首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Currently, there are difficulties associated with the culturing of pluripotent human embryonic stem cells (hESCs), and knowledge regarding their regulatory mechanisms is limited. MicroRNAs (miRNAs) regulate gene expression and have critical functions in stem cell self-renewal and differentiation. Moreover, fibroblast growth factor (FGF) and the insulin-like growth factor receptor (IGF-1R) are key activators of signaling in hESCs. Based on the identification of complementary binding sites in miR-223 and IGF-1R mRNA, it is proposed that miR-223 acts as a local regulator of IGF-1R. Therefore, levels of miR-223 were detected in differentiated versus undifferentiated hESCs. In addition, proliferation, apoptosis, and differentiation were assayed in these two hESC populations and were compared in the presence of exogenous miR-223 and miR-223 inhibitor. Inhibition of miR-223 was found to maintain the undifferentiated state of hESCs, while addition of miR-223 induced differentiation. Furthermore, these effects were found to be likely dependent on IGF-1R/Akt signaling.  相似文献   

3.
Overactivation of PI3K/Akt/mTOR is linked with carcinogenesis and serves a potential molecular therapeutic target in treatment of various cancers. Herein, we report the synthesis of trisubstituted-imidazoles and identified 2-chloro-3-(4, 5-diphenyl-1H-imidazol-2-yl) pyridine (CIP) as lead cytotoxic agent. Naïve Base classifier model of in silico target prediction revealed that CIP targets RAC-beta serine/threonine-protein kinase which comprises the Akt. Furthermore, CIP downregulated the phosphorylation of Akt, PDK and mTOR proteins and decreased expression of cyclin D1, Bcl-2, survivin, VEGF, procaspase-3 and increased cleavage of PARP. In addition, CIP significantly downregulated the CXCL12 induced motility of breast cancer cells and molecular docking calculations revealed that all compounds bind to Akt2 kinase with high docking scores compared to the library of previously reported Akt2 inhibitors. In summary, we report the synthesis and biological evaluation of imidazoles that induce apoptosis in breast cancer cells by negatively regulating PI3K/Akt/mTOR signaling pathway.  相似文献   

4.
The receptor tyrosine kinase (RTK)/phosphoinositide 3-kinase (PI3K) pathway is fundamental for cancer cell proliferation and is known to be frequently altered and activated in neoplasia, including embryonal tumors. Based on the high frequency of alterations, targeting components of the PI3K signaling pathway is considered to be a promising therapeutic approach for cancer treatment. Here, we have investigated the potential of targeting the axis of the insulin-like growth factor-1 receptor (IGF-1R) and PI3K signaling in two common cancers of childhood: neuroblastoma, the most common extracranial tumor in children and medulloblastoma, the most frequent malignant childhood brain tumor. By treating neuroblastoma and medulloblastoma cells with R1507, a specific humanized monoclonal antibody against the IGF-1R, we could observe cell line-specific responses and in some cases a strong decrease in cell proliferation. In contrast, targeting the PI3K p110α with the specific inhibitor PIK75 resulted in broad anti-proliferative effects in a panel of neuro- and medulloblastoma cell lines. Additionally, sensitization to commonly used chemotherapeutic agents occurred in neuroblastoma cells upon treatment with R1507 or PIK75. Furthermore, by studying the expression and phosphorylation state of IGF-1R/PI3K downstream signaling targets we found down-regulated signaling pathway activation. In addition, apoptosis occurred in embryonal tumor cells after treatment with PIK75 or R1507. Together, our studies demonstrate the potential of targeting the IGF-1R/PI3K signaling axis in embryonal tumors. Hopefully, this knowledge will contribute to the development of urgently required new targeted therapies for embryonal tumors.  相似文献   

5.
Pharbin, a 5-phosphatase that induces arborization, is one of the phosphoinositide 5-phosphatases that is highly mutated in patients with Joubert syndrome. Pharbin can hydrolyse PI(4,5)P(2) and PI(3,4,5)P(3) and has the same substrate specificity as SHIP2 and SKIP, which negatively regulate PI3K signalling. Here, we investigated the role of pharbin in IGF-1/PI3K signalling. Ectopic expression of pharbin markedly suppressed the IGF-1-induced activation of Akt without affecting p42/44 MAP kinase phosphorylation. In contrast, pharbin silencing by RNA interference increased the IGF-1-induced phosphorylation of Akt, suggesting that pharbin negatively regulates PI3K/Akt signalling. Pharbin expression also inhibited the phosphorylation of p70 S6 kinase and 4E-BP1 as well as the subsequent protein synthesis in response to IGF-1 treatment. Taken together, these results indicate that pharbin is an important negative regulator of IGF-1/PI3K/Akt signalling and protein synthesis.  相似文献   

