首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Dihydropyrimidones 137 were synthesized via a ‘one-pot’ three component reaction according to well-known Biginelli reaction by utilizing Cu(NO3)2·3H2O as catalyst, and screened for their in vitro β-glucuronidase inhibitory activity. It is worth mentioning that amongst the active molecules, compounds 8 (IC50 = 28.16 ± .056 μM), 9 (IC50 = 18.16 ± 0.41 μM), 10 (IC50 = 22.14 ± 0.43 μM), 13 (IC50 = 34.16 ± 0.65 μM), 14 (IC50 = 17.60 ± 0.35 μM), 15 (IC50 = 15.19 ± 0.30 μM), 16 (IC50 = 27.16 ± 0.48 μM), 17 (IC50 = 48.16 ± 1.06 μM), 22 (IC50 = 40.16 ± 0.85 μM), 23 (IC50 = 44.16 ± 0.86 μM), 24 (IC50 = 47.16 ± 0.92 μM), 25 (IC50 = 18.19 ± 0.34 μM), 26 (IC50 = 33.14 ± 0.68 μM), 27 (IC50 = 44.16 ± 0.94 μM), 28 (IC50 = 24.16 ± 0.50 μM), 29 (IC50 = 34.24 ± 0.47 μM), 31 (IC50 = 14.11 ± 0.21 μM) and 32 (IC50 = 9.38 ± 0.15 μM) found to be more potent than the standard d-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 μM). Molecular docking study was conducted to establish the structure–activity relationship (SAR) which demonstrated that a number of structural features of dihydropyrimidone derivatives were involved to exhibit the inhibitory potential. All compounds were characterized by spectroscopic techniques such as 1H, 13C NMR, EIMS and HREI-MS.  相似文献   

2.
Bisindole analogs 117 were synthesized and evaluated for their in vitro β-glucuronidase inhibitory potential. Out of seventeen compounds, the analog 1 (IC50 = 1.62 ± 0.04 μM), 6 (IC50 = 1.86 ± 0.05 μM), 10 (IC50 = 2.80 ± 0.29 μM), 9 (IC50 = 3.10 ± 0.28 μM), 14 (IC50 = 4.30 ± 0.08 μM), 2 (IC50 = 18.40 ± 0.09 μM), 19 (IC50 = 19.90 ± 1.05 μM), 4 (IC50 = 20.90 ± 0.62 μM), 7 (IC50 = 21.50 ± 0.77 μM), and 3 (IC50 = 22.30 ± 0.02 μM) showed superior β-glucuronidase inhibitory activity than the standard (d-saccharic acid 1,4-lactone, IC50 = 48.40 ± 1.25 μM). In addition, molecular docking studies were performed to investigate the binding interactions of bisindole derivatives with the enzyme. This study has identified a new class of potent β-glucouronidase inhibitors.  相似文献   

3.
A series of Schiff base triazoles 125 was synthesized and evaluated for their nucleotide pyrophosphatase/phosphodiesterase-1 inhibitory activities. Among twenty-five compounds, three compounds 10 (IC50 = 132.20 ± 2.89 μM), 13 (IC50 = 152.83 ± 2.39 μM), and 22 (IC50 = 251.0 ± 6.64 μM) were identified as potent inhibitors with superior activities than the standard EDTA (IC50 = 277.69 ± 2.52 μM). The newly identified inhibitors may open a new avenue for the development of treatment of phosphodiesterase-I related disorders. These compounds were also evaluated for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitory potential and were found to be inactive. The compounds showed non-toxic effect towards PC3 cell lines.  相似文献   

