首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4BWT-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4BWT-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding.  相似文献   

2.
Ras proteins are small GTPases that act as signal transducers between cell surface receptors and several intracellular signaling cascades. They contain highly homologous catalytic domains and flexible C-terminal hypervariable regions (HVRs) that differ across Ras isoforms. KRAS is among the most frequently mutated oncogenes in human tumors. Surprisingly, we found that the C-terminal HVR of K-Ras4B, thought to minimally impact the catalytic domain, directly interacts with the active site of the protein. The interaction is almost 100-fold tighter with the GDP-bound than the GTP-bound protein. HVR binding interferes with Ras-Raf interaction, modulates binding to phospholipids, and slightly slows down nucleotide exchange. The data indicate that contrary to previously suggested models of K-Ras4B signaling, HVR plays essential roles in regulation of signaling. High affinity binding of short peptide analogs of HVR to K-Ras active site suggests that targeting this surface with inhibitory synthetic molecules for the therapy of KRAS-dependent tumors is feasible.  相似文献   

3.
Ras signaling to its downstream effectors appears to include combinations of extracellular-signal-regulated Ras activation at the plasma membrane (PM) and endomembranes, dynamic lateral segregation in the PM, and translocation of Ras from the PM to intracellular compartments. These processes are governed by the C-terminal polybasic farnesyl domain in K-Ras 4B and by the cysteine-palmitoylated C-terminal farnesyl domains in H-Ras and N-Ras. K-Ras 4B has no palmitoylated cysteines. Depalmitoylation/repalmitoylation of H-/N-Ras proteins promotes their cellular redistribution and signaling by mechanisms as yet unknown, possibly involving chaperones. Palmitoylation of H-/N-Ras also promotes their association with 'rasosomes', randomly diffusing nanoparticles that apparently provide a means by which multiple copies of activated Ras and its signal can spread rapidly. Ubiquitination of H-Ras evidently targets it to the endosomes. The polybasic farnesyl domain of K-Ras 4B was shown to act as a target for Ca++/calmodulin, which sequesters the active protein from the PM, thereby facilitating its trafficking to Golgi apparatus and early endosomes. Protein kinase C-dependent phosphorylation of S181 in K-Ras 4B was shown to provide a regulated farnesyl-electrostatic switch on K-Ras 4B, which promotes its translocation to the mitochondria. All these translocation events are characterized by nonconventional trafficking of the farnesyl-modified Ras proteins and seem to govern the selectivity and probably also the robustness of the Ras signal. In this review, we discuss the various modifications and interactions of the farnesylated C-terminus, the trafficking of Ras proteins in the PM and between the PM and the endomembranes, and the relevance of the subcellular localization of Ras for Ras function.  相似文献   

4.
It is generally accepted that the cytosolic face of the plasma membrane of mammalian cells is enriched in acidic phospholipids due to an asymmetric distribution of neutral and anionic phospholipids in the two bilayer leaflets. However, the phospholipid asymmetry across intracellular membranes is not known. Two models have been proposed for the selective targeting of K-Ras4B, which contains a C-terminal farnesyl cysteine methyl ester adjacent to a polybasic peptide segment, to the cytosolic face of the plasma membrane. One involves electrostatic interaction of the lipidated polybasic domain with anionic phospholipids in the plasma membrane, and the other involves binding of K-Ras4B to a specific protein receptor. To address this issue, we prepared by semi-synthesis a green fluorescent protein variant that is linked to a farnesylated, polybasic peptide corresponding to the K-Ras4B C terminus as well as a variant that contains an all-d amino acid version of the K-Ras4B peptide. As expected based on electrostatics, both constructs showed preferential in vitro binding to anionic phospholipid vesicles versus those composed only of zwitterionic phospholipid. Both constructs fully targeted to the plasma membrane when microinjected into live Chinese hamster ovary and Madin-Darby canine kidney cells. Because the all-d amino acid peptide should be devoid of binding affinity to a putative highly specific K-Ras membrane receptor, these results support an electrostatic basis for the targeting of K-Ras4B to the plasma membrane, and they support an intracellular landscape of phospholipids in which the cytosolic face of the plasma membrane is the most enriched in acidic phospholipids.  相似文献   