6.
Breaking resistance to chemotherapy is a major goal of combination therapy in many tumors, including advanced neuroblastoma. We recently demonstrated that increased activity of the PI3K/Akt network is associated with poor prognosis, thus providing an ideal target for chemosensitization. Here we show that targeted therapy using the PI3K/mTOR inhibitor NVP-BEZ235 significantly enhances doxorubicin-induced apoptosis in neuroblastoma cells. Importantly, this increase in apoptosis was dependent on scheduling: while pretreatment with the inhibitor reduced doxorubicin-induced apoptosis, the sensitizing effect in co-treatment could further be increased by delayed addition of the inhibitor post chemotherapy. Desensitization for doxorubicin-induced apoptosis seemed to be mediated by a combination of cell cycle-arrest and autophagy induction, whereas sensitization was found to occur at the level of mitochondria within one hour of NVP-BEZ235 posttreatment, leading to a rapid loss of mitochondrial membrane potential with subsequent cytochrome c release and caspase-3 activation. Within the relevant time span we observed marked alterations in a ∼30 kDa protein associated with mitochondrial proteins and identified it as VDAC1/Porin protein, an integral part of the mitochondrial permeability transition pore complex. VDAC1 is negatively regulated by the PI3K/Akt pathway via GSK3β and inhibition of GSK3β, which is activated when Akt is blocked, ablated the sensitizing effect of NVP-BEZ235 posttreatment. Our findings show that cancer cells can be sensitized for chemotherapy induced cell death – at least in part – by NVP-BEZ235-mediated modulation of VDAC1. More generally, we show data that suggest that sequential dosing, in particular when multiple inhibitors of a single pathway are used in the optimal sequence, has important implications for the general design of combination therapies involving molecular targeted approaches towards the PI3K/Akt/mTOR signaling network.  相似文献   

7.
Our previous studies demonstrated that glimepiride enhanced the proliferation and differentiation of osteoblasts and led to activation of the PI3K/Akt pathway. Recent genetic evidence shows that endothelial nitric oxide synthase (eNOS) plays an important role in bone homeostasis. In this study, we further elucidated the roles of eNOS, PI3K and Akt in bone formation by osteoblasts induced by glimepiride in a high glucose microenvironment. We demonstrated that high glucose (16.5 mM) inhibits the osteogenic differentiation potential and proliferation of rat osteoblasts. Glimepiride activated eNOS expression in rat osteoblasts cultured with two different concentrations of glucose. High glucose-induced osteogenic differentiation was significantly enhanced by glimepiride. Down-regulation of PI3K P85 levels by treatment with LY294002 (a PI3K inhibitor) led to suppression of P-eNOS and P-AKT expression levels, which in turn resulted in inhibition of RUNX2, OCN and ALP mRNA expression in osteoblasts induced by glimepiride at both glucose concentrations. ALP activity was partially inhibited by 10 µM LY294002. Taken together, our results demonstrate that glimepiride-induced osteogenic differentiation of osteoblasts occurs via eNOS activation and is dependent on the PI3K/Akt signaling pathway in a high glucose microenvironment.  相似文献   

8.
Crohn''s disease is a common, chronic inflammatory bowel condition characterized by remission and relapse. Accumulating evidence indicates that activated T cells play an important role in this disease. In the present study, we aimed to examine the effect of beauvericin, a natural cyclic peptide, on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice, which mimics Crohn''s disease. Beauvericin significantly reduced weight loss, diarrhea and mortality, accompanied with notable alleviation of macroscopic and microscopic signs. In addition, this compound decreased serum levels of tumor necrosis factor (TNF)-α and interferon (IFN)- γ in a concentration-dependent manner in mice with experimental colitis. These effects of beauvericin are attributed to its inhibition on activated T cells. Flow cytometry and immunoblot assay data showed that beauvericin suppressed T-cell proliferation, activation and IFN-γ-STAT1-T-bet signaling and subsequently led to apoptosis of activated T cells by suppressing Bcl-2 and phosphorylated Bad as well as increasing cleavage of caspase-3, -9, -12 and PARP. Furthermore, inhibition of PI3K/Akt signaling, which was an upstream regulator of cell activation and survival in activated T cells, contributed to the effect of beauvericin. Overall, these results supported beauvericin as a novel drug candidate for the treatment of colonic inflammation mainly by targeting PI3K/Akt in activated T cells.  相似文献   

