首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MicroRNAs (miRNAs) are class of molecular regulators found to participate in numerous biological processes, such as adipogenesis and obesity in mammals. To determine the roles of miRNAs involved in castration-induced body fatness, we investigated the different miRNA expression patterns in subcutaneous adipose tissue between intact and castrated male pigs. Our results showed that castration led to decrease serum testosterone but increase serum Leptin levels (P?<?0.01). Moreover, castration also increased adipocyte size, body fat content and backfat thickness in male pigs (P?<?0.01). Meanwhile, miRNA expression profiles in adipose tissue were changed by castration, and 18 miRNAs were considered as the differentially expressed candidates between intact and castrated male pigs. Furthermore, functional analysis indicated that the differential expressed miRNAs and their target genes are involved in the regulation of fatty acid metabolism. In brief, our present study provides a comprehensive view on how miRNAs works in subcutaneous adipose tissue with castration. These results suggested that miRNAs might play an important role in the castration-induced fat deposition in male pigs.  相似文献   

3.
We used a 9.6 K cattle muscle/fat cDNA microarray to study gene expression differences between the longuissimus dorsi (LD) muscle of Japanese Black (JB) and Holstein (HOL) cattle. JB cattle exhibit an unusual ability to accumulate intramuscular adipose tissue with fat melting points lower than that in other breeds. The LD biopsies from three JB (Tajima strain) and three HOL animals were used in this breed comparison. Seventeen genes were identified as preferentially expressed in LD samples from JB and seven genes were found to be expressed more highly in HOL. The expression of six selected differentially expressed genes was confirmed by quantitative real-time PCR. The genes more highly expressed in JB are associated with unsaturated fatty acid synthesis, fat deposition, and the thyroid hormone pathway. These results are consistent with the increased amounts and proportions of monounsaturated fatty acids observed in the muscle of JB animals. By discovering as yet uncharacterized genes that are differentially regulated in this comparison, the work may lead us to a better understanding of the regulatory pathways involved in the development of intramuscular adipose tissue.  相似文献   

4.
5.
Immunocastrated pigs (IC) exhibit intensive fat deposition after immunisation, but the underlying mechanisms of intensified fat metabolism and deposition are not yet fully understood. Moreover, there is also a lack of comparative studies performed on IC, entire males (EM) and surgical castrates (SC). The main objective of our research was, therefore, to characterise the adipose tissue from the quantitative, histo-morphological and biochemical perspectives in IC 5 weeks after their immunisation in comparison to EM and SC. Immunocastrated pigs had an intermediate position in carcass fatness traits between EM (the leanest) and SC (the fattest). The histo-morphological traits of the subcutaneous adipose tissue of IC were similar to those of SC and differed from those of EM; i.e., they exhibited larger adipocytes in the outer backfat and a larger lobulus surface area in both backfat layers than EM. Intensive fat tissue development in IC was corroborated with higher activities of lipogenic enzymes (i.e., fatty acid synthase, malic enzyme, glucose 6-phosphate dehydrogenase, citrate cleavage enzyme), which was especially pronounced in the subcutaneous adipose tissue of IC (1.5- to 2.7-fold higher activity than in EM or SC). The fatty acid composition of the backfat in IC was similar to that in EM pigs. Both IC and EM exhibited less saturated and more polyunsaturated fatty acids than SC. In contrast, the fatty acid composition of the intramuscular fat of longissimus dorsi muscle in IC pigs was more similar to SC than to EM (higher monounsaturated and lower polyunsaturated fatty acid content in IC and SC than EM). In this study, it was demonstrated that immunocastration notably influenced lipid metabolism. This was shown by increased quantity of lipid depots and with changes in adipose tissue cellularity compared to EM, with changes in the fatty acid composition of the intramuscular fat and enhanced lipogenic activity compared to both EM and SC. These results provide new insights into the specificity of adipose tissue development and deposition in IC compared to EM and SC.  相似文献   