5.
Membrane anchorage of Ras proteins is important for their signaling and oncogenic potential. K-Ras4B (K-Ras), the Ras isoform most often mutated in human cancers, is the only Ras isoform where a polybasic motif contributes essential electrostatic interactions with the negatively charged cytoplasmic leaflet. Here we studied the effects of the cationic amphiphilic drug chlorpromazine (CPZ) on the membrane association of oncogenic K-Ras(G12V), cell proliferation, and apoptosis. Combining live cell microscopy, FRAP beam size analysis, and cell fractionation studies, we show that CPZ reduces the association of GFP-K-Ras(G12V) with the plasma membrane and increases its exchange between plasma membrane and cytoplasmic pools. These effects appear to depend on electrostatic interactions because the membrane association of another related protein that has a membrane-interacting polybasic cluster (Rac1(G12V)) was also affected, whereas that of H-Ras was not. The weakened association with the plasma membrane led to a higher fraction of GFP-K-Ras(G12V) in the cytoplasm and in internal membranes, accompanied by either cell cycle arrest (PANC-1 cells) or apoptosis (Rat-1 fibroblasts), the latter being in correlation with the targeting of K-Ras(G12V) to mitochondria. In accord with these results, CPZ compromised the transformed phenotype of PANC-1 cells, as indicated by inhibition of cell migration and growth in soft agar.  相似文献   

6.
K-Ras is a membrane-associated GTPase that cycles between active and inactive conformational states to regulate a variety of cell signaling pathways. Somatic mutations in K-Ras are linked to 15–20% of all human tumors. K-Ras attaches to the inner leaflet of the plasma membrane via a farnesylated polybasic domain; however, the structural details of the complex remain poorly understood. Based on extensive (7.5 μs total) atomistic molecular dynamics simulations here we show that oncogenic mutant K-Ras interacts with a negatively charged lipid bilayer membrane in multiple orientations. Of these, two highly populated orientations account for ∼54% of the conformers whose catalytic domain directly interacts with the bilayer. In one of these orientation states, membrane binding involves helices 3 and 4 of the catalytic domain in addition to the farnesyl and polybasic motifs. In the other orientation, β-strands 1–3 and helix 2 on the opposite face of the catalytic domain contribute to membrane binding. Flexibility of the linker region was found to be important for the reorientation. The biological significance of these observations was evaluated by initial experiments in cells overexpressing mutant K-Ras as well as by an analysis of Ras-effector complex structures. The results suggest that only one of the two major orientation states is capable of effector binding. We propose that the different modes of membrane binding may be exploited in structure-based drug design efforts for cancer therapy.  相似文献   

7.
H-, N-, and K-Ras are isoforms of Ras proteins, which undergo different lipid modifications at the C terminus. These post-translational events make possible the association of Ras proteins both with the inner plasma membrane and to the cytosolic surface of endoplasmic reticulum and Golgi complex, which is also required for the proper function of these proteins. To better characterize the intracellular distribution and sorting of Ras proteins, constructs were engineered to express the C-terminal domain of H- and K-Ras fused to variants of green fluorescent protein. Using confocal microscopy, we found in CHO-K1 cells that H-Ras, which is palmitoylated and farnesylated, localized at the recycling endosome in addition to the inner leaflet of the plasma membrane. In contrast, K-Ras, which is farnesylated and nonpalmitoylated, mainly localized at the plasma membrane. Moreover, we demonstrate that sorting signals of H- and K-Ras are contained within the C-terminal domain of these proteins and that palmitoylation on this region of H-Ras might operate as a dominant sorting signal for proper subcellular localization of this protein in CHO-K1 cells. Using selective photobleaching techniques, we demonstrate the dynamic nature of H-Ras trafficking to the recycling endosome from plasma membrane. We also provide evidence that Rab5 and Rab11 activities are required for proper delivery of H-Ras to the endocytic recycling compartment. Using a chimera containing the Ras binding domain of c-Raf-1 fused to a fluorescent protein, we found that a pool of GTP-bound H-Ras localized on membranes from Rab11-positive recycling endosome after serum stimulation. These results suggest that H-Ras present in membranes of the recycling endosome might be activating signal cascades essential for the dynamic and function of the organelle.  相似文献   