4.
A series of new biphenyl bis-sulfonamide derivatives 2a3p were synthesized in good to excellent yield (76–98%). The inhibitory potential of the synthesized compounds on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was investigated. Most of the screened compounds showed modest in vitro inhibition for both AChE and BChE. Compared to the reference compound eserine (IC50 0.04 ± 0.0001 μM for AChE) and (IC50 0.85 ± 0.0001 μM for BChE), the IC50 values of these compounds were ranged from 2.27 ± 0.01 to 123.11 ± 0.04 μM for AChE and 7.74 ± 0.07 to <400 μM for BuChE. Among the tested compounds, 3p was found to be the most potent against AChE (IC50 2.27 ± 0.01 μM), whereas 3g exhibited the highest inhibition for BChE (IC50 7.74 ± 0.07 μM). Structure–activity relationship (SAR) of these compounds was developed and elaborated with the help of molecular docking studies.  相似文献   

5.
A series of thiazole derivatives 121 were prepared, characterized by EI-MS and 1H NMR and evaluated for α-glucosidase inhibitory potential. All twenty one derivatives showed good α-glucosidase inhibitory activity with IC50 value ranging between 18.23 ± 0.03 and 424.41 ± 0.94 μM when compared with the standard acarbose (IC50, 38.25 ± 0.12 μM). Compound (8) (IC50, 18.23 ± 0.03 μM) and compound (7) (IC50 = 36.75 ± 0.05 μM) exhibited outstanding inhibitory potential much better than the standard acarbose (IC50, 38.25 ± 0.12 μM). All other analogs also showed good to moderate enzyme inhibition. Molecular docking studies were carried out in order to find the binding affinity of thiazole derivatives with enzyme. Studies showed these thiazole analogs as a new class of α-glucosidase inhibitors.  相似文献   

6.
Sesquiterpenes, arecoic acids A–F and arecolactone, were isolated from the ethyl acetate extracts of the fermented broth of Arecophila saccharicola YMJ96022401 along with two known analogues 1,7α,10α-trihydroxyeremophil-11(13)-en-12,8-olide and 1,10α,13-trihydroxyeremophil-7(11)-en-12,8-olide. Their structures were elucidated on the basis of spectroscopic data analyses. The inhibitory effects of all of these compounds on nitric oxide (NO) production in lipopolysaccharide (LPS, 200 μg/mL)-activated murine macrophage RAW264.7 cells were also evaluated. Among these compounds, 1,7α,10α-trihydroxyeremophil-11(13)-en-12,8-olide significantly inhibited NO production without any cytotoxicity, and its average maximum inhibition (Emax) at 100 μM and median inhibitory concentration (IC50) were 85.7% ± 0.8% and 16.5 ± 1.0 μM, respectively. Arecolactone was the most potent, with the Emax at 12.5 μM and IC50 being 94.7% ± 0.8% and 1.32 ± 0.1 μM, respectively, but displayed cytotoxicity at considerable higher concentrations than 25 μM. Analyses of Western blotting indicated that arecolactone (0.8–12.5 μM) inhibited induction of inducible NO synthase (iNOS) by LPS, which involved suppression of NF-κB activation and the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs) in activated RAW 264.7 cells. In addition, arecolactone concentration-dependently prevented the vascular hyporeactivity to phenylephrine induced by LPS (300 ng/mL) through iNOS pathway in isolated rat thoracic aortic rings. These results indicated that both of these naturally occurring iNOS inhibitors may provide a rationale for the potential anti-inflammatory effect of A. saccharicola YMJ96022401.  相似文献   

7.
Spirocyclopropane- and spiroazetidine-substituted tetracycles 13DE and 16A are described as orally active MK2 inhibitors. The spiroazetidine derivatives are potent MK2 inhibitors with IC50 <3 nM and inhibit the release of TNFα (IC50<0.3 μM) from hPBMCs and hsp27 phosphorylation in anisomycin stimulated THP-1 cells. The spirocyclopropane analogues are less potent against MK2 (IC50 = 0.05–0.23 μM), less potent in cells (IC50 <1.1 μM), but show good oral absorption. Compound 13E (100 mg/kg po; bid) showed oral activity in rAIA and mCIA, with significant reduction of swelling and histological score.  相似文献   