6.
The production of pork with moderate amounts of intramuscular fat (IMF) without an increase in subcutaneous fat is highly desirable for the meat industry. Several studies indicate that dietary protein reduction during the growing–finishing period of pigs enhances IMF content, but its consequence on carcass fat deposition is still contradictory. In this study, we hypothesized that the effects of reduced protein diets (RPD), corrected or not with the limiting amino acid lysine, on subcutaneous fat deposition from pigs with distinct genotypes are mediated by adipose membranes biophysical properties. In total, 36 crossbred (Large White×Landrace×Pietrain – a lean genotype) and purebred (Alentejana breed – a fatty genotype) male pigs were randomly assigned to the control group, the RPD group or the reduced protein diet equilibrated for lysine (RPDL) group, allowing a 2×3 factorial arrangement (n=6). Backfat thickness and total fatty acid content were higher in Alentejana relative to crossbred pigs. Although dietary treatments did not change backfat thickness, RPD and RPDL increased total fatty acids content of subcutaneous fat. In order to understand this effect, adipose tissue membranes isolated from pig’s subcutaneous fat were assayed for glycerol permeability and fluidity, using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-(trimethylamino)-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) probes. The glycerol transport across adipose membranes was not mediated by aquaglyceroporins and remained unchanged across dietary groups. Regardless of lysine correction, RPD increased membrane fluidity at the hydrocarbon region (lower DPH fluorescence anisotropy) in both genotypes of pigs. This result was associated with a lower ratio between oleic acid and linoleic acid on membrane’s fatty acid composition. Adipose membrane’s cholesterol content was independent from genotype and diet. Taken together, the present study shows that dietary protein reduction is successful in maintaining backfat thickness, although a negative side effect was observed on total fatty acids in subcutaneous fat, which may be due to changes in the fluidity of adipose membranes.  相似文献   

7.
In this study, we analyzed the global gene expression profiles in the subcutaneous fat (SAT) of Jinhua pigs and Landrace pigs at 90 d. Several genes were significantly highly expressed in Jinhua pigs, including genes encoding the rate limiting enzymes in the TCA cycle, fatty acid activation, fatty acid synthesis and triglyceride synthesis. We identified a novel gene tagged by the EST sequences as public No. BF702245.1, which was named porcine FAM134B (pFAM134B) and the pFAM134B mRNA levels of SAT was significantly higher in Jinhua pigs than that in Landrace pigs at 90 d (P < 0.01). Then the effects of pFAM134B on lipid accumulation were investigated by using RNAi and gene overexpression in the subcutaneous adipocytes. The results showed that pFAM134B played a significant positive role in regulating lipid deposition by increasing the mRNA levels of PPARγ, lipogenic genes fatty acid synthetase (FAS) and acetyl-CoA carboxylase (ACC) (P < 0.01) and reducing the mRNA levels of adipose triglyceride lipase (ATGL) and lipase, hormone-sensitive (HSL) (P < 0.01). This study implied that pFAM134B might be a positive factor in lipid deposition, providing insight into the control of fat accumulation and lipid-related disorders.  相似文献   

8.
It has been shown previously that lipid metabolism is regulated by fatty acids (FA) and that thyroid hormones are important regulators of energy metabolism. The effects of weight, dietary fat level and dietary FA profile on thyroid hormone levels and expression of lipogenic genes and tissue FA composition were studied. Sixty-one crossbred gilts weighing 62 ± 5.2 kg BW average were either slaughtered at the beginning of the trial (n = 5) or fed one of seven diets (n = 8 pigs per diet): a semi-synthetic diet formulated to contain a very low level of fat (NF) and six diets based on barley-soybean meal supplemented with approximately 10% fat of different origin and slaughtered at 100 kg BW. The supplemental fats were tallow, high-oleic sunflower oil, sunflower oil (SFO), linseed oil, fat blend (55% tallow, 35% sunflower oil, 10% linseed oil) and fish oil blend (40% fish oil, 60% linseed oil). In general, the dietary FA profiles altered the FA composition of liver, semimembranosus muscle and adipose tissues. Pigs fed the NF diet had the highest free and total triiodothyronine (T3) values followed by pigs fed SFO. Total T3 levels were higher in pigs at 60 kg than in pigs at 100 kg. Correlations between thyroid hormones and genes encoding enzymes of fat synthesis in adipose tissue (acetyl CoA carboxylase (ACACA), fatty acid synthase and stearoyl CoA desaturase (SCD)) and the large differences in expression of lipogenic genes at different weights (60 and 100 kg BW), suggest a role for thyroid hormones and for T3, in particular, in regulating whole animal fat metabolism, with effects brought about by altered expression of lipogenic genes. Liver sterol receptor element binding protein-1 (SREBP1) mRNA content was affected by dietary treatment (P < 0.001) and was correlated with ACACA and SCD, whereas adipose tissue SREBP1 was not correlated with the mRNA abundance of any lipogenic enzyme. Weight and tissue factors showed greater influence on mRNA abundance of genes related with lipid metabolism than diet and tissue FA composition. In the pig, FA synthesis appear to be of greater magnitude in adipose tissue than in the liver as suggested by the higher expression of lipogenic genes in adipose tissue.  相似文献   

