首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Highlights? Prdm14 expression is important for maintenance of naive pluripotency ? PRDM14 antagonizes FGFR signaling and activates Akt-mTORC1 signaling ? PRDM14 represses de novo DNA methyltransferase expression ? This regulatory input is mediated through recruitment of PRC2  相似文献   

4.
Highlights? Nanog is a direct target of Activin and SMAD2/3 but not FGF-ERK in EpiSCs ? FGF signaling inhibits neuroectodermal commitment of EpiSCs and hESCs ? FGF inhibition relieves Klf2 repression and reverts EpiSCs to an ESC-like state ? mESCs transition to an EpiSC-like state with LIF inhibition and FGF activation  相似文献   

5.
6.
Members of the transforming growth factor-β superfamily play essential roles in both the pluripotency and differentiation of embryonic stem (ES) cells. Although bone morphogenic proteins (BMPs) maintain pluripotency of undifferentiated mouse ES cells, the role of autocrine Nodal signaling is less clear. Pharmacological, molecular, and genetic methods were used to further understand the roles and potential interactions of these pathways. Treatment of undifferentiated ES cells with SB431542, a pharmacological inhibitor of Smad2 signaling, resulted in a rapid reduction of phosphorylated Smad2 and altered the expression of several putative downstream targets. Unexpectedly, inhibition of the Nodal signaling pathway resulted in enhanced BMP signaling, as assessed by Smad1/5 phosphorylation. SB431542-treated cells also demonstrated significant induction of the Id genes, which are known direct targets of BMP signaling and important factors in ES cell pluripotency. Inhibition of BMP signaling decreased the SB431542-mediated phosphorylation of Smad1/5 and induction of Id genes, suggesting that BMP signaling is necessary for some Smad2-mediated activity. Because Smad7, a known inhibitory factor to both Nodal and BMP signaling, was down-regulated following inhibition of Nodal-Smad2 signaling, the contribution of Smad7 to the cross-talk between the transforming growth factor-β pathways in ES cells was examined. Biochemical manipulation of Smad7 expression, through shRNA knockdown or inducible gene expression, significantly reduced the SB431542-mediated phosphorylation of Smad1/5 and induction of the Id genes. We conclude that autocrine Nodal signaling in undifferentiated mouse ES cells modulates the vital pluripotency pathway of BMP signaling.  相似文献   

7.
In the past few decades, embryonic stem cells (ESCs) were of great interest as a model system for studying early developmental processes and because of their potential therapeutic applications in regenerative medicine. However, the underlying mechanisms of ESC differentiation remain unclear, which limits our exploration of the therapeutic potential of stem cells. Fortunately, the increasing quantity and diversity of biological datasets can provide us with opportunities to explore the biological secrets. However, taking advantage of diverse biological information to facilitate the advancement of ESC research still remains a challenge. Here, we propose a scalable, efficient and flexible function prediction framework that integrates diverse biological information using a simple weighted strategy, for uncovering the genetic determinants of mouse ESC differentiation. The advantage of this approach is that it can make predictions based on dynamic information fusion, owing to the simple weighted strategy. With this approach, we identified 30 genes that had been reported to be associated with differentiation of stem cells, which we regard to be associated with differentiation or pluripotency in embryonic stem cells. We also predicted 70 genes as candidates for contributing to differentiation, which requires further confirmation. As a whole, our results showed that this strategy could be applied as a useful tool for ESC research.  相似文献   

