首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The snail Helix aspersa Müller, is negatively geotropic during the daytime, but positive or indifferent at night. 2. The precision of geotropic orientation is a function of the gravity component acting on the body. 3. The rate of geotropic locomotion is also determined by the gravity component (sine of the angle of inclination). 4. The rate of upward movement is increased 1.51 times at 45° inclination by loading the snail with one-half its weight. No such increase is seen in loaded snails creeping on a horizontal surface. 5. Moderate centrifugation results in orientation and locomotion towards the center of rotation. 6. A response analogous to the homostrophic reflex occurs when a backward pull to right or to left is exerted on the shell. Bilaterally equal tension applied to the shell causes locomotion along a path parallel and opposite to the direction of the pull. 7. All the observations go to show that the stimulus for geotropic orientation and locomotion is tension of the body muscles produced by the downward pull of gravity, and that the stimulus is received by the proprioreceptors of these muscles. Otolith apparatus and analogous organs, when present, may assist in the response, but they do not seem to be requisite in all cases. Since the precision of orientation and the rate of locomotion are functions of the gravity component acting on the body, the muscle tension theory of the geotropic reactions accords fully with Loeb''s tropism doctrine for animals.  相似文献   

2.
We examined the effect of increased cognitive load on visual search behavior and measures of gait performance during locomotion. Also, we investigated how personality traits, specifically the propensity to consciously control or monitor movements (trait movement ‘reinvestment’), impacted the ability to maintain effective gaze under conditions of cognitive load. Healthy young adults traversed a novel adaptive walking path while performing a secondary serial subtraction task. Performance was assessed using correct responses to the cognitive task, gaze behavior, stepping accuracy, and time to complete the walking task. When walking while simultaneously carrying out the secondary serial subtraction task, participants visually fixated on task-irrelevant areas ‘outside’ the walking path more often and for longer durations of time, and fixated on task-relevant areas ‘inside’ the walkway for shorter durations. These changes were most pronounced in high-trait-reinvesters. We speculate that reinvestment-related processes placed an additional cognitive demand upon working memory. These increased task-irrelevant ‘outside’ fixations were accompanied by slower completion rates on the walking task and greater gross stepping errors. Findings suggest that attention is important for the maintenance of effective gaze behaviors, supporting previous claims that the maladaptive changes in visual search observed in high-risk older adults may be a consequence of inefficiencies in attentional processing. Identifying the underlying attentional processes that disrupt effective gaze behaviour during locomotion is an essential step in the development of rehabilitation, with this information allowing for the emergence of interventions that reduce the risk of falling.  相似文献   

3.
When we look at the world—or a graphical depiction of the world—we perceive surface materials (e.g. a ceramic black and white checkerboard) independently of variations in illumination (e.g. shading or shadow) and atmospheric media (e.g. clouds or smoke). Such percepts are partly based on the way physical surfaces and media reflect and transmit light and partly on the way the human visual system processes the complex patterns of light reaching the eye. One way to understand how these percepts arise is to assume that the visual system parses patterns of light into layered perceptual representations of surfaces, illumination and atmospheric media, one seen through another. Despite a great deal of previous experimental and modelling work on layered representation, however, a unified computational model of key perceptual demonstrations is still lacking. Here we present the first general computational model of perceptual layering and surface appearance—based on a boarder theoretical framework called gamut relativity—that is consistent with these demonstrations. The model (a) qualitatively explains striking effects of perceptual transparency, figure-ground separation and lightness, (b) quantitatively accounts for the role of stimulus- and task-driven constraints on perceptual matching performance, and (c) unifies two prominent theoretical frameworks for understanding surface appearance. The model thereby provides novel insights into the remarkable capacity of the human visual system to represent and identify surface materials, illumination and atmospheric media, which can be exploited in computer graphics applications.  相似文献   

4.
While “vibrational noise” induced by rotating components of machinery is a common problem constantly faced by engineers, the controlled conversion of translational into rotational motion or vice-versa is a desirable goal in many scenarios ranging from internal combustion engines to ultrasonic motors. In this work, we describe the underlying physics after isolating a single degree of freedom, focusing on devices that convert a vibration along the vertical axis into a rotation around this axis. A typical Vibrot (as we label these devices) consists of a rigid body with three or more cantilevered elastic legs attached to its bottom at an angle. We show that these legs are capable of transforming vibration into rotation by a “ratchet effect”, which is caused by the anisotropic stick-slip-flight motion of the leg tips against the ground. Drawing an analogy with the Froude number used to classify the locomotion dynamics of legged animals, we discuss the walking regime of these robots. We are able to control the rotation frequency of the Vibrot by manipulating the shaking amplitude, frequency or waveform. Furthermore, we have been able to excite Vibrots with acoustic waves, which allows speculating about the possibility of reducing the size of the devices so they can perform tasks into the human body, excited by ultrasound waves from the outside.  相似文献   