9.
10.
The competitive equilibrium of fatty acid biosynthesis and oxidation in vivo determines porcine sub-cutaneous fat thickness(SFT) and intramuscular fat(IMF) content.Obese and lean-type pig breeds show obvious differences in adipose deposition;however, the molecular mechanism underlying this phenotypic variation remains unclear.We used pathway-focused oligo microarray studies to examine the expression changes of 140 genes associated with meat quality and carcass traits in backfat at five growth stages(1―5 months) of Landrace(a leaner, Western breed) and Taihu pigs(a fatty, indigenous, Chinese breed).Variance analysis(ANOVA) revealed that differences in the expression of 25 genes in Landrace pigs were significant(FDR adjusted permutation, P<0.05) among 5 growth stages.Gene class test(GCT) indicated that a gene-group was very significant between 2 pig breeds across 5 growth stages(PErmineJ<0.01), which consisted of 23 genes encoding enzymes and regulatory proteins associ-ated with lipid and steroid metabolism.These findings suggest that the distinct differences in fat deposition ability between Landrace and Taihu pigs may closely correlate with the expression changes of these genes.Clustering analysis revealed a very high level of significance(FDR adjusted, P<0.01) for 2 gene expression patterns in Landrace pigs and a high level of significance(FDR adjusted, P<0.05) for 2 gene expression patterns in Taihu pigs.Also, expression patterns of genes were more diversified in Taihu pigs than those in Landrace pigs, which suggests that the regulatory mechanism of micro-effect polygenes in adipocytes may be more complex in Taihu pigs than in Landrace pigs.Based on a dy-namic Bayesian network(DBN) model, gene regulatory networks(GRNs) were reconstructed from time-series data for each pig breed.These two GRNs initially revealed the distinct differences in physiological and biochemical aspects of adipose metabolism between the two pig breeds;from these results, some potential key genes could be identified.Quantitative, real-time RT-PCR(QRT-PCR) was used to verify the microarray data for five modulated genes, and a good correlation between the two measures of expression was observed for both 2 pig breeds at different growth stages(R=0.874±0.071).These results highlight some possible candidate genes for porcine fat characteristics and provide some data on which to base further study of the molecular basis of adipose metabolism.  相似文献   

11.
In this study of spontaneous obesity of pigs, specific metabolic shifts were observed, which explain an increase in fat deposition. Liver tissue utilization of pyruvate and glucose for oxidation and lipogenesis showed no significant difference between lean and obese pigs. Adipose tissue utilization of glucose, acetate and glycerol for triglyceride and fatty acid synthesis was greater in obese pigs than lean pigs (P less than 0.01). No significant difference in leucine incorporation into lipid fractions was found. Of the substrates utilized, glucose supplied 86 and 94% of the glyceride-glycerol synthesized in lean and obese pigs, respectively. Glycerol was not a major contributor to glyceride-glycerol synthesis (3.5 to 5.5%), in spite of the presence of adipose tissue glycerokinase. An increase (P less than 0.05) in alanine incorporation into glucose was observed in liver tissue from obese pigs. In general, the levels of enzymes activities associated with gluconeogenesis, glycolysis, and lipogenesis supported the findings of in vitro utilization of these substrates.  相似文献   

12.
The present study was conducted to assess whether the partial replacement of feed energy by vegetable oils containing high medium-chain saturated fatty acids (MCFA) and n-6 polyunsaturated fatty acids (PUFA) would modify lipogenic gene expression and other parameter of fat metabolism in pigs. Eighteen pigs (17-19 kg body weight) received one of three experimental diets for 60 days (six animals per group): (i) Control diet; (ii) a diet with sunflower oil (SO) or (iii) a diet with coconut oil (CO). In diets SO and CO, 10% of the feed energy was replaced by the respective oils. The experimental treatment did not influence the performance of the pigs. In blood serum, an increased content of total cholesterol was observed for SO and CO fed animals, whereas no significant changes for total triglycerides and different lipoprotein fractions were detected. The fatty acid composition of adipose tissue was significantly modified, with an increased content of MCFA and n-6 PUFA in CO and SO fed pigs, respectively. The gene expression for fatty acid synthase was decreased for SO and CO fed pigs; for stearoyl CoA desaturase and sterol regulatory element binding protein, a depression was observed in SO but not in CO fed pigs. The results of present study suggest that the type of dietary fat can modulate the adipose tissue gene expression and fatty acid composition differentially, with minimal effect on serum lipid profile.  相似文献   