8.
Summary 1. Ras signaling and oncogenesis depend on the dynamic interplay of Ras with distinctive plasma membrane (PM) microdomains and various intracellular compartments. Such interaction is dictated by individual elements in the carboxy-terminal domain of the Ras proteins, including a farnesyl isoprenoid group, sequences in the hypervariable region (hvr)-linker, and palmitoyl groups in H/N-Ras isoforms.2. The farnesyl group acts as a specific recognition unit that interacts with prenyl-binding pockets in galectin-1 (Gal-1), galectin-3 (Gal-3), and cGMP phosphodiesterase δ. This interaction appears to contribute to the prolongation of Ras signals in the PM, the determination of Ras effector usage, and perhaps also the transport of cytoplasmic Ras. Gal-1 promotes H-Ras signaling to Raf at the expense of phosphoinositide 3-kinase (PI3-K) and Ral guanine nucleotide exchange factor (RalGEF), while galectin-3 promotes K-Ras signaling to both Raf and PI3-K.3. The hvr-linker and the palmitates of H-Ras and N-Ras determine the micro- and macro-localizations of these proteins in the PM and in the Golgi, as well as in ‘rasosomes’, randomly moving nanoparticles that carry palmitoylated Ras proteins and their signal through the cytoplasm.4. The dynamic compartmentalization of Ras proteins contributes to the spatial organization of Ras signaling, promotes redistribution of Ras, and provides an additional level of selectivity to the signal output of this regulatory GTPase.  相似文献   

9.
10.
Oncogenic mutant Ras is frequently expressed in human cancers, but no anti-Ras drugs have been developed. Since membrane association is essential for Ras biological activity, we developed a high content assay for inhibitors of Ras plasma membrane localization. We discovered that staurosporine and analogs potently inhibit Ras plasma membrane binding by blocking endosomal recycling of phosphatidylserine, resulting in redistribution of phosphatidylserine from plasma membrane to endomembrane. Staurosporines are more active against K-Ras than H-Ras. K-Ras is displaced to endosomes and undergoes proteasomal-independent degradation, whereas H-Ras redistributes to the Golgi and is not degraded. K-Ras nanoclustering on the plasma membrane is also inhibited. Ras mislocalization does not correlate with protein kinase C inhibition or induction of apoptosis. Staurosporines selectively abrogate K-Ras signaling and proliferation of K-Ras-transformed cells. These results identify staurosporines as novel inhibitors of phosphatidylserine trafficking, yield new insights into the role of phosphatidylserine and electrostatics in Ras plasma membrane targeting, and validate a new target for anti-Ras therapeutics.  相似文献   