8.
Stem cell transplantation therapy has provided promising hope for the treatment of a variety of neurodegenerative disorders. Among challenges in developing disease-specific stem cell therapies, identification of key regulatory signals for neuronal differentiation is an essential and critical issue that remains to be resolved. Several lines of evidence suggest that JNK, also known as SAPK, is involved in neuronal differentiation and neural plasticity. It may also play a role in neurite outgrowth during neuronal development. In cultured mouse embryonic stem (ES) cells, we test the hypothesis that the JNK pathway is required for neuronal differentiation. After neural induction, the cells were plated and underwent differentiation for up to 5 days. Western blot analysis showed a dramatic increase in phosphorylated JNKs at 1–5 days after plating. The phosphorylation of JNK subsequently induced activation of STAT1 and STAT3 that lead to expressions of GAP-43, neurofilament, βIII-tubulin, and synaptophysin. NeuN-colabelled with DCX, a marker for neuroblast, was enhanced by JNK signaling. Neuronal differentiation of ES cells was attenuated by treatment with SP600125, which inhibited the JNK activation and decreased the activation of STAT1 and STAT3, and consequently suppressed the expressions of GAP-43, neurofilament, βIII-tubulin, and the secretion of VEGF. Data from immunocytochemistry indicated that the nuclear translocation of STAT3 was reduced, and neurites of ES-derived neurons were shorter after treatment with SP600125 compared with control cells. These results suggest that the JNK-STAT3 pathway is a key regulator required for early neuronal differentiation of mouse ES cells. Further investigation on expression of JNK isoforms showed that JNK-3 was significantly upregulated during the differentiation stage, while JNK-1 and JNK-2 levels decreased. Our study provided interesting information on JNK functions during ES cell neuronal differentiation.  相似文献   

9.
Human embryonic stem cells have unique value for regenerative medicine, as they are capable of differentiating into a broad variety of cell types. Therefore, defining the signalling pathways that control early cell fate decisions of pluripotent stem cells represents a major task. Moreover, modelling the early steps of embryonic development in vitro may provide the best approach to produce cell types with native properties. Here, we analysed the function of key developmental growth factors such as Activin, FGF and BMP in the control of early cell fate decisions of human pluripotent stem cells. This analysis resulted in the development and validation of chemically defined culture conditions for achieving specification of human embryonic stem cells into neuroectoderm, mesendoderm and into extra-embryonic tissues. Importantly, these defined culture conditions are devoid of factors that could obscure analysis of developmental mechanisms or render the resulting tissues incompatible with future clinical applications. Importantly, the growth factor roles defined using these culture conditions similarly drove differentiation of mouse epiblast stem cells derived from post implantation embryos, thereby reinforcing the hypothesis that epiblast stem cells share a common embryonic identity with human pluripotent stem cells. Therefore the defined growth factor conditions described here represent an essential step toward the production of mature cell types from pluripotent stem cells in conditions fully compatible with clinical use ant also provide a general approach for modelling the early steps of mammalian embryonic development.  相似文献   

10.
11.
12.

Background

Because of their regenerative and paracrine abilities, cardiac stem cells (CSCs) are the most appropriate, optimal and promising candidates for the development of cardiac regenerative medicine strategies. However, native and exogenous CSCs in ischemic hearts are exposed to various pro-apoptotic or cytotoxic factors preventing their regenerative and paracrine abilities.

Methods and Results

We examined the effects of H2O2 on mouse CSCs (mCSCs), and observed that hydrogen peroxide (H2O2) treatment induces mCSCs apoptosis via the caspase 3 pathway, in a dose-dependent manner. We then examined the effects of Wnt1 over-expression on H2O2-induced apoptosis in mCSCs and observed that Wnt1 significantly decreased H2O2-induced apoptosis in mCSCs. On the other hand, inhibition of the canonical Wnt pathway by the secreted frizzled related protein 2 (SFRP2) or knockdown of β-catenin in mCSCs reduced cells resistance to H2O2-induced apoptosis, suggesting that Wnt1 predominantly prevents H2O2-induced apoptosis through the canonical Wnt pathway.

Conclusions

Our results provide the first evidences that Wnt1 plays an important role in CSCs’ defenses against H2O2-induced apoptosis through the canonical Wnt1/GSK3β/β-catenin signaling pathway.  相似文献   