13.
The competitive equilibrium of fatty acid biosynthesis and oxidation in vivo determines porcine subcutaneous fat thickness (SFT) and intramuscular fat (IMF) content. Obese and lean-type pig breeds show obvious differences in adipose deposition; however, the molecular mechanism underlying this phenotypic variation remains unclear. We used pathway-focused oligo microarray studies to examine the expression changes of 140 genes associated with meat quality and carcass traits in backfat at five growth stages (1–5 months) of Landrace (a leaner, Western breed) and Taihu pigs (a fatty, indigenous, Chinese breed). Variance analysis (ANOVA) revealed that differences in the expression of 25 genes in Landrace pigs were significant (FDR adjusted permutation, P<0.05) among 5 growth stages. Gene class test (GCT) indicated that a gene-group was very significant between 2 pig breeds across 5 growth stages (P ErmineJ<0.01), which consisted of 23 genes encoding enzymes and regulatory proteins associated with lipid and steroid metabolism. These findings suggest that the distinct differences in fat deposition ability between Landrace and Taihu pigs may closely correlate with the expression changes of these genes. Clustering analysis revealed a very high level of significance (FDR adjusted, P<0.01) for 2 gene expression patterns in Landrace pigs and a high level of significance (FDR adjusted, P<0.05) for 2 gene expression patterns in Taihu pigs. Also, expression patterns of genes were more diversified in Taihu pigs than those in Landrace pigs, which suggests that the regulatory mechanism of micro-effect polygenes in adipocytes may be more complex in Taihu pigs than in Landrace pigs. Based on a dynamic Bayesian network (DBN) model, gene regulatory networks (GRNs) were reconstructed from time-series data for each pig breed. These two GRNs initially revealed the distinct differences in physiological and biochemical aspects of adipose metabolism between the two pig breeds; from these results, some potential key genes could be identified. Quantitative, real-time RT-PCR (QRT-PCR) was used to verify the microarray data for five modulated genes, and a good correlation between the two measures of expression was observed for both 2 pig breeds at different growth stages (R=0.874±0.071). These results highlight some possible candidate genes for porcine fat characteristics and provide some data on which to base further study of the molecular basis of adipose metabolism.  相似文献   

14.
15.
Obesity is a major health crisis worldwide and new treatments are needed to fight this epidemic. Using the swine model, we recently reported that dietary l-arginine (Arg) supplementation promotes muscle gain and reduces body-fat accretion. The present study tested the hypothesis that Arg regulates expression of key genes involved in lipid metabolism in skeletal muscle and white adipose tissue. Sixteen 110-day-old barrows were fed for 60 days a corn- and soybean-meal-based diet supplemented with 1.0% Arg or 2.05% l-alanine (isonitrogenous control). Blood samples, longissimus dorsi muscle and overlying subcutaneous adipose tissue were obtained from 170-day-old pigs for biochemical studies. Serum concentrations of leptin, alanine and glutamine were lower, but those for Arg and proline were higher in Arg-supplemented pigs than in control pigs. The percentage of oleic acid was higher but that of stearic acid and linoleic acid was lower in muscle of Arg-supplemented pigs, compared with control pigs. Dietary Arg supplementation increased mRNA levels for fatty acid synthase in muscle, while decreasing those for lipoprotein lipase, glucose transporter-4, and acetyl-coenzyme A carboxylase-α in adipose tissue. Additionally, mRNA levels for hormone sensitive lipase were higher in adipose tissue of Arg-supplemented pigs compared with control pigs. These results indicate that Arg differentially regulates expression of fat-metabolic genes in skeletal muscle and white adipose tissue, therefore favoring lipogenesis in muscle but lipolysis in adipose tissue. Our novel findings provide a biochemical basis for explaining the beneficial effect of Arg in improving the metabolic profile in mammals (including obese humans).  相似文献   

