首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundRadiation exposure of tissues is associated with inflammatory cell influx. Myeloperoxidase (MPO) is an enzyme expressed in granulocytes, such as neutrophils (PMN) and macrophages, responsible for active chlorine species (ACS) generation. The present study aimed to: 1) determine whether exposure to γ-irradiation induces MPO-dependent ACS generation in murine PMN; 2) elucidate the mechanism of radiation-induced ACS generation; and 3) evaluate the effect of the synthetic lignan LGM2605, known for ACS scavenging properties.MethodsMPO-dependent ACS generation was determined by using hypochlorite-specific 3′-(p-aminophenyl) fluorescein (APF) and a highly potent MPO inhibitor, 4-aminobenzoic acid hydrazide (ABAH), and confirmed in PMN derived from MPO−/− mice. Radiation-induced MPO activation was determined by EPR spectroscopy and computational analysis identified tyrosine, serine, and threonine residues near MPO's active site.Resultsγ-radiation increased MPO-dependent ACS generation dose-dependently in human MPO and in wild-type murine PMN, but not in PMN from MPO−/− mice. LGM2605 decreased radiation-induced, MPO-dependent ACS. Protein tyrosine phosphatase (PTP) and protein serine/threonine phosphatase (PSTP) inhibitors decreased the radiation-induced increase in ACS. Peroxidase cycle results demonstrate that tyrosine phosphorylation blocks MPO Compound I formation by preventing catalysis on H2O2 in the active site of MPO. EPR data demonstrate that γ-radiation increased tyrosyl radical species formation in a dose-dependent manner.ConclusionsWe demonstrate that γ-radiation induces MPO-dependent generation of ACS, which is dependent, at least in part, by protein tyrosine and Ser/Thr dephosphorylation and is reduced by LGM2605. This study identified for the first time a novel protein dephosphorylation-dependent mechanism of radiation-induced MPO activation.  相似文献   

2.
Using comet assay, a statistically significant increase (p < 0.05) in the level of DNA breaks in spleen cells was revealed in male CBA/lac mice exposed to γ-radiation (1.7 mGy/day) or 90Sr (150–250 Bq/day) for 210 days. The level of DNA breaks also increased under combined exposure to both γ-radiation and 90Sr (p < 0.05), but to a lesser degree than under exposure to each of these factors alone. Upon additional in vitro treatment of spleen cells with hydrogen peroxide, the relative increase in the level of DNA breaks was smaller in cells of irradiated mice than in the control. The ratio of the level of DNA breaks after hydrogen peroxide treatment to that before this treatment in control mice was 4.2 ± 0.9, compared to 1.4 ± 0.6 in γ-irradiated mice, 1.9 ± 0.8 in 90Sr-irradiated mice, and 2.3 ± 0.8 in mice exposed to both γ- and 90Sr-irradiation.  相似文献   

3.
Oxidation of essentially pure intermediate-spin iron(III) porphyrinates such as ruffled Fe(TiPrP)ClO4 and saddled Fe(OETPP)ClO4 produces the corresponding six-coordinate iron(III) porphyrin(por) radical cations [Fe(Por)(ClO4)2], where TiPrP and OETPP are dianions of 5,10,15,20-tetraisopropylporphyrin and 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin, respectively.Spin-spin interactions in these complexes are very much different; while ruffled [Fe(TiPrP)(ClO4)2] exhibits no antiferromagnetic coupling, saddled [Fe(OETPP)(ClO4)2] does exhibit it. The difference in magnetic behaviors has been explained in terms of the deformation mode and electron configuration of these complexes.  相似文献   

4.
In an unusual reaction of [RuIII(acac)2(CH3CN)2](ClO4) ([1], acac = acetylacetonate) and aniline (Ph-NH2), resulted in the formation of ortho-semidine due to dimerisation of aniline via oxidative ortho-Carom-N bond formation reaction. This oxidation reaction is associated with stepwise chlorination of coordinated acac ligands at the γ-carbon atom resulting in the formation of [RuIII(acac)2L] [2a], [RuIII(Cl-acac)(acac)L] [2b], [RuIII(acac)(Cl-acac)L] [2c] and [RuIII(Cl-acac)2L] [2d] (L = N-phenyl-ortho-semiquinonediimine) complexes, respectively. These have been characterized by 1H NMR, UV-Vis-NIR, ESI-MS and cyclic voltammetry studies. Single crystal X-ray structures of 2c and 2d are reported. Crystallographic structural bond parameters of 2c and 2d revealed bond length equalization of C-C, C-O and M-O bonds. It has been shown that perchlorate () counter anion, present in the starting ruthenium complex, acts as the oxidizing agent in bringing about oxidation of Ph-NH2 to ortho-semidine. The chloronium ions, produced in situ, chlorinate the coordinated acac ligands at the γ-carbon atom. Such electrophilic substitution of coordinated acac ligands indicates that the Ru-acac metallacycles in the reference compounds are aromatic. The complexes showed an intense and featureless band centered near 520 nm, and a structured band near 275 nm. These displayed one reversible cathodic response in the range, −1.1 to −0.8 V and one reversible anodic response between 0.4 and 0.6 V versus the Saturated Calomel reference Electrode, SCE. The response at the anodic potential is due to oxidation of the coordinated ligand L, while the reversible response at cathodic potential is due to reduction of the metal center.  相似文献   