5.
Brown algae are members of the Stramenopiles and their gametes generally have two heterogeneous flagella: a long anterior flagellum (AF) with mastigonemes and a short posterior flagellum (PF). In this study, swimming paths and flagellar waveforms in free-swimming and thigmotactic-swimming male and female gametes and in male gametes during chemotaxis, were quantitatively analysed in the model brown alga Ectocarpus siliculosus. This analysis was performed using a high-speed video camera. It was revealed that the AF plays a role in changing the locomotion of male and female gametes from free-swimming to thigmotactic-swimming and also in changing the swimming path of male gametes from linear to circular during chemotaxis. In the presence of a sex pheromone, male gametes changed their swimming path from linear (swimming path curvature, 0–0.02 µm–1) to middle and small circular path (swimming path curvature, 0.04–0.20 µm–1). The flagellar asymmetry and the deflection angle of the AF became larger, whereas the oscillation pattern of the AF was stable. However, there was no correlation between the flagellar asymmetry and the deflection angle of the AF and the path curvature when the male gametes showed middle to small circular paths. The PF irregularly changed the deflection angle and the oscillation pattern was unstable depending on the gradient of the sex pheromone concentration. AF waveforms were independent of PF locomotion during chemotaxis. This means that the AF has the ability to change the swimming path of male gametes – for example, from a highly linear path to a circular path – while changes in locomotion from a middle circle path to a small circle path is the result of beating of the PF.  相似文献   

6.
The relationship between biomechanical action and perception of self-motion during walking is typically consistent and well-learned but also adaptable. This perceptual-motor coupling can be recalibrated by creating a mismatch between the visual information for self-motion and walking speed. Perceptual-motor recalibration of locomotion has been demonstrated through effects on subsequent walking without vision, showing that learned perceptual-motor coupling influences a dynamic representation of one''s spatial position during walking. Our present studies test whether recalibration of wheelchair locomotion, a novel form of locomotion for typically walking individuals, similarly influences subsequent wheelchair locomotion. Furthermore, we test whether adaptation to the pairing of visual information for self-motion during one form of locomotion transfers to a different locomotion modality. We find strong effects of perceptual-motor recalibration for matched locomotion modalities – walking/walking and wheeling/wheeling. Transfer across incongruent locomotion modalities showed weak recalibration effects. The results have implications both for theories of perceptual-motor calibration mechanisms and their effects on spatial orientation, as well as for practical applications in training and rehabilitation.  相似文献   

7.
Quadrupedal animal locomotion is energetically costly. We explore two forms of mechanical work that may be relevant in imposing these physiological demands. Limb work, due to the forces and velocities between the stance foot and the centre of mass, could theoretically be zero given vertical limb forces and horizontal centre of mass path. To prevent pitching, skewed vertical force profiles would then be required, with forelimb forces high in late stance and hindlimb forces high in early stance. By contrast, joint work—the positive mechanical work performed by the limb joints—would be reduced with forces directed through the hip or shoulder joints. Measured quadruped kinetics show features consistent with compromised reduction of both forms of work, suggesting some degree of, but not perfect, inter-joint energy transfer. The elbows-back, knees-forward design reduces the joint work demand of a low limb-work, skewed, vertical force profile. This geometry allows periods of high force to be supported when the distal segment is near vertical, imposing low moments about the elbow or knee, while the shoulder or hip avoids high joint power despite high moments because the proximal segment barely rotates—translation over this period is due to rotation of the distal segment.  相似文献   