13.
多能性干细胞是一类具有体外无限自我复制和分化为体内多种细胞类型能力的多潜能细胞,是研究基因功能、建立疾病模型和促进再生医学领域发展的一种重要工具。自1981年小鼠胚胎干细胞建立以来,科学家们已经先后成功地建立了灵长类、人、大鼠的胚胎干细胞和小鼠、大鼠的上胚层干细胞等。但是,目前研究表明,维持人、灵长类胚胎干细胞的多能性信号通路与维持小鼠、大鼠胚胎干细胞的截然不同,而与维持小鼠、大鼠上胚层干细胞的信号通路比较类似。因此,该文对目前研究较多的维持小鼠胚胎干细胞、人胚胎干细胞和小鼠上胚层干细胞的多能性信号通路进行了综述,希望能够对其它物种的多能性干细胞研究提供有益的借鉴。  相似文献   

14.
间充质干细胞具有向成骨细胞分化的潜能,可体外分离、培养和扩增,是骨组织工程中理想的种子细胞。近年的研究表明间充质干细胞的成骨分化受到多种信号通路的调控,现就其中研究较为深入的MAPK和Notch通路的情况作一简要综述。  相似文献   

15.
16.
17.
探讨体外共培养环境中小鼠胚胎干细胞对小鼠黑色素瘤B16细胞的影响。建立C57BL/6小鼠胚胎干细胞系,通过小鼠胚胎干细胞与肿瘤细胞体外共培养模型观察小鼠胚胎干细胞对肿瘤细胞的形态及生长行为的影响,MTT法与transwell小室法分别检测共培养后肿瘤细胞粘附性、迁移性及侵袭性的变化。共培养中小鼠胚胎干细胞能够侵入并推开小鼠黑色素瘤细胞形成自己的生长空间,与对照组比较共培养后肿瘤细胞的粘附性、迁移性及侵袭性均显著降低(P<0.05,P<0.01)。结果表明体外共培养体系中小鼠胚胎干细胞能够侵袭肿瘤细胞,并降低细胞粘附、迁移及侵袭相关恶性生物学行为。  相似文献   

18.
Tcl1 is highly expressed in embryonic stem (ES) cells, but its expression rapidly decreases following differentiation. To assess Tcl1’s roles in ES cells, we generated Tcl1-deficient and -overexpressing mouse ES cell lines. We found that Tcl1 was neither essential nor sufficient for maintaining the undifferentiated state. Tcl1 is reported to activate Akt and to enhance cell proliferation. We found that Tcl1 expression levels correlated positively with the proliferation rate and negatively with the apoptosis of ES cells, but did not affect Akt phosphorylation. On the other hand, the phosphorylation level of β-catenin decreased in response to Tcl1 overexpression. We measured the β-catenin activity using the TOPflash reporter assay, and found that wild-type ES cells had low activity, which Tcl1 overexpression enhanced 1.8-fold. When the canonical Wnt signaling is activated by β-catenin stabilization, it reportedly helps maintain ES cells in the undifferentiated state. We then performed DNA microarray analyses between the Tcl1-deficient and -expressing ES cells. The results revealed that Tcl1 expression downregulated a distinct group of genes, including Ndp52, whose expression is very high in blastocysts but reduced in the primitive ectoderm. Based on these results, we discuss the possible roles of Tcl1 in ES cells.  相似文献   

19.
20.
高胜利  高淑红  刘丽霞 《生物磁学》2009,(20):3852-3854,F0003
目的:研究Wnt3a在诱导小鼠胚胎干细胞心肌细胞分化中的作用和原理。方法:设计不同浓度,不同成分的Wnt3a条件培养基对小鼠胚胎干细胞诱导分化,对分化细胞进行形态学鉴定,通过免疫细胞化学检测心肌肌钙蛋白-T(cTnT)的表达,通过RT.PCR检测肌球蛋白重链(ot.MHC)和肌球蛋白轻链(MLC.2v)的表达。结果:Wnt3a诱导小鼠胚胎干细胞分化为心肌样细胞,分化细胞具有自动收缩性,免疫细胞化学检测心肌肌钙蛋白.T(cTllT)表达阳性,RT.PCR检测肌球蛋白重链(d—MHC)和肌球蛋白轻链(MLC-2v)表达阳性。经典Wnt信号途径的抑制剂Frizzled一8/Fc,能够抑制Wnt3a的诱导分化作用。结论:Wnt3a通过经典Wnt信号途径诱导小鼠胚胎干细胞向心肌细胞分化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号