8.
Three novel compounds; two polymethoxylated flavonoids, 5,7,4′-trihydroxy-3,8,3′,5′-tetramethoxyflavone (1), 5,7,3′-trihydroxy-3,8,4′,5′-trimethoxyflavone (2), and a clerodane diterpenoid; 8-acetoxyisochiliolide lactone (3) were characterized from the leaf exudates of Microglossa pyrifolia. In addition, three known polymethoxylated flavonoids including; 5,7,4′-trihydroxy-3,8,3′-trimethoxyflavone (4), 5,3′4′-trihydroxy-3,7,8-trimethoxyflavone (5), 5,3′4′-trihydroxy-7-methoxyflavanone (6) and a clerodane diterpenoid; 7,8-epoxyisocholiolide lactone (7) were identified. Their structures were determined on the basis of spectroscopic evidence. All the compounds did not exhibit antiplasmodial and antimicrobial activities at 47.6 μg/mL and were not cytotoxic at 5 μg/mL. Compound 6 exhibited modest antileishmanial activity with IC50 value of 13.13 μg/mL with 5 and 7 showing activities with IC50 values of 31.13 and 38.00 μg/mL, respectively, therefore inactive. The flavonoids (quercetin derivatives, 4 and 5) showed similar antioxidant activities, using 2,2-diphenylpicrylhydrazyl (DPPH) assay, with IC50 values of 6.2 ± 0.3 μg/mL for 4 (17.3 μM) and 5 (17.8 μM) respectively. These activities were comparable to that of the standard quercetin (IC50 value of 6.0 ± 0.2 μg/mL (19.9 μM)), irrespective of methylation of the characteristic hydroxyl groups expected to be responsible for activity and additional substitution at C-8 in ring A of the flavonoid ring. These studies revealed that the presence of an hydroxyl group at C-4′ positions and oxygenation at C-3 in flavone skeleton, appears to be necessary for good antioxidant activities as encountered in compounds 1, 4 and 5. Substantial reduction in antioxidant activity was shown by methoxylation of the 4′-OH as observed in compound 2 with an IC50 value of 8.79 ± 0.3 μg/mL (24.4 μM).  相似文献   

9.
Vasorelaxant effects of essential oil of Alpinia zerumbet (EOAZ) and its main constituent, 1,8-cineole (CIN) were studied. In rat isolated aorta preparations with intact endothelium, EOAZ (0.01–3000 μg/ml) induced significant but incomplete relaxation of the phenylephrine-induced contraction, an effect that was abolished by removal of vascular endothelium. However, at the same concentrations (0.01–3000 μg/ml corresponding to 0.0000647–19.5 mM), CIN induced a complete vasorelaxant effects (IC50=663.2±63.8 μg/ml) that were significantly reduced in endothelium-denuded rings (IC50=1620.6±35.7 μg/ml). Neither EOAZ nor CIN affected the basal tonus of isolated aorta. Vasorelaxant effects of both EOAZ and CIN remained unaffected by the addition of tetraethylamonium chloride (500 μM) or indomethacin (10 μM) into the bath, but were significantly reduced by NG-nitro-L-arginine methyl ester (100 μM). It is concluded that EOAZ induces a potent vasorelaxant effect that could not be fully attributed to the actions of the main constituent CIN, and appears totally dependent on the integrity of a functional vascular endothelium. The data is novel and corroborate the popular use of A. zerumbet for the treatment of hypertension.  相似文献   

10.
Twenty four pyrazoline derivatives modified from Celecoxib were designed and synthesized as bi-inhibitor of COX-2 and B-Raf. They were evaluated for their COX-1/COX-2/B-Raf inhibitory and anti-proliferation activities. Compound A3 displayed the most potent activity against COX-2 and HeLa cell line (IC50 = 0.008 μM; GI50 = 19.86 μM) and showed superb COX-1/COX-2 selectivity (>500), being more potent and selective than positive control Celecoxib or 5-fluorouracil. Compounds A5 and B5 were introduced best B-Raf inhibitory activities (IC50 = 0.15 μM and 0.12 μM, respectively). Compound A4 retained superb bioactivity against COX-2 and HeLa cell line (IC50 = 0.015 μM; GI50 = 23.82 μM) and displayed moderate B-Raf inhibitory activity (IC50 = 3.84 μM). Docking simulation was conducted to give binding patterns. QSAR models were built using bioactivity data and optimized conformations to provide a future modification of COX-2/B-Raf inhibitors.  相似文献   

