首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Molybdenum cofactor (Moco) biosynthesis pathway is an evolutionary conserved pathway seen in almost all eukaryotes including the pathogenic species Mycobacterium tuberculosis. This pathway comprises of several novel reactions which include the initial formation of precursor Z from guanosine triphosphate (GTP), catalysed by two enzymes MoaA and MoaC. Although Moco biosynthesis is well understood, the first step is still not clear. In M. tuberculosis H37Rv, three orthologous genes of MoaC have been annotated: moaC1 (Rv3111), moaC2 (Rv0864) and moaC3 (Rv3324c). Rv0864 (MoaC2) is a 17.5 kDa protein and is reported to be down-regulated by ∼3 times in the nutrient starvation model for Mycobacterium tuberculosis. The crystal structure of Moco-biosynthesis protein MoaC2 from Mycobacterium tuberculosis (2.20 Å resolution, space group P213) has been determined. Based on a comparative analysis of structures of homologous proteins, conserved residues were identified and are implicated in structural and functional roles. Molecular docking studies with probable ligands carried out in order to identify its ligand, suggests that pteridinebenzomonophosphate as the most likely ligand. Sequence based interaction study identified MoaA1 to interact with MoaC2. A homology model of MoaA1 was then complexed with MoaC2 and protein–protein interactions are also discussed.  相似文献   

2.
BackgroundWe have characterized two immunogenic proteins, Rv1197 and Rv1198, of the Esx-5 system of the ESAT-6 family of Mycobacterium tuberculosis H37Rv.MethodsThe complex formation between Rv1197 and Rv1198 was characterized by biophysical techniques. The reactivity of serum from TB patients towards these proteins was characterized by ELISA. Lymphocyte proliferation and cytokine induction were followed in restimulated splenocytes from immunized mice by using MTT assay and CBA flowcytometry, respectively.ResultsRv1197 and Rv1198 strongly interact to form a heterodimeric complex under reducing conditions, which is characterized by a dissociation constant of 97 × 10 9 M and melting temperature, Tm, of 50.5 °C. Strong humoral responses to Rv1197, Rv1198, CFP-10 and MoaC1 (Rv3111) antigens were found in Indian patients with active pulmonary tuberculosis (n = 44), in comparison to non-infected healthy individuals (n = 20). The seroreactivity to Rv1198 was characterized by a sensitivity of 75% and specificity of 90%. In BALB/c mice, immunization with Rv1198-FIA induced a pro-inflammatory response with elevated levels of TNF and IL-6, along with low induction of IFN-γ, IL-2 and IL-10, but no induction of IL-4.ConclusionRv1197 and Rv1198 form a stable complex, which is regulated by the redox state of Rv1198. Rv1198 is immunogenic with highly specific seroreactivity towards TB patients' serum. Rv1198 elicits a pro-inflammatory recall response in immunized mice.General SignificanceThis study characterizes the interaction of Rv1197 and Rv1198, and establishes the immunogenic nature of Rv1198.  相似文献   

3.
Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naïve T cells, polarized CD4+ and CD8+ T cells to secrete IFN-γ in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.  相似文献   

4.
The Rv2477c protein of Mycobacterium tuberculosis (Mtb) belongs to the ATP-binding cassette (ABC) subfamily F that contains proteins with tandem nucleotide-binding domains but lacking transmembrane domains. ABC-F subfamily proteins have been implicated in diverse cellular processes such as translation, antibiotic resistance, cell growth and nutrient sensing. In order to investigate the biochemical characteristics of Rv2477c, we expressed it in Escherichia coli, purified it and characterized its enzymatic functions. We show that Rv2477c displays strong ATPase activity (Vmax = 45.5 nmol/mg/min; Km = 90.5 μM) that is sensitive to orthovanadate. The ATPase activity was maximal in the presence of Mn2+ at pH 5.2. The Rv2477c protein was also able to hydrolyze GTP, TTP and CTP but at lower rates. Glutamate to glutamine substitutions at amino acid residues 185 and 468 in the two Walker B motifs of Rv2477c severely inhibited its ATPase activity. The antibiotics tetracycline and erythromycin, which target protein translation, were able to inhibit the ATPase activity of Rv2477c. We postulate that Rv2477c could be involved in mycobacterial protein translation and in resistance to tetracyclines and macrolides. This is the first report of the biochemical characterization of an ABC-F subfamily protein in Mtb.  相似文献   