11.
Ha-Ras and Ki-Ras have different distributions across plasma membrane microdomains. The Ras C-terminal anchors are primarily responsible for membrane micro-localization, but recent work has shown that the interaction of Ha-Ras with lipid rafts is modulated by GTP loading via a mechanism that requires the hypervariable region (HVR). We have now identified two regions in the HVR linker domain that regulate Ha-Ras raft association. Release of activated Ha-Ras from lipid rafts is blocked by deleting amino acids 173-179 or 166-172. Alanine replacement of amino acids 173-179 but not 166-172 restores wild type micro-localization, indicating that specific N-terminal sequences of the linker domain operate in concert with a more C-terminal spacer domain to regulate Ha-Ras raft association. Mutations in the linker domain that confine activated Ha-RasG12V to lipid rafts abrogate Raf-1, phosphoinositide 3-kinase, and Akt activation and inhibit PC12 cell differentiation. N-Myristoylation also prevents the release of activated Ha-Ras from lipid rafts and inhibits Raf-1 activation. These results demonstrate that the correct modulation of Ha-Ras lateral segregation is critical for downstream signaling. Mutations in the linker domain also suppress the dominant negative phenotype of Ha-RasS17N, indicating that HVR sequences are essential for efficient interaction of Ha-Ras with exchange factors in intact cells.  相似文献   

12.
Ras proteins (H-, N-, and K-Ras) operate as molecular switches in signal transduction cascades controlling cell proliferation, differentiation, or apoptosis. The interaction of Ras with its effectors is mediated by the effector-binding loop, but different data about Ras location to plasma membrane subdomains and new roles for some docking/scaffold proteins point to signaling specificities of the different Ras proteins. To investigate the molecular mechanisms for these specificities, we compared an effector loop mutation (P34G) of three Ras isoforms (H-, N-, and K-Ras4B) for their biological and biochemical properties. Although this mutation diminished the capacity of Ras proteins to activate the Raf/ERK and the phosphatidylinositol 3-kinase/AKT pathways, the H-Ras V12G34 mutant retained the ability to cause morphological transformation of NIH 3T3 fibroblasts, whereas both the N-Ras V12G34 and the K-Ras4B V12G34 mutants were defective in this biological activity. On the other hand, although both the N-Ras V12G34 and the K-Ras4B V12G34 mutants failed to promote activation of the Ral-GDS/Ral A/PLD and the Ras/Rac pathways, the H-Ras V12G34 mutant retained the ability to activate these signaling pathways. Interestingly, the P34G mutation reduced specifically the N-Ras and K-Ras4B in vitro binding affinity to Ral-GDS, but not in the case of H-Ras. Thus, independently of Ras location to membrane subdomains, there are marked differences among Ras proteins in the sensitivity to an identical mutation (P34G) affecting the highly conserved effector-binding loop.  相似文献   