11.
Herein, we report the synthesis and screening of cyano substituted biaryl analogs 5(am) as Peptide deformylase (PDF) enzyme inhibitors. The compounds 5a (IC50 value = 13.16 μM), 5d (IC50 value = 15.66 μM) and 5j (IC50 value = 19.16 μM) had shown good PDF inhibition activity. The compounds 5a (MIC range = 11.00–15.83 μg/mL), 5b (MIC range = 23.75–28.50 μg/mL) and 5j (MIC range = 7.66–16.91 μg/mL) had also shown potent antibacterial activity when compared with ciprofloxacin (MIC range = 25–50 μg/mL). Thus, the active derivatives were not only potent PDF inhibitors but also efficient antibacterial agents. In order to gain more insight on the binding mode of the compounds with PDF, the synthesized compounds 5(am) were docked against PDF enzyme of Escherichia coli and compounds exhibited good binding properties. In silico ADME properties of synthesized compounds were also analyzed and showed potential to develop as good oral drug candidates.  相似文献   

12.
13.
6-Chloro-2-Aryl-1H-imidazo[4,5-b]pyridine derivatives 126 were synthesized and characterized by various spectroscopic techniques. All these derivatives were evaluated for their antiglycation, antioxidant and β-glucuronidase potential followed their docking studies. In antiglycation assay, compound 2 (IC50 = 240.10 ± 2.50 μM) and 4 (IC50 = 240.30 ± 2.90 μM) was found to be most active compound of this series, while compounds 3 (IC50 = 260.10 ± 2.50 μM), 6 (IC50 = 290.60 ± 3.60 μM), 13 (IC50 = 288.20 ± 3.00 μM) and 26 (IC50 = 292.10 ± 3.20 μM) also showed better activities than the standard rutin (IC50 = 294.50 ± 1.50 μM). In antioxidant assay, compound 1 (IC50 = 69.45 ± 0.25 μM), 2 (IC50 = 58.10 ± 2.50 μM), 3 (IC50 = 74.25 ± 1.10 μM), and 4 (IC50 = 72.50 ± 3.30 μM) showed good activities. In β-glucuronidase activity, compounds 3 (IC50 = 29.25 ± 0.50 μM), compound 1 (IC50 = 30.10 ± 0.60 μM) and compound 4 (IC50 = 46.10 ± 1.10 μM) showed a significant activity as compared to than standard D-Saccharic acid 1,4-lactonec (IC50 = 48.50 ± 1.25 μM) and their interaction with the enzyme was confirm by docking studies.  相似文献   

14.
Flemingia philippinensis is used as a foodstuff or medicinal plant in the tropical regions of China. The methanol (95%) extract of the roots of this plant showed potent tyrosinase inhibition (80% inhibition at 30 μg/ml). Activity-guided isolation yielded six polyphenols that inhibited both the monophenolase (IC50 = 1.01–18.4 μM) and diphenolase (IC50 = 5.22–84.1 μM) actions of tyrosinase. Compounds 16 emerged to be three new polyphenols and three known flavanones, flemichin D, lupinifolin and khonklonginol H. The new compounds (13) were identified as dihydrochalcones which we named fleminchalcones (A–C), respectively. The most potent inhibitor, dihydrochalcone (3) showed significant inhibitions against both the monophenolase (IC50 = 1.28 μM) and diphenolase (IC50 = 5.22 μM) activities of tyrosinase. Flavanone (4) possessing a resorcinol group also inhibited monophenolase (IC50 = 1.79 μM) and diphenolase (IC50 = 7.48 μM) significantly. In kinetic studies, all isolated compounds behaved as competitive inhibitors. Fleminchalcone A was found to have simple reversible slow-binding inhibition against monophenolase.  相似文献   