5.
The proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) multi-gene families code for approximately 10 % of the Mycobacterium tuberculosis (Mtb) genome. These proteins are thought to be virulence factors that participate in impounding the host immune responses. While some members have been studied, the functions of most PE/PPE proteins are yet to be explored. The studies presented here have specifically characterized the roles of one of the PE proteins of Mtb, Rv0160c (PE4), in mycobacterial persistence and in prophylactic efficacy. We have expressed Rv0160c in a non-pathogenic fast-growing Mycobacterium smegmatis strain and demonstrated that the protein improves the survival of mycobacteria in macrophages and in mice. The protein has also shown its effect under physiological stress of bacteria, as evidenced by elevated expression in acidic and in hypoxic conditions. In mice, the level of Rv0160c was noticeably high during the chronic stage of tuberculosis. The seroreactivity of the protein against different categories of tuberculosis patients revealed a strong B-cell humoral response in freshly infected pulmonary tuberculosis patients. In mice, it exhibited increased IL-2, TNF, and IL-6 production. The antigenic properties of the protein directed towards the protective efficacy against the Mtb challenge. All together, our findings have identified Rv0160c as an in vivo expressed immunodominant antigen which plays a crucial role in the pathogenesis of mycobacterial disease and could prove to be a good preventive antigen for tuberculosis.  相似文献   

6.
In general, the members of Lip gene family of Mycobacterium tuberculosis evoke strong immune response in the host. Keeping this fact into consideration, we investigated role of Rv3203, a cell wall associated protein with lipolytic activity, in imparting protection against experimental murine tuberculosis. The data of the present study suggested that archaeosome encapsulated Rv3203 induce strong lymphocyte proliferation, up-regulated Th-1 biased cytokines profile, increased expression of co-stimulatory markers on both antigen presenting cells and T lymphocytes. The immuno-prophylactic response was further modulated by exposure of the animals to zymosan, a TLR2/6 agonist, prior to immunization with archaeosome encapsulated Rv3203. Interestingly, pre-treatment of experimental animals with zymosan boosted strong immunological memory as compared to archaeosome encapsulated Rv3203 as well as BCG vaccine. We conclude that priming of immunized animal with TLR agonist followed by immunization with archaeosomes encapsulated Rv3203 offer substantial protection against tuberculosis infection and could be a potential subunit vaccine based prophylactic strategy.  相似文献   

7.
Rv3619c and Rv3620c are the secretory, antigenic proteins of the ESAT-6/CFP-10 family of Mycobacterium tuberculosis H37Rv. In this article, we show that Rv3619c interacts with Rv3620c to form a 1 : 1 heterodimeric complex with a dissociation constant (K(d)) of 4.8 × 10(-7) M. The thermal unfolding of the heterodimer was completely reversible, with a T(m) of 48 °C. The comparative thermodynamics and thermal unfolding analysis of the Rv3619c-Rv3620c dimer, the ESAT-6-CFP-10 dimer and another ESAT family heterodimer, Rv0287-Rv0288, revealed that the binding strength and stability of Rv3619c-Rv3620c are relatively lower than those of the other two pairs. Molecular modeling and docking studies predict the structure of Rv3619c-Rv3620c to be similar to that of ESAT-6-CFP-10. Spectroscopic studies revealed that, in an acidic environment, Rv3619c and Rv3620c lose their secondary structure and interact weakly to form a complex with a lower helical content, indicating that Rv3619c-Rv3620c is destabilized at low pH. These results, combined with those of previous studies, suggest that unfolding of the proteins is required for dissociation of the complex and membrane binding. In the presence of membrane mimetics, the α-helical contents of Rv3619c and Rv3620 increased by 42% and 35%, respectively. In mice, the immune response against Rv3619c protein is characterized by increased levels of interferon-γ, interleukin-12 and IgG(2a) , indicating a dominant Th1 response, which is mandatory for protection against mycobacterial infection. This study therefore emphasizes the potential of Rv3619c as a subunit vaccine candidate.  相似文献   