8.
Humans can robustly locomote over complex terrains even while simultaneously attending to other tasks such as accurate foot placement on the ground. We investigated whether subjects would exploit motor redundancy across the joints of the leg to stabilize overall limb kinematics when presented with a hopping task that constrained foot placement position. Subjects hopped in place on one leg (2.2 Hz) while having to place their foot into one of three target sizes upon landing (0.250, 0.063, 0.010 m2). As takeoff and landing angles are critical to this task performance, we hypothesized smaller target sizes would increase the need to stabilize (i.e., make more consistent) the leg orientation through motor equivalent combinations of segment angles. As it was not critical to the targeting task, we hypothesized no changes for leg length stabilization across target size. With smaller target sizes, we saw total segment angle variance increase due to greater signal-dependent noise associated with an increased activation of leg extensor muscles (medial and lateral gastrocnemius, vastus medialis, vastus lateralis and rectus femoris). At smaller target sizes, more segment angle variance was aligned to kinematic deviations with the goal of maintaining leg orientation trajectory. We also observed a decrease in the variance structure for stabilizing leg length at the smallest target conditions. This trade-off effect is explained by the nearly orthogonal relationship between the two goal-equivalent manifolds for leg length vs. leg orientation stabilization. Our results suggest humans increasingly rely on kinematic redundancy in their legs to achieve robust, consistent locomotion when faced with novel conditions that constrain performance requirements. These principles may generalize to other human locomotor gaits and provide important insights into the control of the legs during human walking and running.  相似文献   

9.
A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal segments.  相似文献   

10.
Laboratory studies have suggested that the preferred cadence of walking is approximately 120 steps/min, and the vertical acceleration of the head exhibits a dominant peak at this step frequency (2 Hz). These studies have been limited to short periods of walking along a predetermined path or on a treadmill, and whether such a highly tuned frequency of movement can be generalized to all forms of locomotion in a natural setting is unknown. The aim of this study was to determine whether humans exhibit a preferred cadence during extended periods of uninhibited locomotor activity and whether this step frequency is consistent with that observed in laboratory studies. Head linear acceleration was measured over a 10-h period in 20 subjects during the course of a day, which encompassed a broad range of locomotor (walking, running, cycling) and nonlocomotor (working at a desk, driving a car, riding a bus or subway) activities. Here we show a highly tuned resonant frequency of human locomotion at 2 Hz (SD 0.13) with no evidence of correlation with gender, age, height, weight, or body mass index. This frequency did not differ significantly from the preferred step frequency observed in the seminal laboratory study of Murray et al. (Murray MP, Drought AB, and Kory RC. J Bone Joint Surg 46A: 335-360, 1964). [1.95 Hz (SD 0.19)]. On the basis of the frequency characteristics of otolith-spinal reflexes, which drive lower body movement via the lateral vestibulospinal tract, and otolith-mediated collic and ocular reflexes that maintain gaze when walking, we speculate that this spontaneous tempo of locomotion represents some form of central "resonant frequency" of human movement.  相似文献   

11.
Alignment of the body to the gravitational vertical is considered to be the key to human bipedalism. However, changes to the semicircular canals during human evolution suggest that the sense of head rotation that they provide is important for modern human bipedal locomotion. When walking, the canals signal a mix of head rotations associated with path turns, balance perturbations, and other body movements. It is uncertain how the brain uses this information. Here, we show dual roles for the semicircular canals in balance control and navigation control. We electrically evoke a head-fixed virtual rotation signal from semicircular canal nerves as subjects walk in the dark with their head held in different orientations. Depending on head orientation, we can either steer walking by "remote control" or produce balance disturbances. This shows that the brain resolves the canal signal according to head posture into Earth-referenced orthogonal components and uses rotations in vertical planes to control balance and rotations in the horizontal plane to navigate. Because the semicircular canals are concerned with movement rather than detecting vertical alignment, this result shows the importance of movement control and agility rather than precise vertical alignment of the body for human bipedalism.  相似文献   

12.
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.  相似文献   

13.
Spinal pattern generators in quadrupedal animals can coordinate different forms of locomotion, like trotting or galloping, by altering coordination between the limbs (interlimb coordination). In the human system, infants have been used to study the subcortical control of gait, since the cerebral cortex and corticospinal tract are immature early in life. Like other animals, human infants can modify interlimb coordination to jump or step. Do human infants possess functional neuronal circuitry necessary to modify coordination within a limb (intralimb coordination) in order to generate distinct forms of alternating bipedal gait, such as walking and running? We monitored twenty-eight infants (7–12 months) stepping on a treadmill at speeds ranging between 0.06–2.36 m/s, and seventeen adults (22–47 years) walking or running at speeds spanning the walk-to-run transition. Six of the adults were tested with body weight support to mimic the conditions of infant stepping. We found that infants could accommodate a wide range of speeds by altering stride length and frequency, similar to adults. Moreover, as the treadmill speed increased, we observed periods of flight during which neither foot was in ground contact in infants and in adults. However, while adults modified other aspects of intralimb coordination and the mechanics of progression to transition to a running gait, infants did not make comparable changes. The lack of evidence for distinct walking and running patterns in infants suggests that the expression of different functional, alternating gait patterns in humans may require neuromuscular maturation and a period of learning post-independent walking.  相似文献   