15.
A series of unsymmetrically disubstituted urea derivatives 128 has been synthesized and screened for their antiglycation activity in vitro. Compounds 26 (IC50 = 4.26 ± 0.25 μM), 1 (IC50 = 5.8 ± 0.08 μM), 22 (IC50 = 4.26 ± 0.25 μM), 6 (IC50 = 6.4 ± 0.02 μM), 5 (IC50 = 6.6 ± 0.26 μM), 2 (IC50 = 7.02 ± 0.31 μM), 3 (IC50 = 7.14 ± 0.84 μM), 27 (IC50 = 7.27 ± 0.36 μM), 4 (IC50 = 8.16 ± 1.04 μM), 21 (IC50 = 8.4 ± 0.15 μM), 23 (IC50 = 9.0 ± 0.35 μM) and 13 (IC50 = 15.22 ± 6.7 μM) showed an excellent antiglycation activity far better than the standard (rutin, IC50 = 41.9 ± 2.3 μM). This study thus provides a series of potential molecules for further studies of antiglycation agents.  相似文献   

16.
Oxidative stress is commonly observed in the elderly and could be involved in age-related diseases. However, the determinants of superoxide anion overproduction are not clearly understood. Superoxide anion production was evaluated using a lucigenin-based chemiluminescence method in 478 elderly subjects (304 women, 174 men; 79.5 ± 7.1 years). Homocysteine (HCy) metabolism (homocysteinemia, vitamin B12, plasma, and erythrocyte folates), inflammation (CRP, fibrinogen, α-1 acid glycoprotein), lipid parameters (total cholesterol, triglycerides, HDL and LDL cholesterol), and nutritional parameters (albumin, transthyretin) were determined. The results show that HCy levels (p < 0.001) and superoxide anion production (p = 0.04) increase with aging, but CRP does not. Highest HCy (> 20 μM) (OR 1.83 (1.09–3.07), p = 0.02) and CRP over 5 mg/L (adjusted OR 2.01 (1.15–3.51), p = 0.01) are the main determinants in superoxide anion production in the elderly. These clinical data are confirmed in an in vitro study using THP-1 monocyte-like cells. Incubation with HCy thiolactone (HTL) (0–200 μM) and LPS (0–20 ng/ml) dramatically enhances NADPH oxidase expression and activation. Moreover, a synergic action was evidenced for low concentrations of HTL (20 μM) and LPS (5 ng). Taken together, the clinical data and in vitro experiments support the hypothesis that moderate homocysteinemia and low-grade inflammation synergically enhance NADPH oxidase activity in the elderly.  相似文献   

17.
The evaluation of the leishmanicidal and trypanocidal activity of the hydroalcoholic extract of the bark of Stryphnodendron rotundifolium Mart. (EHCSR) was carried out to find an alternative treatment for parasitic diseases. EHCSR was prepared and used at four different concentrations (1000, 500, 250, 125 μg/mL) in in vitro assays for activity against Leishmania promastigotes using the species Leishmania brasiliensis and Leishmania infantum and for trypanocidal activity using the epimastigotes of Trypanosoma cruzi. We also tested EHCSR for cytotoxicity against adhered cultured Murine J774 fibroblasts. The tests were performed in triplicate, and the percent mortality of parasites, IC50 and percent toxicity were determined. With regard to anti-leishmania activity against L. infantum, there was a mean mortality of 45% at all concentrations, and against L. brasiliensis, a substantial effect was seen at 1000 μg/mL with 56.38% mortality, where the IC50 values were 1338.76 and 987.35 μg/mL, respectively. Trypanocidal activity was notably high at 1000 μg/mL extract with 82.31% mortality of epimastigotes. Cytotoxicity at the highest extract concentrations of 500 and 1000 μg/mL was respectively 75.12% and 94.14%, with IC50 = 190.24 μg/mL. Despite that the extract has anti-parasitic activity, its substantial cytotoxicity against fibroblasts cells makes its systemic use nonviable as a therapeutic alternative.  相似文献   