8.
BackgroundMycobacterium tuberculosis (Mtb) isocitrate lyase (ICL) is an established drug target that facilitates Mtb persistence. Unlike other mycobacterial strains, where ICL2 is a single gene product, H37Rv has a split event, resulting in two tandemly coded icls - rv1915 and rv1916. Our recent report on functionality of individual Rv1915 and Rv1916, led to postulate the cooperative role of these proteins in pathogen's survival under nutrient-limiting conditions. This study investigates the possibility of Rv1915 and Rv1916 interacting and forming a complex.MethodsPull down assay, activity assay, mass spectrometry and site directed mutagenesis was employed to investigate and validate Rv1915-Rv1916 complex formation.ResultsRv1915 and Rv1916 form a stable complex in vitro, with enhanced ICL/MICL activities as opposed to individual proteins. Further, activities monitored in the presence of acetyl-CoA show significant increase for Rv1916 and the complex but not of Rv0467 and Rv1915Δ90CT. Both full length and truncated Rv1915Δ90CT can form complex, implying the absence of its C-terminal disordered region in complex formation. Further, in silico analysis and site-directed mutagenesis studies reveal Y64 and Y65 to be crucial residues for Rv1915-Rv1916 complex formation.ConclusionsThis study uncovers the association between Rv1915 and Rv1916 and supports the role of acetyl-CoA in escalating the ICL/MICL activities of Rv1916 and Rv1915Δ90CT-Rv1916 complex.General significancePartitioning of ICL2 into Rv1915 and Rv1916 that associates to form a complex in Mtb H37Rv, suggests its importance in signaling and regulation of metabolic pathway particularly in carbon assimilation.  相似文献   

9.
【目的】Rv3194c基因编码的是结核分枝杆菌的PDZ信号蛋白,本研究探讨该蛋白的亚细胞定位,为其细胞结合蛋白的筛选奠定基础。【方法】从H37Rv基因组中扩增出编码只含有PDZ结构域的tRv3194c (Rv3194c 1–234 aa)的基因片段,在3′端加T2A和EGFP序列,一并插入真核表达载体构建出pcDNA3.1-tRv3194c-T2A-EGFP。将构建好的质粒瞬时转染L929细胞,并共感染重组痘苗病毒vTF7-3,用间接免疫荧光、流式细胞分选以及Western blotting检测融合蛋白的表达以及亚细胞定位。【结果】成功构建出真核表达载体pcDNA3.1-tRv3194c-T2A-EGFP,瞬时转染L929细胞后融合蛋白tRv3194c定位于线粒体膜上,且重组痘苗病毒vTF7-3的感染有助于靶蛋白表达水平的提高。【结论】Rv3194蛋白的PDZ结构域与线粒体外膜相关蛋白结合,为了解该蛋白在细胞内的致病机制提供重要线索。  相似文献   

10.
Subtractive DNA hybridization of pathogenic M. bovis and BCG, and comparative genome-wide DNA microarray analysis of M. tuberculosis H37Rv and BCG identified several RD, designated as RD1 to RD16, between M. tuberculosis and M. bovis on the one hand and BCG on the other. These regions cover 108 ORF of M. tuberculosis H37Rv, and are deleted from all 13 BCG sub-strains currently used as anti-tuberculosis vaccines in different parts of the world. In this study, we evaluated cellular and humoral immune response in C57BL/6 mice immunized with the PPE protein Rv3425, encoded by an ORF found in RD11 of M. tuberculosis. Rv3425 protein induced an increased Th1/Th2 type immune response in mice, characterized by an elevated concentration of IFN-gamma in antigen stimulated splenocyte culture and a strong IgG(1) antibody response. These results provide evidence on the immunogenicity of the PPE protein Rv3425 which, together with its reported immunodominant characteristics, imply that it may be a candidate for development of a vaccine for the control of TB.  相似文献   

