. The shock reaction of Euglena gracilis strain Z to a sudden increase in light intensity (the “direct photophobic response”) was examined by high speed cinemicrography. The response is expressed as a turning reaction toward the dorsal side of the cell, after a transduction time of 0.1–0.5 sec after the onset of stimulation. Transduction times, turning rates, and flagellar beat frequencies were measured by analyzing the filmed sequences. The experimental data are consistent with a mechanism of directional homeostasis in negative phototaxis that is based upon shading of the photoreceptor by the cell's posterior end.  相似文献   

18.
In vivo images of human cone photoreceptors have been shown to vary in their reflectance both spatially and temporally. While it is generally accepted that the unique anatomy and physiology of the photoreceptors themselves drives this behavior, the exact mechanisms have not been fully elucidated as most studies on these phenomena have been limited to the human retina. Unlike humans, animal models offer the ability to experimentally manipulate the retina and perform direct in vivo and ex vivo comparisons. The thirteen-lined ground squirrel and northern tree shrew are two emerging animal models being used in vision research. Both models feature cone-dominant retinas, overcoming a key limitation of traditional rodent models. Additionally, each possesses unique but well-documented anatomical differences in cone structure compared to human cones, which can be leveraged to further constrain theoretical models of light propagation within photoreceptors. Here we sought to characterize the spatial and temporal reflectance behavior of cones in these species. Adaptive optics scanning light ophthalmoscopy (AOSLO) was used to non-invasively image the photoreceptors of both species at 5 to 10 min intervals over the span of 18 to 25 min. The reflectance of individual cone photoreceptors was measured over time, and images at individual time points were used to assess the variability of cone reflectance across the cone mosaic. Variability in spatial and temporal photoreceptor reflectance was observed in both species, with similar behavior to that seen in human AOSLO images. Despite the unique cone structure in these animals, these data suggest a common origin of photoreceptor reflectance behavior across species. Such data may help constrain models of the cellular origins of photoreceptor reflectance signals. These animal models provide an experimental platform to further explore the morphological origins of light capture and propagation.  相似文献   

19.
Histamine is an important chemical messenger that regulates multiple physiological processes in both vertebrate and invertebrate animals. Even so, how glial cells and neurons recycle histamine remains to be elucidated. Drosophila photoreceptor neurons use histamine as a neurotransmitter, and the released histamine is recycled through neighboring glia, where it is conjugated to β-alanine to form carcinine. However, how carcinine is then returned to the photoreceptor remains unclear. In an mRNA-seq screen for photoreceptor cell-enriched transporters, we identified CG9317, an SLC22 transporter family protein, and named it CarT (Carcinine Transporter). S2 cells that express CarT are able to take up carcinine in vitro. In the compound eye, CarT is exclusively localized to photoreceptor terminals. Null mutations of cart alter the content of histamine and its metabolites. Moreover, null cart mutants are defective in photoreceptor synaptic transmission and lack phototaxis. These findings reveal that CarT is required for histamine recycling at histaminergic photoreceptors and provide evidence for a CarT-dependent neurotransmitter trafficking pathway between glial cells and photoreceptor terminals.  相似文献   

20.
The effect of riboflavin analogs on blue light responses in a riboflavin mutant of Neurospora crassa was studied. The analogs 1-deazariboflavin and roseoflavin, which have red-shifted absorption, acted as photoreceptors for the photosuppression and phase shifting of circadian conidiation by 540 nm light, but were ineffective as photoreceptors for the induction of carotenoid synthesis. These results provide addtional evidence implicating a flavin photoreceptor for at least two blue light responses of Neurospora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号