18.
Current study based on the synthesis of new thiazole derivatives via “one pot” multicomponent reaction, evaluation of their in vitro α-glucosidase inhibitory activities, and in silico studies. All synthetic compounds were fully characterized by 1H NMR, 13C NMR and EIMS. CHN analysis was also performed. These newly synthesized compounds showed activities in the range of IC50 = 9.06 ± 0.10–82.50 ± 1.70 μM as compared to standard acarbose (IC50 = 38.25 ± 0.12 μM). It is worth mentioning that most of the compounds such as 1 (IC50 = 23.60 ± 0.39 μM), 2 (IC50 = 22.70 ± 0.60 μM), 3 (IC50 = 22.40 ± 0.32 μM), 4 (IC50 = 26.5 ± 0.40 μM), 6 (IC50 = 34.60 ± 0.60 μM), 7 (IC50 = 26.20 ± 0.43 μM), 8 (IC50 = 14.06 ± 0.18 μM), 9 (IC50 = 17.60 ± 0.28 μM), 10 (IC50 = 27.16 ± 0.41 μM), 11 (IC50 = 19.16 ± 0.19 μM), 12 (IC50 = 9.06 ± 0.10 μM), 13 (IC50 = 12.80 ± 0.21 μM), 14 (IC50 = 11.94 ± 0.18 μM), 15 (IC50 = 16.90 ± 0.20 μM), 16 (IC50 = 12.60 ± 0.14 μM), 17 (IC50 = 16.30 ± 0.29 μM), and 18 (IC50 = 32.60 ± 0.61 μM) exhibited potent inhibitory potential. Molecular docking study was performed in order to understand the molecular interactions between the molecule and enzyme. Newly identified α-glucosidase inhibitors except few were found to be completely non-toxic.  相似文献   

19.
Phytochemical investigation of flowering tops of Leonotis leonurus, yielded a new diterpene ester, 1,2,3-trihydroxy-3,7,11,15-tetramethylhexadecan-1-yl-palmitate along with five known metabolites. The structures of all compounds were determined by spectroscopic methods including 1D- and 2D NMR spectroscopy. All the isolated compounds were evaluated for antimalarial, cytotoxicity and for antimicrobial activities. Antimalarial activity for luteolin 7-O-β-d-glucopyranoside (4) (IC50 = 2.2 μg/mL for the D6 clone and 1.8 μg/mL for the W2 clone) was observed. Chloroquine and artemisinin were used as positive controls which showed IC50 of 0.016 and 0.0048 μg/mL for the D6 clone, respectively, and IC50 of 0.14 and 0.0047 μg/mL for the W2 clone, respectively. None of the compounds were cytotoxic to Vero cells up to a concentration of 4.76 μg/mL.  相似文献   

20.
A series of novel l-tyrosine derivatives were designed, synthesized and assayed for their inhibitory activities on matrix metalloproteinase 2 (MMP-2) and histone deacetylase 8 (HDAC-8). The results showed that these l-tyrosine derivatives exhibited inhibitory profiles against MMP-2 and HDAC-8. The compounds 6h (IC50 = 0.013 ± 0.001 μM) and 6j (IC50 = 0.017 ± 0.001 μM) were equal potent MMP-2 inhibitors to the positive control NNGH (IC50 = 0.014 ± 0.001 μM). As for HDAC-8 inhibition, some of the hydroxamate compounds, such as 6d (IC50 = 3.6 ± 0.2 μM) and 6c (IC50 = 5.8 ± 0.5 μM), were equal potent to the positive control SAHA (IC50 = 1.6 ± 0.1 μM). Structure–activity relationships were also briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号