14.
Most birds use at least two modes of locomotion: flying and walking (terrestrial locomotion). Whereas the wings and tail are used for flying, the legs are mainly used for walking. The role of other body segments remains, however, poorly understood. In this study, we examine the kinematics of the head, the trunk, and the legs during terrestrial locomotion in the quail (Coturnix coturnix). Despite the trunk representing about 70% of the total body mass, its function in locomotion has received little scientific interest to date. This prompted us to focus on its role in terrestrial locomotion. We used high-speed video fluoroscopic recordings of quails walking at voluntary speeds on a trackway. Dorso-ventral and lateral views of the motion of the skeletal elements were recorded successively and reconstructed in three dimensions using a novel method based on the temporal synchronisation of both views. An analysis of the trajectories of the body parts and their coordination showed that the trunk plays an important role during walking. Moreover, two sub-systems participate in the gait kinematics: (i) the integrated 3D motion of the trunk and thighs allows for the adjustment of the path of the centre of mass; (ii) the motion of distal limbs transforms the alternating forward motion of the feet into a continuous forward motion at the knee and thus assures propulsion. Finally, head bobbing appears qualitatively synchronised to the movements of the trunk. An important role for the thigh muscles in generating the 3D motion of the trunk is suggested by an analysis of the pelvic anatomy.  相似文献   

15.
More than 100 papers have been published on the rubber hand illusion since its discovery 14 years ago. The illusion has been proposed as a demonstration that the body is distinguished from other objects by its participation in specific forms of intermodal perceptual correlation. Here, we radically challenge this view by claiming that perceptual correlation is not necessary to produce the experience of this body as mine. Each of 15 participants was seated with his/her right arm resting upon a table just below another smaller table. Thus, the real hand was hidden from the participant''s view and a life-sized rubber model of a right hand was placed on the small table in front of the participant. The participant observed the experimenter''s hand while approaching—without touching—the rubber hand. Phenomenology of the illusion was measured by means of skin conductance response and questionnaire. Both measures indicated that participants experienced the illusion that the experimenter''s hand was about to touch their hidden hand rather than the rubber hand, as if the latter replaced their own hand. This did not occur when the rubber hand was rotated by 180° or replaced by a piece of wood. This illusion indicates that our brain does not build a sense of self in a merely reactive way, via perceptual correlations; rather it generates predictions on what may or may not belong to itself.  相似文献   

16.
The human heel pad is considered an important structure for attenuation of the transient force caused by heel-strike. Although the mechanical properties of heel pads are relatively well understood, the mechanical energy (Etot) absorbed by the heel pad during the impact phase has never been documented directly because data on the effective foot mass (Meff) was previously unavailable during normal forward locomotion. In this study, we use the impulse-momentum method (IMM) for calculating Meff from moving subjects. Mass-spring-damper models were developed to evaluate errors and to examine the effects of pad property, upper body mass, and effective leg spring on Meff. We simultaneously collected ground reaction forces, pad deformation, and lower limb kinematics during impact phase of barefoot walking, running, and crouched walking. The latter was included to examine the effect of knee angle on Meff. The magnitude of Meff as a percentage of body mass (M(B)) varies with knee angle at impact and significantly differs among gaits: 6.3%M(B) in walking, 5.3%M(B) in running, and 3.7%M(B) in crouched walking. Our modeling results suggested that Meff is insensitive to heel pad resilience and effective leg stiffness. At the instant prior to heel strike, Etot ranges from 0.24 to 3.99 J. The combination of video and forceplate data used in this study allows analyses of Etot and Etot as a function of heel-strike kinematics during normal locomotion. Relationship between Meff and knee angle provides insights into how changes in posture moderate impact transients at different gaits.  相似文献   