5.
The reactions of NO2 with both oxidized and reduced cytochrome c at pH 7.2 and 7.4, respectively, and with N-acetyltyrosine amide and N-acetyltryptophan amide at pH 7.3 were studied by pulse radiolysis at 23 °C. NO2 oxidizes N-acetyltyrosine amide and N-acetyltryptophan amide with rate constants of (3.1±0.3)×105 and (1.1±0.1)×106 M−1 s−1, respectively. With iron(III)cytochrome c, the reaction involves only its amino acids, because no changes in the visible spectrum of cytochrome c are observed. The second-order rate constant is (5.8±0.7)×106 M−1 s−1 at pH 7.2. NO2 oxidizes iron(II)cytochrome c with a second-order rate constant of (6.6±0.5)×107 M−1 s−1 at pH 7.4; formation of iron(III)cytochrome c is quantitative. Based on these rate constants, we propose that the reaction with iron(II)cytochrome c proceeds via a mechanism in which 90% of NO2 oxidizes the iron center directly—most probably via reaction at the solvent-accessible heme edge—whereas 10% oxidizes the amino acid residues to the corresponding radicals, which, in turn, oxidize iron(II). Iron(II)cytochrome c is also oxidized by peroxynitrite in the presence of CO2 to iron(III)cytochrome c, with a yield of ~60% relative to peroxynitrite. Our results indicate that, in vivo, NO2 will attack preferentially the reduced form of cytochrome c; protein damage is expected to be marginal, the consequence of formation of amino acid radicals on iron(III)cytochrome c.  相似文献   

6.

Background

Myeloperoxidase (MPO) generates hypochlorous acid (HOCl) during inflammation and infection. We showed that secoisolariciresinol diglucoside (SDG) scavenges radiation-induced HOCl in physiological solutions. However, the action of SDG and its synthetic version, LGM2605, on MPO-catalyzed generation of HOCl is unknown. The present study evaluated the effect of LGM2605 on human MPO, and murine MPO from macrophages and neutrophils.

Methods

MPO activity was determined fluorometrically using hypochlorite-specific 3′-(p-aminophenyl) fluorescein (APF). The effect of LGM2605 on (a) the peroxidase cycle of MPO was determined using Amplex Red while the effect on (b) the chlorination cycle was determined using a taurine chloramine assay. Using electron paramagnetic resonance (EPR) spectroscopy we determined the effect of LGM2605 on the EPR signals of MPO. Finally, computational docking of SDG was used to identify energetically favorable docking poses to enzyme's active site.

Results

LGM2605 inhibited human and murine MPO activity. MPO inhibition was observed in the absence and presence of Cl?. EPR confirmed that LGM2605 suppressed the formation of Compound I, an oxoiron (IV) intermediate [Fe(IV)O] containing a porphyrin π-radical of MPO's catalytic cycle. Computational docking revealed that SDG can act as an inhibitor by binding to the enzyme's active site.

Conclusions

We conclude that LGM2605 inhibits MPO activity by suppressing both the peroxidase and chlorination cycles. EPR analysis demonstrated that LGM2605 inhibits MPO by decreasing the formation of the highly oxidative Compound I. This study identifies a novel mechanism of LGM2605 action as an inhibitor of MPO and indicates that LGM2605 may be a promising attenuator of oxidant-dependent inflammatory tissue damage.  相似文献   