13.
The spatial organization of Ras proteins into nanoclusters on the inner leaflet of the plasma membrane is essential for high fidelity signaling through the MAPK pathway. Here we identify two selective regulators of K-Ras nanoclustering from a proteomic screen for K-Ras interacting proteins. Nucleophosmin (NPM) and nucleolin are predominantly localized to the nucleolus but also have extranuclear functions. We show that a subset of NPM and nucleolin localizes to the inner leaflet of plasma membrane and forms specific complexes with K-Ras but not other Ras isoforms. Active GTP-loaded and inactive GDP-loaded K-Ras both interact with NPM, although NPM-K-Ras binding is increased by growth factor receptor activation. NPM and nucleolin both stabilize K-Ras levels on the plasma membrane, but NPM concurrently increases the clustered fraction of GTP-K-Ras. The increase in nanoclustered GTP-K-Ras in turn enhances signal gain in the MAPK pathway. In summary these results reveal novel extranucleolar functions for NPM and nucleolin as regulators of K-Ras nanocluster formation and activation of the MAPK pathway. The study also identifies a new class of K-Ras nanocluster regulator that operates independently of the structural scaffold galectin-3.Ras proteins are small GTPases that function as molecular switches on the inner leaflet of the plasma membrane, conveying extracellular signals to the cell interior. Ras proteins are critical regulators of signal transduction pathways controlling key cell fates such as cell growth, differentiation, and apoptosis. Deregulation of these pathways results in aberrant cell growth and tumor formation. Mutations that render Ras constitutively active are found in ∼15% of human cancers, making Ras one of the most clinically significant proteins in human carcinogenesis. Oncogenic mutations are most prevalent in the K-Ras gene, accounting for a large proportion of solid tumors including 90% of pancreatic cancer, 50% of colon cancer, and 30% of non-small cell lung cancer (1, 2).The three major Ras isoforms, H-, N-, and K-Ras generate distinct signal outputs in intact cells, signifying specific roles for each isoform. These functional differences stem from significant sequence divergence in the Ras C-terminal 25 amino acids of the hypervariable region (HVR)3 that directs post-translation attachment of different lipid anchors. The minimal membrane anchor of H-Ras comprises two palmitate groups and a farnesyl group, whereas K-Ras is tethered by a farnesyl group and a polybasic domain (3, 4). These minimal anchors, together with flanking protein sequences and the G-domain, interact with lipids and proteins of the plasma membrane, driving the Ras isoforms into spatially and structurally distinct nanodomains on the plasma membrane (5, 6). Ras lateral segregation is further modulated by the activation state of Ras; active GTP-loaded H-Ras is organized in cholesterol-independent nanoclusters, whereas inactive GDP-loaded H-Ras is arrayed in cholesterol-dependent nanoclusters (5, 79). Recent work has also shown that GTP-K-Ras clusters into nanodomains that are spatially distinct from GDP-K-Ras, although both types of nanocluster are cholesterol-independent and actin-dependent (7, 9). K-Ras-GTP nanoclustering, however, is regulated by galectin-3, which operates as a nanodomain scaffold (10, 11).Ras-GTP nanoclusters are the sites of Raf/MEK and ERK recruitment to the plasma membrane. Scaffolding all components of the MAPK module within nanoclusters rewires the biochemistry to generate a digital ERKpp output. The operation of Ras-GTP nanoclusters as highly sensitive digital switches is critical to deliver high fidelity signal transmission across the plasma membrane (1214). A key parameter in epidermal growth factor (EGF) receptor to MAPK signal transmission is the fraction of Ras-GTP that forms nanoclusters; this clustered fraction sets the gain for cellular MAPK signaling (15, 16).NPM (also known as B23) and nucleolin are multifunctional phosphoproteins predominately localized to the nucleolus that play key roles in ribosome biogenesis (1719). For example, NPM exhibits ribonuclease activity and preferentially cleaves pre-rRNA. NPM and nucleolin also have functions outside of the nucleolus. Both proteins shuttle between the nucleolus and the cytoplasm (20), and this shuttling may allow NPM to operate as molecular chaperone (21). In addition cytosolic NPM is involved in centrosome duplication (22). Like Ras proteins, NPM and nucleolin regulate cell proliferation and transformation and are overexpressed in multiple cancers (23). However, the physiological role of NPM in carcinogenesis remains controversial because it has been described as both an oncogene and a tumor suppressor (23).In this study we identify NPM and nucleolin as proteins that interact specifically with K-Ras but not H-Ras. Furthermore we definitively identify a subset of NPM and nucleolin on the inner leaflet of the plasma membrane where both proteins interact with K-Ras. Importantly, NPM and nucleolin stabilize K-Ras levels on the plasma membrane, leading to an increase in the K-Ras clustered fraction, which amplifies signal output from the MAPK pathway. Combined, our data indicate that NPM and nucleolin play a critical role in signal transduction via the MAPK pathway.  相似文献   

