首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cancer-associated mucins show frequent alterations of their oligosaccharide chain profile, with a switch to unmask normally cryptic O-glycan backbone and core regions. Epithelial tumour cells typically show overexpression of the uncovered Gal(beta)1-3GalNAc(alpha)-O-Ser/Thr (Core 1) structure, known as the T antigen or the Thomsen-Friedenreich antigen, the oligosaccharide chain of which is called the Thomsen-Friedenreich disaccharide (TFD). T antigen expression has been associated with immunosuppression, metastasis dissemination, and the proliferation of cancer cells. Several different strategies have been used to trigger a specific immune response to TFD. Natural T antigen and synthetic TFD residues have low immunodominance. In the T antigen, flexibility of the glycosidic bond reduces the immunogenicity of the sugar residue. Enhanced rigidity should favour certain glycan conformations and thereby improve TFD immunotargeting. We propose the term 'glycan engineering' for this approach. Such engineering of TFD should reduce the flexibility of its glycan moiety and thereby enhance its stability, rigidity and immunogenicity.  相似文献   

2.
It is generally accepted that the host's immune response rather than the virus itself is causing the hepatocellular damage seen in acute and chronic hepatitis B virus (HBV) infections. However, in situations of severe immune suppression, chronic HBV patients may develop a considerable degree of liver disease. To examine whether HBV has direct cytopathic effects in severely immune compromised hosts, we have infected severe combined immune deficient mice (uPA-SCID), harboring human liver cells, with HBV. Serologic analysis of the plasma of HBV-infected animals revealed the presence of extremely high amounts of viral genomes and proteins. Histological analysis of the livers of uPA-SCID chimeras infected with HBV for more than 2 months showed that the majority of human hepatocytes had a ground-glass appearance, stained intensely for viral proteins, and showed signs of considerable damage and cell death. This histopathologic pattern closely resembles the picture observed in the livers of immunosuppressed HBV patients. These lesions were not observed in animals infected with HBV for less than 1 month. Ultrastructural analysis of long-term-infected hepatocytes showed a highly increased presence of cylindrical HBsAg structures, core particles, and Dane particles compared to short-term-infected hepatocytes. These long-term-infected hepatocytes also contained elevated amounts of HBV cccDNA. In conclusion, HBV causes dramatic intracellular changes and hepatocellular damage in the human hepatocytes that reside in a severely immune deficient mouse. These lesions show much resemblance to the ones encountered in immunosuppressed chronic HBV patients. Our observations indicate that HBV may be directly cytopathic in conditions of severe immune suppression.  相似文献   

3.
During the past ten years, monoclonal antibodies (mAbs) have taken center stage in the field of targeted therapy and diagnosis. This increased interest in mAbs is due to their binding accuracy (affinity and specificity) together with the original molecular and structural rules that govern interactions with their cognate antigen. In addition, the effector properties of antibodies constitute a second major advantage associated with their clinical use. The development of molecular and structural engineering and more recently of in vitro evolution of antibodies has opened up new perspectives in the de novo design of antibodies more adapted to clinical and diagnostic use. Thus, efforts are regularly made by researchers to improve or modulate antibody recognition properties, to adapt their pharmacokinetics, engineer their stability, and control their immunogenicity. This review presents the latest molecular engineering results on mAbs with therapeutic and diagnostic applications.  相似文献   

4.
《MABS-AUSTIN》2013,5(4):445-457
During the past ten years, monoclonal antibodies (mAbs) have taken center stage in the field of targeted therapy and diagnosis. This increased interest in mAbs is due to their binding accuracy (affinity and specificity) together with the original molecular and structural rules that govern interactions with their cognate antigen. In addition, the effector properties of antibodies constitute a second major advantage associated with their clinical use. The development of molecular and structural engineering and more recently of in vitro evolution of antibodies has opened up new perspectives in the de novo design of antibodies more adapted to clinical and diagnostic use. Thus, efforts are regularly made by researchers to improve or modulate antibody recognition properties, to adapt their pharmacokinetics, engineer their stability, and control their immunogenicity. This review presents the latest molecular engineering results on mAbs with therapeutic and diagnostic applications.  相似文献   