9.
Zhang  Lin  Yang  Hui  Li  Wen-Juan  Liu  Ye-Hui 《Neurochemical research》2020,45(9):2091-2099
Neurochemical Research - Ischemic stroke (IS) is a common disease that seriously endangers human health. Patients with IS present with increased death of brain microvascular endothelial cells...  相似文献   

10.
11.
12.
13.
上皮-间质转化(EMT)在肿瘤侵袭转移发展进程中起着重要的作用.转化生长因子-β(TGF-β)已被证实为肿瘤EMT的主要诱导剂.然而,其分子机制仍有待深入研究.该研究旨在探讨TGF-β1促进非小细胞肺癌(NSCLC)细胞系SPC-A1上皮-间质转化过程中的分子机制.细胞的形态学检查结果显示,TGF-β1刺激SPC-A1细胞后细胞形态变成梭形.Transwell侵袭实验揭示,TGF-β1刺激后细胞侵袭能力明显增强.Western印迹结果证明,与未经TGF-β1刺激的SPC-A1细胞比较,EMT上皮标志物上皮-钙粘蛋白(E-cadherin)表达明显下调,而间质标志物波形蛋白(vimentin)明显上调,p-AKT、p-ARK5的表达也明显增强.此外,转录因子Snail在细胞核内的表达水平明显增强.TGF-β1和PI3K抑制剂LY294002同时刺激SPC-A1细胞后,p-AKT、p-ARK5较只加TGF-β1时表达明显降低,Snail在核内的表达水平也明显降低.结果提示,TGF-β1通过激活AKT、ARK5磷酸化,促进转录因子Snail入核,进而导致SPC-A1细胞EMT.  相似文献   

14.
MicroRNAs (miRNAs) are involved in controlling hepatocyte proliferation during liver regeneration. In this study, we established the miRNAs-expression patterns of primary hepatocytes in vitro under stimulation of epidermal growth factor (EGF), and found that microRNA-21 (miR-21) was appreciably up-regulated and peaked at 12 h. In addition, we further presented evidences indicating that miR-21 promotes primary hepatocyte proliferation through in vitro transfecting with miR-21 mimics or inhibitor. We further demonstrated that phosphatidylinositol 3′-OH kinase (PI3K)/Akt signaling was altered accordingly, it is, by targeting phosphatase and tensin homologue deleted on chromosome 10, PI3K/Akt signaling is activated by miR-21 to accelerate hepatocyte rapid S-phase entry and proliferation in vitro.  相似文献   

15.
16.
Rotaviruses are double-stranded RNA viruses that are a major cause of viral diarrhea in infants. Examining virus–host cell interaction is important for elucidating mechanisms of virus proliferation in host cells. Viruses can create an environment that promotes their survival and self-proliferation by encoding miRNAs or miRNA-like molecules that target various host cell. However, it remains unclear whether RNA viruses encode viral miRNAs, and their regulation mechanisms are largely unknown. We previously performed deep sequencing analysis to investigate rotavirus-encoded miRNAs, and identified the small RNA molecule Chr17_1755, which we named RV-vsRNA1755. In our present study, we determined that RV-vsRNA1755 is encoded by the rotavirus NSP4 gene and that it targets the host cell IGF1R, which is part of the PI3K/Akt pathway. We further explored the biological characteristics and functions of RV-vsRNA1755.Our results suggest that rotavirus adapts to manipulate PI3K/Akt signaling at early phases of infection. RV-vsRNA1755 targets IGF1R, blockading the PI3K/Akt pathway and triggering autophagy, but it ultimately inhibits autophagy maturation. A mechanism through which rotavirus encodes a virus-like small RNA (RV-vsRNA1755) that triggers autophagy by targeting the host cell IGF1R gene was revealed. These data provide a theoretical basis for therapeutic drug screening targeting RV-vsRNA1755.  相似文献   