14.
Farnesyltransferase inhibitors (FTIs) block Ras farnesylation, subcellular localization and activity, and inhibit the growth of Ras-transformed cells. Although FTIs are ineffective against K-Ras4B, the Ras isoform most commonly mutated in human cancers, they can inhibit the growth of tumors containing oncogenic K-Ras4B, implicating other farnesylated proteins or suggesting distinct functions for farnesylated and for geranylgeranylated K-Ras, which is generated when farnesyltransferase is inhibited. In addition to bypassing FTI blockade through geranylgeranylation, K-Ras4B resistance to FTIs may also result from its higher affinity for farnesyltransferase. Using chimeric Ras proteins containing all combinations of Ras background, CAAX motif, and K-Ras polybasic domain, we show that either a polybasic domain or an alternatively prenylated CAAX renders Ras prenylation, Ras-induced Elk-1 activation, and anchorage-independent cell growth FTI-resistant. The polybasic domain alone increases the affinity of Ras for farnesyltransferase, implying independent roles for each K-Ras4B sequence element in FTI resistance. Using microarray analysis and colony formation assays, we confirm that K-Ras function is independent of the identity of the prenyl group and, therefore, that FTI inhibition of K-Ras transformed cells is likely to be independent of K-Ras inhibition. Our results imply that relevant FTI targets will lack both polybasic and potentially geranylgeranylated methionine-CAAX motifs.  相似文献   

15.
Targeting of K-Ras 4B by S-trans,trans-farnesyl thiosalicylic acid   总被引:2,自引:0,他引:2  
Ras proteins regulate cell growth, differentiation and apoptosis. Their activities depend on their anchorage to the inner surface of the plasma membrane, which is promoted by their common carboxy-terminal S-farnesylcysteine and either a stretch of lysine residues (K-Ras 4B) or S-palmitoyl moieties (H-Ras, N-Ras and K-Ras 4A). We previously demonstrated dislodgment of H-Ras from EJ cell membranes by S-trans,trans-farnesylthiosalicylic acid (FTS), and proposed that FTS disrupts the interactions between the S-prenyl moiety of Ras and the membrane anchorage domains. In support of this hypothesis, we now show that FTS, which is not a farnesyltransferase inhibitor, inhibits growth of NIH3T3 cells transformed by the non-palmitoylated K-Ras 4B(12V) or by its farnesylated, but unmethylated, K-Ras 4B(12) CVYM mutant. The growth-inhibitory effects of FTS followed the dislodgment and accelerated degradation of K-Ras 4B(12V), leading in turn to a decrease in its amount in the cells and inhibition of MAPK activity. FTS did not affect the rate of degradation of the K-Ras 4B, SVIM mutant which is not modified post-translationally, suggesting that only farnesylated Ras isoforms are substrates for facilitated degradation. The putative Ras-recognition sites (within domains in the cell membrane) appear to tolerate both C(15) and C(20) S-prenyl moeities, since geranylgeranyl thiosalicylic acid mimicked the growth-inhibitory effects of FTS in K-Ras 4B(12V)-transformed cells and FTS inhibited the growth of cells transformed by the geranylgeranylated K-Ras 4B(12V) CVIL isoform. The results suggest that FTS acts as a domain-targeted compound that disrupts Ras-membrane interactions. The fact that FTS can target K-Ras 4B(12V), which is insensitive to inhibition by farnesyltransfarase inhibitors, suggests that FTS may target Ras (and other prenylated proteins important for transformed cell growth) in an efficient manner that speaks well for its potential as an anticancer therapeutic agent.  相似文献   

16.
Understanding the signalling function of Ras GTPases has been the focus of much research for over 20 years. Both the catalytic domain and the membrane anchoring C terminal hypervariable region (HVR) of Ras are necessary for its cellular function. However, while the highly conserved catalytic domain has been characterized in atomic detail, the structure of the full-length membrane-bound Ras has remained elusive. Lack of structural knowledge on the full-length protein limited our understanding of Ras signalling. For example, structures of the Ras catalytic domain solved in complex with effectors do not provide a basis for the functional specificity of different Ras isoforms. Recent molecular dynamics simulations in combination with biophysical and cell biological experiments have shown that the HVR and parts of the G domain cofunction with the lipid tails to anchor H-ras to the plasma membrane. In the GTP-bound state, H-ras adopts an orientation that allows read out by Ras effectors and translation into corresponding MAPK signalling. Here we discuss details of an analysis that suggests a novel balance model for Ras functioning. The balance model rationalizes Ras membrane orientation and may help explain isoform specific interactions of Ras with its effectors and modulators.  相似文献   