5.
Antibody engineering for the development of therapeutic antibodies   总被引:20,自引:0,他引:20  
Therapeutic antibodies represent one of the fastest growing areas of the pharmaceutical industry. There are currently 19 monoclonal antibodies in the market that have been approved by the FDA and over 150 in clinical developments. Driven by innovation and technological developments, therapeutic antibodies are the second largest biopharmaceutical product category after vaccines. Antibodies have been engineered by a variety of methods to suit a particular therapeutic use. This review describes the structural and functional characteristics of antibody and the antibody engineering for the generation and optimization of therapeutic antibodies.  相似文献   

6.
Pretreatment of BALB/c mice with antisera to a cross-reactive idiotype (E109IdX) expressed on many anti-bacterial levan (BL) and anti-inulin (Inu) antibodies leads to a prolonged suppression in production of IdX-bearing molecules in response to BL immunization. There is a comparable suppression in numbers of plaque-forming cells secreting IdX-bearing anti-BL and anti-Inu molecules. Furthermore, spleen cells from anti-E109IdX pretreated mice are unable to transfer to irradiated recipients the ability to produce IdX-bearing anti-BL and anti-Inu antibodies. These results indicate that the suppressive effect is at the precursor level and not simply a clearance of antibodies bearing the IdX. Suppression of IdX production can be achieved by pretreating nu/nu BALB/c mice with anti-E109IdX antibodies. Furthermore, spleen cells from pretreated mice do not inhibit the capacity of spleen cells from normal mice transferred to irradiated recipients to produce E109IdX in response to BL. This indicates that the suppression of IdX production in the anti-BL system is T independent and probably represents direct inhibition of precursors by anti-IdX.  相似文献   

7.
The CTLA4-Ig fusion proteins abatacept and belatacept are clinically proven immunosuppressants used for rheumatoid arthritis and renal transplant, respectively. Given that both biologics are typically administered chronically by infusion, a need exists for a next-generation CTLA4-Ig with more convenient dosing. We used structure-based protein engineering to optimize the affinity of existing CTLA4-Ig therapeutics for the ligands CD80 and CD86, and for the neonatal Fc receptor, FcRn. From a rationally designed library, we identified four substitutions that enhanced binding to human CD80 and CD86. Coupled with two IgG1 Fc substitutions that enhanced binding to human FcRn, these changes comprise the novel CTLA4-Ig fusion protein, XPro9523. Compared with abatacept, XPro9523 demonstrated 5.9-fold, 23-fold, and 12-fold increased binding to CD80, CD86, and FcRn, respectively; compared with belatacept, CD80, CD86, and FcRn binding increased 1.5-fold, 7.7-fold, and 11-fold, respectively. XPro9523 and belatacept suppressed human T cell proliferation and IL-2 production more potently than abatacept. XPro9523 also suppressed inflammation in the mouse collagen-induced arthritis model. In cynomolgus monkeys, XPro9523 saturated CD80 and CD86 more effectively than abatacept and belatacept, potently inhibited IgM and IgG immunization responses, and demonstrated longer half-life. Pharmacokinetic modeling of its increased potency and persistence suggests that, in humans, XPro9523 may demonstrate superior efficacy and dosing convenience compared with abatacept and belatacept.  相似文献   

8.
Insect endoparasitoids are able to circumvent the defense reactions of their habitual hosts. In a hymenopteran wasp species, virus-like particles, found on the egg surface are responsible for the protection against the encapsulation reaction of the host caterpillar. Some of the particle proteins are structurally and probably functionally related to host protein(s). Biological properties of some of the host proteins suggest that they might be involved in the insect defense reaction.  相似文献   

9.
10.
Therapeutic antibody IgG1 has two N-linked oligosaccharide chains bound to the Fc region. The oligosaccharides are of the complex biantennary type, composed of a trimannosyl core structure with the presence or absence of core fucose, bisecting N-acetylglucosamine (GlcNAc), galactose, and terminal sialic acid, which gives rise to structural heterogeneity. Both human serum IgG and therapeutic antibodies are well known to be heavily fucosylated. Recently, antibody-dependent cellular cytotoxicity (ADCC), a lytic attack on antibody-targeted cells, has been found to be one of the critical effector functions responsible for the clinical efficacy of therapeutic antibodies such as anti-CD20 IgG1 rituximab (Rituxan®) and anti-Her2/neu IgG1 trastuzumab (Herceptin®). ADCC is triggered upon the binding of lymphocyte receptors (FcγRs) to the antibody Fc region. The activity is dependent on the amount of fucose attached to the innermost GlcNAc of N-linked Fc oligosaccharide via an α-1,6-linkage, and is dramatically enhanced by a reduction in fucose. Non-fucosylated therapeutic antibodies show more potent efficacy than their fucosylated counterparts both in vitro and in vivo, and are not likely to be immunogenic because their carbohydrate structures are a normal component of natural human serum IgG. Thus, the application of non-fucosylated antibodies is expected to be a powerful and elegant approach to the design of the next generation therapeutic antibodies with improved efficacy. In this review, we discuss the importance of the oligosaccharides attached to the Fc region of therapeutic antibodies, especially regarding the inhibitory effect of fucosylated therapeutic antibodies on the efficacy of non-fucosylated counterparts in one medical agent. The impact of completely non-fucosylated therapeutic antibodies on therapeutic fields will be also discussed.  相似文献   