11.
12.
Tuberculosis (TB) is among the leading causes of morbidity and mortality. The causative agent, Mycobacterium tuberculosis (Mtb), has evolved virulent factors for entry, survival, multiplication and immune evasion. Rv2031 (also called alpha crystallin, hspX, 16-kDa antigen), one of the most immunogenic latency antigens, is believed to play a key role in long-term viability of Mtb. Here, we report the dynamics of pro-inflammatory (IFN-γ, TNF-α) and anti-inflammatory (IL-10) cytokines against Rv2031 using whole blood assay in human cohorts in a TB endemic setting. Cytokine responses to ESAT-6-CFP-10 were also measured for comparison. Blood samples were collected from smear positive pulmonary TB patients and their contacts at baseline, 6 and 12 months, and from community controls at entry. At baseline, 54.4% of controls and 73.2% of contacts were QFT-GIT test positive. Baseline IFN-γ, TNF-α and IL-10 responses to Rv2031 were significantly higher in controls compared to contacts and untreated patients (p<0.001). Furthermore, untreated patients had significantly higher TNF-α and IL-10 responses to Rv2031 compared to contacts (p<0.001). In contacts and treated patients, IFN-γ, TNF-α and IL-10 responses to Rv2031 significantly increased over 12 months (p<0.0001) and became comparable with the corresponding levels in controls. There was a positive and significant correlation between Rv2031 and ESAT-6-CFP-10 specific cytokine responses in each study group. The fact that the levels of IFN-γ, TNF-α and IL-10 against Rv2031 were highest during latent TB infection may indicate their potential as markers of protection against TB. Taken together, the findings of this study suggest the potential of IFN-γ, TNF-α and IL-10 against Rv2031 as biomarkers of the host response to Mtb during convalescence from, and the absence of, active tuberculosis.  相似文献   

13.
In Mycobacterium tuberculosis, two related Z-prenyl diphosphate synthases, E,Z-farnesyl diphosphate synthase (Rv1086) and decaprenyl diphosphate synthase (Rv2361c), work in series to synthesize decaprenyl phosphate (C50) from isopentenyl diphosphate and E-geranyl diphosphate. Decaprenyl phosphate plays a central role in the biosynthesis of essential mycobacterial cell wall components, such as the mycolyl-arabinogalactan-peptidoglycan complex and lipoarabinomannan; thus, its synthesis has attracted considerable interest as a potential therapeutic target. Rv1086 is a unique prenyl diphosphate synthase in that it adds only one isoprene unit to geranyl diphosphate, generating the 15-carbon product (E,Z-farnesyl diphosphate). Rv2361c then adds a further seven isoprene units to E,Z-farnesyl diphosphate in a processive manner to generate the 50-carbon prenyl diphosphate, which is then dephosphorylated to generate a carrier for activated sugars. The molecular basis for chain-length discrimination by Rv1086 during synthesis is unknown. We also report the structure of apo Rv1086 with citronellyl diphosphate bound and with the product mimic E,E-farnesyl diphosphate bound. We report the structures of Rv2361c in the apo form, with isopentenyl diphosphate bound and with a substrate analogue, citronellyl diphosphate. The structures confirm the enzymes are very closely related. Detailed comparison reveals structural differences that account for chain-length control in Rv1086. We have tested this hypothesis and have identified a double mutant of Rv1086 that makes a range of longer lipid chains.  相似文献   

14.
The first structure for a member of the DUF3349 (PF11829) family of proteins, Rv0543c from Mycobacterium tuberculosis, has been determined using NMR-based methods and some of its biophysical properties characterized. Rv0543c is a 100 residue, 11.3 kDa protein that both size exclusion chromatography and NMR spectroscopy show to be a monomer in solution. The structure of the protein consists of a bundle of five α-helices, α1 (M1 – Y16), α2 (P21 – C33), α3 (S37 – G52), α4 (G58 – H65) and α5 (S72 – G87), held together by a largely conserved group of hydrophobic amino acid side chains. Heteronuclear steady-state {1H}–15N NOE, T1, and T2 values are similar through-out the sequence indicating that the backbones of the five helices are in a single motional regime. The thermal stability of Rv0543c, characterized by circular dichroism spectroscopy, indicates that Rv0543c irreversibly unfolds upon heating with an estimated melting temperature of 62.5 °C. While the biological function of Rv0543c is still unknown, the presence of DUF3349 proteins predominately in Mycobacterium and Rhodococcus bacterial species suggests that Rv0543 may have a biological function unique to these bacteria, and consequently, may prove to be an attractive drug target to combat tuberculosis.  相似文献   