7.
The hetero-functionalized macrocyclic complex [CuL2](ClO4)2 bearing one N-CH2C(NH)OMe and one N-CH2CN groups as well as [CuL3](ClO4)2 bearing two N-CH2C(NH)OMe groups have been prepared selectively by the reaction of [CuL1](ClO4)2 (L2 = 2,13-bis(cyanomethyl)-5,16-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.1.1807.12]docosane) with methanol. The N-CH2C(NH)OCH3 group in [CuL2](ClO4)2 is quite inert against acid hydrolysis. On the other hand, the functional pendant arms in [CuL3](ClO4)2 readily undergo acid hydrolysis. Both [CuL4](ClO4)2 bearing one N-CH2COOCH3 and one N-CH2C(NH)OCH3 groups and [CuL5](ClO4)2 bearing two N-CH2OOCH3 groups have been prepared by the stepwise hydrolysis of [CuL3](ClO4)2. The reactivity of the functional pendant arms in [CuL1](ClO4)2 or [CuL3](ClO4)2 is quite different from that in [NiL1](ClO4)2 or [NiL3](ClO4)2. The crystal structure of [CuL2](ClO4)2 shows that the complex has a slightly distorted square-pyramidal coordination polyhedron with an apical Cu-N (N-CH2C(NH)OCH3 group) bond. The N-CH2C(NH)OCH3 and/or N-CH2COOCH3 groups in [CuL3](ClO4)2, [CuL4](ClO4)2, and [CuL5](ClO4)2 are involved in coordination, and the complexes have distorted trans-octahedral coordination polyhedron. The axial Cu-N (N-CH2C(NH)OCH3 group) distance (2.396(7) Å) of [CuL4](ClO4)2 is considerably longer than the Cu-N (N-CH2C(NH)OCH3 group) distance (2.169(3) Å) of [CuL2](ClO4)2.  相似文献   

8.
Ionizing radiation is an important genotoxic agent. Protecting against this form of toxicant, especially by a dietary component, has several potential applications. In the present study, we have examined the ability of vanillin (4-hydroxy-3-methoxybenzaldehyde), a naturally occurring food flavouring agent, to inhibit radiation-induced DNA damage measured as strand breaks under in vitro, ex vivo and in vivo conditions besides the possible mechanisms behind the observed protection. Our study showed that there was a concentration-dependent inhibition of the disappearance of super-coiled (ccc) form of plasmid pBR322 (in vitro) upon exposure to 50 Gy of γ-radiation. Presence of 0.5 mM vanillin has a dose-modifying factor (DMF) of 6.75 for 50% inactivation of ccc form. Exposure of human peripheral blood leucocytes (ex vivo) to γ-radiation causes strand breaks in the cellular DNA, as assessed by comet assay. When leucocytes were exposed to 2 Gy of γ-radiation there was an increase in parameters of comet assay such as %DNA in tail, tail length, ‘tail moment’ and ‘Olive tail moment’. The presence of 0.5 mM vanillin during irradiation significantly reduced these parameters. Damage to DNA in mouse peripheral blood leucocytes after whole-body exposure of mice (in vivo) to γ-radiation was studied at 1 and 2 h post-irradiation. There was recovery of DNA damage in terms of the above-mentioned parameters at 2 h post-irradiation. This was more than that observed at 1 h. The recovery was more in vanillin treated mice. Hence our studies showed that vanillin offers protection to DNA against radiation-induced damage possibly imparting a role other than modulation of DNA repair. To examine the possible mechanisms of radioprotection, in terms of radiation-derived radicals, we carried out the reaction of vanillin with ABTS+ radical spectrophotometrically besides with DNA peroxyl and carbonyl radicals by using pulse radiolysis. Our present investigations show that vanillin has ability to protect against DNA damage in plasmid pBR322, human and mouse peripheral blood leucocytes and splenic lymphocytes besides enhancing survival in splenic lymphocytes against γ-radiation, and that the possible mechanism may involve scavenging of radicals generated during radiation, apart from modulation of DNA repair observed earlier.  相似文献   

9.
Endothelial dysfunction causes an imbalance in endothelial NO and O2 production rates and increased peroxynitrite formation. Peroxynitrite and its decomposition products cause multiple deleterious effects including tyrosine nitration of proteins, superoxide dismutase (SOD) inactivation, and tissue damage. Studies have shown that peroxynitrite formation during endothelial dysfunction is strongly dependent on the NO and O2 production rates. Previous experimental and modeling studies examining the role of NO and O2 production imbalance on peroxynitrite formation showed different results in biological and synthetic systems. However, there is a lack of quantitative information about the formation and biological relevance of peroxynitrite under oxidative, nitroxidative, and nitrosative stress conditions in the microcirculation. We developed a computational biotransport model to examine the role of endothelial NO and O2 production on the complex biochemical NO and O2 interactions in the microcirculation. We also modeled the effect of variability in SOD expression and activity during oxidative stress. The results showed that peroxynitrite concentration increased with increase in either O2 to NO or NO to O2 production rate ratio (QO2/QNO or QNO/QO2, respectively). The peroxynitrite concentrations were similar for both production rate ratios, indicating that peroxynitrite-related nitroxidative and nitrosative stresses may be similar in endothelial dysfunction or inducible NO synthase (iNOS)-induced NO production. The endothelial peroxynitrite concentration increased with increase in both QO2/QNO and QNO/QO2 ratios at SOD concentrations of 0.1–100 μM. The absence of SOD may not mitigate the extent of peroxynitrite-mediated toxicity, as we predicted an insignificant increase in peroxynitrite levels beyond QO2/QNO and QNO/QO2 ratios of 1. The results support the experimental observations of biological systems and show that peroxynitrite formation increases with increase in either NO or O2 production, and excess NO production from iNOS or from NO donors during oxidative stress conditions does not reduce the extent of peroxynitrite mediated toxicity.  相似文献   