11.
Glycosylation of the Fc region of IgG has a profound impact on the safety and clinical efficacy of therapeutic antibodies. While the biantennary complex-type oligosaccharide attached to Asn297 of the Fc is essential for antibody effector functions, fucose and outer-arm sugars attached to the core heptasaccharide that generate structural heterogeneity (glycoforms) exhibit unique biological activities. Hence, efficient and quantitative glycan analysis techniques have been increasingly important for the development and quality control of therapeutic antibodies, and glycan profiles of the Fc are recognized as critical quality attributes. In the past decade our understanding of the influence of glycosylation on the structure/function of IgG-Fc has grown rapidly through X-ray crystallographic and nuclear magnetic resonance studies, which provides possibilities for the design of novel antibody therapeutics. Furthermore, the chemoenzymatic glycoengineering approach using endoglycosidase-based glycosynthases may facilitate the development of homogeneous IgG glycoforms with desirable functionality as nextgeneration therapeutic antibodies. Thus, the Fc glycans are fertile ground for the improvement of the safety, functionality, and efficacy of therapeutic IgG antibodies in the era of precision medicine.  相似文献   

12.
Ligand-receptor interactions govern myriad cell signaling pathways that regulate homeostasis and ensure that cells respond properly to stimuli. Growth factors, cytokines and other regulatory elements use these interactions to mediate cell responses, including proliferation, migration, angiogenesis, immune responses and cell death. Proteins that inhibit these processes have potential as therapeutics for cancer and autoimmune disorders, whereas proteins that stimulate these processes offer promise in regenerative medicine. Although much of the focus in this area over the past decade has been on monoclonal antibodies, recently there has been increased interest in the use of non-antibody proteins as therapeutic agents. Here, we review recent advances and accomplishments in the use of rational and combinatorial protein engineering approaches to developing ligands and receptors as agonists and antagonists against clinically important targets.  相似文献   

13.
T cell tolerance induced by therapeutic antibodies   总被引:5,自引:0,他引:5  
Ever since the discovery of Medawar, over 50 years ago, that immunological tolerance was an acquired phenomenon that could be manipulated in neonatal mice, the ability to induce therapeutic tolerance against autoantigens, allergens and organ grafts has been a major driving force in immunology. Within the last 20 years we have found that a brief treatment with monoclonal antibodies that block certain functional molecules on the surface of the T cell is able to reprogramme the established immune repertoire of the adult mouse, allowing indefinite acceptance of allografts or effective curing of autoimmune diseases. We are only now just beginning to define many of the regulatory mechanisms that induce and maintain the tolerant state with the aim of being able to safely and reliably apply these technologies to human clinical situations.  相似文献   

14.
We evaluated the modulatory role of endogenous neurotensin (NT) in baroreceptor reflex (BRR) response in Sprague-Dawley rats anesthetized with pentobarbital sodium. Intracerebroventricular (i.c.v.) administration of NT (15 or 30 nmol) significantly reduced the sensitivity of the BRR response. Blocking the endogenous activity of the tridecapeptide with its specific antagonist, (D-Trp11)-NT (4 or 8 nmol) or antiserum against NT (1:20); or inhibiting the aminopeptidases with bestatin (200 nmol), on the other hand, promoted a potentiation of BRR response. When administered together with bestatin (200 nmol), the suppressive effect of NT (15 nmol) on the BRR response was further enhanced, as was the augmentative action of (D-Trp11)-NT (4 nmol). Upon microinjection into the bilateral nucleus tractus solitarius (NTS), NT (600 pmol) and (D-Trp11)-NT (150 pmol) respectively elicited a reduction and enhancement of the BRR response. These results suggest that neurons that contain NT may participate in central cardiovascular regulation by tonically suppressing the BRR, possibly via an action on the NTS where baroreceptor afferents terminate.  相似文献   