17.
The plasma membrane pits known as caveolae have been implicated both in cholesterol homeostasis and in signal transduction. CavDGV and CavKSY, two dominant-negative amino-terminal truncation mutants of caveolin, the major structural protein of caveolae, significantly inhibited caveola-mediated SV40 infection, and were assayed for effects on Ras function. We find that CavDGV completely blocked Raf activation mediated by H-Ras, but not that mediated by K-Ras. Strikingly, the inhibitory effect of CavDGV on H-Ras signalling was completely reversed by replenishing cell membranes with cholesterol and was mimicked by cyclodextrin treatment, which depletes membrane cholesterol. These results provide a crucial link between the cholesterol-trafficking role of caveolin and its postulated role in signal transduction through cholesterol-rich surface domains. They also provide direct evidence that H-Ras and K-Ras, which are targeted to the plasma membrane by different carboxy-terminal anchors, operate in functionally distinct microdomains of the plasma membrane.  相似文献   

18.
Cornely R  Rentero C  Enrich C  Grewal T  Gaus K 《IUBMB life》2011,63(11):1009-1017
Annexin A6 (AnxA6) belongs to the conserved annexin protein family--a group of Ca(2+) -dependent membrane binding proteins. It is the largest of all annexin proteins and upon activation, binds to negatively charged phospholipids in the plasma membrane and endosomes. In addition, AnxA6 associates with cholesterol-rich membrane microdomains termed lipid rafts. Membrane cholesterol triggers Ca(2+) -independent translocation of AnxA6 to membranes and AnxA6 levels determine the number of caveolae, a form of specialized rafts at the cell surface. AnxA6 also has an F-actin binding domain and interacts with cytoskeleton components. Taken together, this suggests that AnxA6 has a scaffold function to link membrane microdomains with the organization of the cytoskeleton. Such a link facilitates AnxA6 to participate in plasma membrane repair and it would also impact on receptor signalling at the cell surface, growth factor, and lipoprotein receptor trafficking, Ca(2+) -channel activity and T cell activation. Hence, the regulation of cell surface receptors by AnxA6 may be facilitated by its unique structure that allows recruitment of interaction partners and simultaneously bridging specialized membrane domains with cortical actin surrounding activated receptors.  相似文献   

19.
Activation of the epidermal growth factor receptor (EGFR) triggers multiple signaling pathways and rapid endocytosis of the epidermal growth factor (EGF)-receptor complexes. To directly visualize the compartmentalization of molecules involved in the major signaling cascade, activation of Ras GTPase, we constructed fusions of Grb2, Shc, H-Ras, and K-Ras with enhanced cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP), and used live-cell fluorescence imaging microscopy combined with the fluorescence resonance energy transfer (FRET) technique. Stimulation of cells by EGF resulted in the accumulation of large pools of Grb2-CFP and YFP-Shc in endosomes, where these two adaptor proteins formed a complex with EGFR. H-Ras and K-Ras fusion proteins were found at the plasma membrane, particularly in ruffles and lamellipodia, and also in endosomes independently of GTP/GDP loading and EGF stimulation. The relative amount of endosomal H-Ras was higher than that of K-Ras, whereas K-Ras predominated at the plasma membrane. On application of EGF, Grb2, and Ras converge in the same endosomes through the fusion of endosomes containing either Grb2 or Ras or through the joint internalization of two proteins from the plasma membrane. To examine the localization of the GTP-bound form of Ras, we used a FRET assay that exploits the specific interaction of GTP-bound CFP-Ras with the YFP-fused Ras binding domain of c-Raf. FRET microscopy revealed that GTP-bound Ras is located at the plasma membrane, mainly in ruffles and at the cell edges, as well as in endosomes containing EGFR. These data point to the potential for endosomes to serve as sites of generation for persistent signaling through Ras.  相似文献   

20.
Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号