10.
The reaction of the chelating P,N ligand RNC(But)CH(R)PPh2 (R = SiMe3) (1) with CuCl and CuCl2 (probably by way of reduction to Cu(I) by the phosphine ligand) or Cu(NCCH3)4ClO4 yielded the dimeric 1:1 complex [Cu{PPh2CH(R)C(But)NR}Cl]2 (2) or the monomeric 2:1 complex [Cu{PPh2CH(R)C(But)NR}2]ClO4 (3), respectively. The presence of trace amounts of water during the reaction resulted in the successive cleavage of the two trimethylsilyl groups of the ligand and the formation of the monomeric chelate complexes [Cu{PPh2CH(R)C(But)NH}2]ClO4 (4) and [Cu{PPh2CH2C(But)NH}2]ClO4 (5). Oxidation of 5 by atmospheric oxygen led to small quantities of the blue Cu(II) complex [Cu{(O)PPh2CH2C(But)NH}2](ClO4)2 (6). The dimeric gold complexes [Au{PPh2CH2C(But)NH}]2X2 (X = BF4, ClO4) (7) were similarly obtained from the previously described Au{PPh2CH(R)C(But)NR}Cl by replacing the covalently bound chlorine with the weakly coordinating anions in the presence of small quantities of water. The solution and solid state structures (except 5) of all complexes were determined by NMR spectroscopy and X-ray crystallography.  相似文献   

11.
An expedient and eco-friendly synthesis of 1-aryl/heteroaryl-[1,2,4]-triazolo[4,3-a]quinoxalin-4(5H)-ones (4) has been accomplished via iodobenzene diacetate mediated oxidative intramolecular cyclization of 3-(2-(aryl/heteroarylidene)hydrazinyl)-quinoxalin-2(1H)-ones (3). Ten synthesized compounds 3 and 4 (10–40 μg) on irradiation with UV light at λmax 312 nm could lead to cleavage of supercoiled pMaxGFP DNA (Form I) into the relaxed DNA (Form II) without any additive. Further, DNA cleaving ability of triazoles was quantitatively evaluated and was found to be dependent on its structure, concentration, and strictly on photoirradiation time. Mechanistic investigations using several additives as potential inhibitors/activator revealed that the DNA photocleavage reaction involves Type-I pathway leading to formation of superoxide anion radicals (O2) as the major reactive oxygen species responsible for photocleavage process.  相似文献   

12.
Carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) utilizes a unique Ni-M bimetallic site in the biosynthesis of acetyl-CoA, where a square-planar Ni ion is coordinated to two thiolates and two deprotonated amides in a Cys-Gly-Cys motif. The identity of M is currently a matter of debate, although both Cu and Ni have been proposed. In an effort to model ACSs unusual active site and to provide insight into the mechanism of acetyl-CoA formation and the role of each of the metals ions, we have prepared and structurally characterized a number of Ni(II)–peptide mimic complexes. The mononuclear complexes Ni(II) N,N-bis(2-mercaptoethyl)oxamide (1), Ni(II) N,N-ethylenebis(2-mercaptoacetamide) (2), and Ni(II) N,N-ethylenebis(2-mercaptopropionamide) (3) model the Ni(Cys-Gly-Cys) site and can be used as synthons for additional multinuclear complexes. Reaction of 2 with MeI resulted in the alkylation of the sulfur atoms and the formation of Ni(II) N,N-ethylenebis(2-methylmercaptoacetamide) (4), demonstrating the nucleophilicity of the terminal alkyl thiolates. Addition of Ni(OAc)2·4H2O to 3 resulted in the formation of a trinuclear species 5, while 2 crystallizes as an unusual paddlewheel complex (6) in the presence of nickel acetate. The difference in reactivity between the similar complexes 2 and 3 highlights the importance of ligand design when synthesizing models of ACS. Significantly, 5 maintains the key features observed in the active site of ACS, namely a square-planar Ni coordinated to two deprotonated amides and two thiolates, where the thiolates bridge to a second metal, suggesting that 5 is a reasonable structural model for this unique enzyme.Ø. Hatlevik and M.C. Blanksma contributed equally to this work  相似文献   