17.
A computational method is introduced for modeling the paths of muscles in the human body. The method is based on the premise that the resultant muscle force acts along the locus of the transverse cross-sectional centroids of the muscle. The path of the muscle is calculated by idealizing its centroid path as a frictionless elastic band, which moves freely over neighboring anatomical constraints such as bones and other muscles. The anatomical constraints, referred to as obstacles, are represented in the model by regular-shaped, rigid bodies such as spheres and cylinders. The obstacles, together with the muscle path, define an obstacle set. It is proposed that the path of any muscle can be modeled using one or more of the following four obstacle sets: single sphere, single cylinder, double cylinder, and sphere-capped cylinder. Assuming that the locus of the muscle centroids is known for an arbitrary joint configuration, the obstacle-set method can be used to calculate the path of the muscle for all other joint configurations. The obstacle-set method accounts not only for the interaction between a muscle and a neighboring anatomical constraint, but also for the way in which this interaction changes with joint configuration. Consequently, it is the only feasible method for representing the paths of muscles which cross joints with multiple degrees of freedom such as the deltoid at the shoulder.  相似文献   

18.
Summary The gravid females of Mermis are positively phototaxic at the time of their migration to egglaying sites in vegetation on which their grasshopper hosts feed. On a horizontal felt surface, segments of the path traced by the tail are oriented approximately towards a source of monochromatic light in the 350–540 nm region, but are not oriented at longer wavelengths and in the dark. The components of this phototaxis include locomotion by the posterior 4/5 of the body, orientational bending of the neck region while the anterior is held above the substrate, and a scanning motion (bending) of the head region (anterior 2 mm). Like other nematodes and snakes, propulsion is associated with posteriorly propagated body waves, but unlike other animals known, the waves tend to lie perpendicular to a felt surface, and unlike other nematodes, contact with the surface is on the female's ventral surface. The body waves are initiated by the motion of the anterior 1/5 (15 mm) of the body, the average orientation of which determines the path of the following 4/5.During phototaxis, the anterior tip is swung both sideways and vertically about the direction towards the light source. The tip motion is a result of a scanning motion of the head and a slower orientational bending of the neck. The base of the head appears to be actively directed towards the source by the bending of the neck. This behavior can resolve two light sources positioned 120° apart but not 90° apart. The scanning motion of the head is independent of neck orientation and appears to enhance the probability of discovering the direction of a new source. Discovery is followed by a directed turn of the base of the head towards the source which is initiated by the bending of the neck. Locomotion of the body follows the path of the anterior through the turn and phototaxis is thus initiated.  相似文献   

19.
The basic mechanics of human locomotion are associated with vaulting over stiff legs in walking and rebounding on compliant legs in running. However, while rebounding legs well explain the stance dynamics of running, stiff legs cannot reproduce that of walking. With a simple bipedal spring-mass model, we show that not stiff but compliant legs are essential to obtain the basic walking mechanics; incorporating the double support as an essential part of the walking motion, the model reproduces the characteristic stance dynamics that result in the observed small vertical oscillation of the body and the observed out-of-phase changes in forward kinetic and gravitational potential energies. Exploring the parameter space of this model, we further show that it not only combines the basic dynamics of walking and running in one mechanical system, but also reveals these gaits to be just two out of the many solutions to legged locomotion offered by compliant leg behaviour and accessed by energy or speed.  相似文献   

20.
Two strategies can guide walking to a stationary goal: (1) the optic-flow strategy, in which one aligns the direction of locomotion or "heading" specified by optic flow with the visual goal; and (2) the egocentric-direction strategy, in which one aligns the locomotor axis with the perceived egocentric direction of the goal and in which error results in optical target drift. Optic flow appears to dominate steering control in richly structured visual environments, whereas the egocentric- direction strategy prevails in visually sparse environments. Here we determine whether optic flow also drives visuo-locomotor adaptation in visually structured environments. Participants adapted to walking with the virtual-heading direction displaced 10 degrees to the right of the actual walking direction and were then tested with a normally aligned heading. Two environments, one visually structured and one visually sparse, were crossed in adaptation and test phases. Adaptation of the walking path was more rapid and complete in the structured environment; the negative aftereffect on path deviation was twice that in the sparse environment, indicating that optic flow contributes over and above target drift alone. Optic flow thus plays a central role in both online control of walking and adaptation of the visuo-locomotor mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号