16.
17.
In the meat industry, the manipulation of fat deposition in cattle is of pivotal importance to improve production efficiency, carcass composition and ultimately meat quality. There is an increasing interest in the identification of key factors and molecular mechanisms responsible for the development of specific fat depots. This study aimed at elucidating the influence of breed and diet on adipose tissue membrane permeability and fluidity and their interplay on fat deposition in bovines. Two Portuguese autochthonous breeds, Alentejana and Barrosã, recognized as late- and early-maturing breeds, respectively, were chosen to examine the effects of breed and diet on fat deposition and on adipose membrane composition and permeability. Twenty-four male bovines from these breeds were fed on silage-based or concentrate-based diets for 11 months. Animals were slaughtered to determine their live slaughter and hot carcass weights, as well as weights of subcutaneous and visceral adipose depots. Mesenteric fat depots were excised and used to isolate adipocyte membrane vesicles where cholesterol content, fatty acid profile as well as permeability and fluidity were determined. Total accumulation of neither subcutaneous nor visceral fat was influenced by breed. In contrast, mesenteric and omental fat depots weights were higher in concentrate-fed bulls relative to silage-fed animals. Membrane fluidity and permeability to water and glycerol in mesenteric adipose tissue were found to be independent of breed and diet. Moreover, the deposition of cholesterol and unsaturated fatty acids, which may influence membrane properties, were unchanged among experimental groups. Adipose membrane lipids from the mesenteric fat depot of ruminants were rich in saturated fatty acids, and unaffected by polyunsaturated fatty acids dietary levels. Our results provide evidence against the involvement of cellular membrane permeability to glycerol on fat accumulation in mesenteric fat tissue of concentrate-fed bovines, which is consistent with the unchanged membrane lipid profile found among experimental groups.  相似文献   

18.
We previously described a line of transgenic mice selectively expressing constitutively active AMPK-α1 under the control of liver-specific human apoE promoter with the hepatic control region sequence. In the short-term activation, the CA-AMPK-α1 transgenic mice at age 10–12 weeks exhibited normal hepatic triglyceride content as compared to wild-type mice due to compensatory increase in mRNA expression of genes in the cholesterol and fatty acid synthesis pathways. But it was not known whether the lipogenic gene expression in white adipose tissue also changed. Here we characterized mRNA expression profile of main lipogenic genes in the cholesterol and fatty acid biosynthesis pathway in white adipose tissue. The data show that short-term chronic activation of AMPK in liver caused marked compensatory increase in lipogenic gene expression both in liver due to induction of Srebp-2 and in white adipose tissue due to upregulation of Srebp-1c. These results support the notion that in addition to its well-recognized function for fat storage adipose tissue can play an adaptive role in fatty acid synthesis when fatty acid synthesis is severely reduced in liver, the main lipogenic organ in mammals.  相似文献   

19.
The development of the lipogenic capacity in brown adipose tissue was studied in suckling lean (Fa/fa) and obese (fa/fa) Zucker pups aged from 7 to 22 days. In both lean and obese pups, activities of the two key lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase, and of citrate cleavage enzyme rose from the early to the late suckling period. Compared with lean pups, 7-day-old fa/fa pups showed a 35% increase in fat accumulation in interscapular brown adipose tissue and a 25% increase in fatty acid synthetase activity. By 10 days of age, fat deposition, lipogenesis in vivo (assessed by the incorporation of 3H from 3H2O into fatty acids) and fatty acid synthetase activity were 1.5-2-fold higher in pre-obese than in lean pups. Compared with lean pups, the increased lipogenesis in vivo observed in brown adipose tissue of 10-day-old pre-obese pups could not entirely account for the difference in fat deposition observed in this tissue, suggesting that additional mechanisms are at play to explain the increased fat content of this tissue.  相似文献   

20.
1. Clearing-factor lipase was assayed in acetone-ether-dried powders of heart and adipose tissue of pigs. The enzyme activity in heart was higher than that in adipose tissue. The activity in the outer layer of subcutaneous fat was greater than that in the inner subcutaneous fat and the perirenal fat, which had similar activities. 2. Starvation for 48h, but not for 24h, decreased the activity of the heart enzyme. 3. Starvation for 24h caused a rapid decrease in the activity in all three adipose tissues, but even after 72h of starvation the activity was still highest in the outer subcutaneous fat. 4. Plasma fatty acid, glucose and insulin concentrations were determined in fed and starved pigs. Starvation decreased the plasma insulin concentration and increased the non-esterified fatty acid concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号