15.
16.
A particular genotype of tuberculosis, named Beijing strain, is strongly associated with drug resistance and high virulence. Therefore, rapid prospective identification of Mycobacterium tuberculosis Beijing strains is very important for identifying and controlling tuberculosis of Beijing genotype. In the present study, we found that the co-mutation, A191C in Rv2629 and G243C in Rv0444c, is closely related to Beijing genotype. Gene Rv2629 and Rv0444c of 139 clinical isolates of M. tuberculosis were analyzed by PCR amplification and sequencing. Among 99 Beijing strains, 86 % (n = 85) isolates had the mutation G243C in Rv0444c and 92.93 % (n = 92) isolates had the mutation A191C in Rv2629. Among 40 non-Beijing isolates, only six isolates carried the mutation G243C in Rv0444c and eight isolates carried the mutation A191C in Rv2629. The co-mutation existed in 84.85 % (n = 84) of 99 clinical genome samples of W-Beijing strains and in only 12.5 % (n = 5) of the 40 non-Beijing strains, and the positive predictive value of 94.38 %, obtained in our experiment with a designed ratio of Beijing isolates, is similar to that in China at present. This result suggested that the detection method of the co-mutation, A191C in Rv2629 and G243C in Rv0444c, proposed in this study was a rapid, reliable, and sensitive one for identifying tuberculosis with Beijing genotype.  相似文献   

17.
Sustained adaptive immunity to pathogens provides effective protection against infections, and effector cells located at the site of infection ensure rapid response to the challenge. Both are essential for the success of vaccine development. To explore new vaccination approach against Mycobacterium tuberculosis (M.tb) infection, we have shown that Rv3615c, identified as ESX‐1 substrate protein C of M.tb but not expressed in BCG, induced a dominant Th1‐type response of CD4+ T cells from patients with tuberculosis pleurisy, which suggests a potential candidate for vaccine development. But subcutaneous immunization with Rv3615c induced modest T‐cell responses systemically, and showed suboptimal protection against virulent M.tb challenge at the site of infection. Here, we use a mouse model to demonstrate that intranasal immunization with Rv3615c induces sustained capability of adaptive CD4+ T‐ and B‐cell responses in lung parenchyma and airway. Rv3615c contains a dominant epitope of mouse CD4+ T cells, Rv3615c41‐50, and elicits CD4+ T‐cell response with an effector–memory phenotype and multi‐Th1‐type cytokine coexpressions. Since T cells resident at mucosal tissue are potent at control of infection at early stage, our data show that intranasal immunization with Rv3615c promotes a sustained regional immunity to M.tb, and suggests a potency in control of M.tb infection. Our study warranties a further investigation of Rv3615c as a candidate for development of effective vaccination against M.tb infection.  相似文献   

18.
The Rv3203 (LipV) of Mycobacterium tuberculosis (Mtb) H37Rv, is annotated as a member of Lip family based on the presence of characteristic consensus esterase motif ‘GXSXG’. In vitro culture studies of Mtb H37Ra indicated that expression of Rv3203 gene was up-regulated during acidic stress as compared to normal whereas no expression was observed under nutrient and oxidative stress conditions. Therefore, detailed characterization of Rv3203 was done by gene cloning and its further expression and purification as his-tagged protein in microbial expression system. The enzyme was purified to homogeneity by affinity chromatography. It demonstrated broad substrate specificity and preferentially hydrolyzed p-nitrophenyl myristate. The purified enzyme demonstrated an optimum activity at pH 8.0 and temperature 50 °C. The specific activity, K m and V max of enzyme was determined to be 21.29 U mg?1 protein, 714.28 μM and 62.5 μmol ml?1 min?1, respectively. The pH stability assay and circular dichroism spectroscopic analysis revealed that Rv3203 protein is more stable in acidic condition. Tetrahydrolipstatin, a specific lipase inhibitor and RHC80267, a diacylglycerol lipase inhibitor abolished the activity of this enzyme. The catalytic triad residues were determined to be Ser50, Asp180 and His203 residues by site-directed mutagenesis.  相似文献   