15.
16.
From its inception, tissue engineering has had three tenets: cells, biomaterial scaffolds and signaling molecules. Among the triad, cells are the center piece, because cells are the building blocks of tissues. For decades, cell therapies have focused on the procurement, manipulation and delivery of healthy cells for the treatment of diseases or trauma. Given the complexity and potential high cost of cell delivery, there is recent and surging interest to orchestrate endogenous cells for tissue regeneration. Biomaterial scaffolds are vital for many but not all, tissue-engineering applications and serve to accommodate or promote multiple cellular functions. Signaling molecules can be produced by transplanted cells or endogenous cells, or delivered specifically to regulate cell functions. This review highlights recent work in tissue engineering and cell therapies, with a focus on harnessing the capacity of endogenous cells as an alternative or adjunctive approach for tissue regeneration.  相似文献   

17.
Allergic diseases result in a considerable socioeconomic burden. The incidence of allergic diseases, notably allergic asthma, has risen to high levels for reasons that are not entirely understood. With an increasing knowledge of underlying mechanisms, there is now more potential to target the inflammatory process rather than the overt symptoms. This focuses attention on the role of leukocytes especially Th2 lymphocytes that regulate allergic inflammation and effector cells where eosinophils have received much attention. Eosinophils are thought to be important based on the high numbers that are recruited to sites of allergic inflammation and the potential of these cells to effect both tissue injury and remodelling. It is hoped that future therapy will be directed towards specific leukocyte types, without overtly compromising essential host defence responses. One obvious target is leukocyte recruitment. This necessitates a detailed understanding of underlying mechanisms, particularly those involving soluble chemoattractants signals and cell-cell adhesion molecules.  相似文献   

18.
Immune suppression and histophysiology of the immune response   总被引:1,自引:0,他引:1  
Seven daily intramuscular (im) injections of cortisone acetate (25 mg/Kg b.w.) given to rats or rabbits produced, (i) a pronounced reduction in the numbers of small lymphocytes in thymus-independent areas, (ii) atrophy of the thymic cortex, (iii) atrophy of germinal centres and (iv) a consequent depressed production of germinal centre-derived cells. Lymphocyte depletion was not caused by cell lysis. Moreover cell traffic between peripheral lymphoid organs did not seem to be altered. A revival of the depressed germinal centres in cortisone-treated (inbred) rats could be achieved by a transfer of bone-marrow cell suspensions from normal, cortisone-treated or T-cell-deprived animals. It was concluded that cortisone acetate arrests the migration of B-lymphocytes from the bone marrow to germinal centres in peripheral lymphoid organs, and that the accumulations of lymphoid cells in the bone marrow of cortison-treated animals might be composed of immature or mature T- and B-lymphocytes.  相似文献   

19.
Immunological synapse (IS) formation involves receptor–ligand pair clustering and intracellular signaling molecule recruitment with a coincident removal of other membrane proteins away from the IS. As microfilament–membrane linkage is critical to this process, we investigated the involvement of ezrin and moesin, the two ezrin/radixin/moesin proteins expressed in T cells. We demonstrate that ezrin and moesin, which are generally believed to be functionally redundant, are differentially localized and have important and complementary functions in IS formation. Specifically, we find that ezrin directly interacts with and recruits the signaling kinase ZAP-70 to the IS. Furthermore, the activation of ezrin by phosphorylation is essential for this process. In contrast, moesin dephosphorylation and removal, along with CD43, are necessary to prepare a region of the cell cortex for IS. Thus, ezrin and moesin have distinct and critical functions in the T cell cortex during IS formation.  相似文献   

20.
Lymph node cells from BALB/c mice immunized with ovalbumin or human γ-globulin were restimulated in vitro with these antigens and assayed for antigen-induced proliferation. The proliferative response was shown to be antigen specific and T cell dependent. A rabbit antiserum to envelope and core proteins of AKR murine leukemia virus was found to inhibit antigen-induced T-cell proliferation. The IgG fraction and F(ab′)2 fragments of the antiserum were also inhibitory. The inhibition occurred after the initial step of antigen-T cell interaction and viral absorption studies showed the inhibition to be specific for anti-AKR virus antibodies. A hypothesis for the mechanism of inhibition is discussed in relation to a functional role for endogenous murine leukemia virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号