17.
脂肪细胞增强子结合蛋白2(AEBP2)作为多梳抑制复合物2(PRC2)的组成蛋白质,参与多种肿瘤细胞的增殖和迁移,然而其在肝癌中的作用尚不清楚。本研究基于UALCAN和Kaplan-Meier Plotter数据库分析发现,AEBP2在肝癌组织中高表达,并且与患者的不良预后呈正相关。实时荧光定量PCR和蛋白质印迹结果证实,AEBP2在肝癌细胞中的表达高于正常肝细胞。在HepG2和Huh-7细胞中转染AEBP2 siRNA,平板克隆、CCK-8、流式细胞术、划痕愈合和Transwell结果显示,沉默AEBP2可以抑制肝癌细胞增殖、迁移和侵袭,并促进细胞凋亡(P<0.05)。免疫荧光检测和蛋白质印迹结果显示,沉默AEBP2能够抑制肝癌细胞上皮-间质转化(EMT)(P<0.05)。生物信息学分析结果表明,AEBP2参与调控PI3K/Akt信号通路。蛋白质印迹结果证实,沉默AEBP2能下调PI3K、p-AKT (S473)、mTOR、MMP-2和MMP-9的蛋白质表达水平(P<0.05)。此外,沉默AEBP2对HepG2细胞迁移和侵袭的影响可被PI3K/Akt通路激动剂胰岛素样生长因子1(IGF-1)部分逆转(P<0.01)。综上所述,AEBP2可能通过调节PI3K/Akt途径促进肝癌细胞增殖和迁移。本研究为AEBP2在肝癌中的作用提供理论依据。  相似文献   

18.
19.
Renal fibrosis (RF) is a common reason for renal failure, and epithelial-mesenchymal transition (EMT) is a vital mechanism that promotes the development of RF. It is known that microRNA-10 (miR-10) plays an important role in cancer EMT; however, whether it takes part in the EMT process of RF remains unclear. Therefore, we established an in vivo model of unilateral ureteral obstruction (UUO), and an in vitro model using TGF-β1, to investigate whether and how miR-10a and miR-10b take part in the EMT of RF. In addition, the combinatorial effects of miR-10a and miR-10b were assessed. We discovered that miR-10a and miR-10b are overexpressed in UUO mice, and miR-10a, miR-10b, and miRs-10a/10b knockout attenuated RF and EMT in UUO-treated mouse kidneys. Moreover, miR-10a and miR-10b overexpression combinatorially promoted RF and EMT in TGF-β1-treated HK-2 cells. Inhibiting miR-10a and miR-10b attenuated RF and EMT induced by TGF-β1. Mechanistically, miR-10a and miR-10b suppressed PTEN expression by binding to its mRNA3′-UTR and promoting the Akt pathway. Moreover, PTEN overexpression reduced miR-10a and miR-10b effects on Akt phosphorylation (p-Akt), RF, and EMT in HK-2 cells treated with TGF-β1. Taken together, miR-10a and miR-10b act combinatorially to negatively regulate PTEN, thereby activating the Akt pathway and promoting the EMT process, which exacerbates RF progression.  相似文献   

20.
Insulin or insulin-like growth factor 1 (IGF-1) promotes the activation of phosphoinositide 3 kinase (PI3K)/Akt signaling in immune cells including dendritic cells (DCs), the most potent professional antigen-presenting cells for naive T cells. Klotho, an anti-aging protein, participates in the regulation of the PI3K/Akt signaling, thus the Ca2+-dependent migration is reduced in klotho-deficient DCs. The present study explored the effects of insulin/IGF-1 on DC function through klotho expression. To this end, the mouse bone marrow cells were isolated and cultured with GM-CSF to attain bone marrow-derived DCs (BMDCs). Cells were treated with insulin or IGF-1 and followed by stimulating with lipopolysaccharides (LPS). Tumor necrosis factor (TNF)-α formation was examined by enzyme-linked immunosorbent assay (ELISA). Phagocytosis was analyzed by FITC-dextran uptake assay. The expression of klotho was determined by quantitative PCR, immunoprecipitation and western blotting. As a result, treatment of the cells with insulin/IGF-1 resulted in reducing the klotho expression as well as LPS-stimulated TNF-α release and increasing the FITC-dextran uptake but unaltering reactive oxygen species (ROS) production in BMDCs. The effects were abolished by using pharmacological inhibition of PI3K/Akt with LY294002 and paralleled by transfecting DCs with klotho siRNA. In conclusion, the regulation of klotho sensitive DC function by IGF-1 or insulin is mediated through PI3K/Akt signaling pathway in BMDCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号