19.
We previously reported interferon gamma secretion by human CD4+ and CD8+ T cells in response to recombinant E. coli-expressed Rv1860 protein of Mycobacterium tuberculosis (MTB) as well as protection of guinea pigs against a challenge with virulent MTB following prime-boost immunization with DNA vaccine and poxvirus expressing Rv1860. In contrast, a Statens Serum Institute Mycobacterium bovis BCG (BCG-SSI) recombinant expressing MTB Rv1860 (BCG-TB1860) showed loss of protective ability compared to the parent BCG strain expressing the control GFP protein (BCG-GFP). Since Rv1860 is a secreted mannosylated protein of MTB and BCG, we investigated the effect of BCG-TB1860 on innate immunity. Relative to BCG-GFP, BCG-TB1860 effected a significant near total reduction both in secretion of cytokines IL-2, IL-12p40, IL-12p70, TNF-α, IL-6 and IL-10, and up regulation of co-stimulatory molecules MHC-II, CD40, CD54, CD80 and CD86 by infected bone marrow derived dendritic cells (BMDC), while leaving secreted levels of TGF-β unchanged. These effects were mimicked by BCG-TB1860His which carried a 6-Histidine tag at the C-terminus of Rv1860, killed sonicated preparations of BCG-TB1860 and purified H37Rv-derived Rv1860 glycoprotein added to BCG-GFP, but not by E. coli-expressed recombinant Rv1860. Most importantly, BMDC exposed to BCG-TB1860 failed to polarize allogeneic as well as syngeneic T cells to secrete IFN-γ and IL-17 relative to BCG-GFP. Splenocytes from mice infected with BCG-SSI showed significantly less proliferation and secretion of IL-2, IFN-γ and IL-17, but secreted higher levels of IL-10 in response to in vitro restimulation with BCG-TB1860 compared to BCG-GFP. Spleens from mice infected with BCG-TB1860 also harboured significantly fewer DC expressing MHC-II, IL-12, IL-2 and TNF-α compared to mice infected with BCG-GFP. Glycoproteins of MTB, through their deleterious effects on DC may thus contribute to suppress the generation of a TH1- and TH17-dominated adaptive immune response that is vital for protection against tuberculosis.  相似文献   

20.

Rationale

Due to the invasive nature of the procedures involved, most studies of Mycobacterium tuberculosis (Mtb)-specific immunity in humans have focused on the periphery rather than the site of active infection, the lung. Recently, antigens associated with Mtb-latency and -dormancy have been described using peripheral blood (PB) cells; however their response in the lung is unknown. The objective of this report was to evaluate, in patients prospectively enrolled with suspected active tuberculosis (TB), whether the latency antigen Rv2628 induces local-specific immune response in bronchoalveolar lavage (BAL) cells compared to PB cells.

Material/Methods

Among the 41 subjects enrolled, 20 resulted with active TB. Among the 21 without active disease, 9 were defined as subjects with latent TB-infection (LTBI) [Quantiferon TB Gold In-tube positive]. Cytokine responses to Rv2628 were evaluated by enzyme linked immunospot (ELISPOT) assay and flow cytometric (FACS) analysis. RD1-secreted antigen stimulation was used as control.

Results

There was a significantly higher frequency of Rv2628- and RD1-specific CD4+ T-cells in the BAL of active TB patients than in PB. However the trend of the response to Rv2628 in subjects with LTBI was higher than in active TB in both PB and BAL, although this difference was not significant. In active TB, Rv2628 and RD1 induced a cytokine-response profile mainly consisting of interferon (IFN)-γ-single-positive over double-IFN-γ/interleukin (IL)-2 T-cells in both PB and BAL. Finally, BAL-specific CD4+ T-cells were mostly effector memory (EM), while peripheral T-cell phenotypes were distributed among naïve, central memory and terminally differentiated effector memory T-cells.

Conclusions

In this observational study, we show that there is a high frequency of specific T-cells for Mtb-latency and RD1-secreted antigens (mostly IFN-γ-single-positive specific T-cells with an EM phenotype) in the BAL of active TB patients. These data may be important for better understanding the pathogenesis of TB in the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号