13.
An amino acid based and bidentate Schiff base, (E)-methyl 2-((2-oxonaphthalen-1(2H)-ylidene)methylamino)acetate (ligand), was synthesized from the reaction of glycine-methyl ester hydrochloride with 2-hydroxy-1-naphthaldehyde. Characterization of the ligand was carried out using theoretical quantum–mechanical calculations and experimental spectroscopic methods. The molecular structure of the compound was confirmed using X-ray single-crystal data, NMR, FTIR and UV–Visible spectroscopy, which were in good agreement with the structure predicted by the theoretical calculations using density functional theory (DFT). Antimicrobial activity of the ligand was investigated for its minimum inhibitory concentration (MIC) to several bacteria and yeast cultures. UV–Visible spectroscopy studies also shown that the ligand can bind calf thymus DNA (CT-DNA) electrostatic binding. In addition, DNA cleavage study showed that the ligand cleaved DNA without the need for external agents. Energetically most favorable docked structures were obtained from the rigid molecular docking of the compound with DNA. The compound binds at the active site of the DNA proteins by weak non-covalent interactions. The colorimetric response of the ligand in DMSO to the addition of equivalent amount of anions (F, Br, I, CN, SCN, ClO4, HSO4, AcO, H2PO4, N3 and OH) was investigated and the ligand was shown to be sensitive to CN anion.  相似文献   

14.
15.
Three water-soluble dicobalt(III) complexes, [Co2L2(µ-OH)2](ClO4)2·5H2O (1), [Co2L2(µ-OH)2](ClO4)2·CH3OH·H2O(2); [Co2L2(µ-OH)2](ClO4)2·4H2O(3) (L = 1,4,7-triazacyclononane-N-acetate monoanion), were prepared to serve as nuclease mimics. The complexes were characterized by X-ray, IR and UV-vis spectroscopy as well as ESI-MS. Three complexes exhibit similar structures, just with different solvent molecules. The electrospray mass spectrum of 1 in solution indicates that dinuclear ion [Co2L2(µ-OH)2-H+] + (4) is the active species. In the absence of any reducing agent, the complexes cleave plasmid pBR322 DNA was performed and its hydrolytic mechanism was demonstrated with radical scavengers, anaerobic reaction and T4 ligase. The kinetic aspects of DNA cleavage under pseudo- or true-Michaelis-Menten conditions are also detailed, kinetic parameters (kcat, KM) were calculated to be 3.57 h− 1, 6.92 × 10− 4 M; 0.28 h− 1, 1.9 × 10− 5 M for 4, respectively.  相似文献   

16.
Manganese(II) complexes, Mn2L13(ClO4)4, MnL1(H2O)2(ClO4)2, MnL2(H2O)2(ClO4)2, and {(μ-Cl)MnL2(PF6)}2 based on N,N′-bis(2-pyridinylmethylene) ethanediamine (L1) and N,N′-bis(2-pyridinylmethylene) propanediamine (L2) ligands have been prepared and characterized. The single crystal X-ray diffraction analysis of Mn2L23(ClO4)4 shows that each of the two Mn(II) ion centers with a Mn-Mn distance of 7.15 Å are coordinated by one ligand while a common third ligand bridges the metal centers. Solid-state magnetic susceptibility measurements as well as DFT calculations confirm that each of the manganese centers is high-spin S = 5/2. The electronic structure obtained shows no orbital overlap between the Mn(II) centers indicating that the observed weak antiferromagentism is a result of through space interactions between the two Mn(II) centers. Under different reaction conditions, L1 and Mn(II) yielded a one-dimensional polymer, MnL1(H2O)2(ClO4)2. Ligand L2 when reacted with manganese(II) perchlorate gives contrarily to L1 mononuclear MnL2(H2O)2(ClO4)2 complex. The analysis of the structural properties of the MnL2(H2O)2(ClO4)2 lead to the design of dinuclear complex {(μ-Cl)MnL2(PF6)} where two chlorine atoms were utilized as bridging moieties. This complex has a rhomboidal Mn2Cl2 core with a Mn-Mn distance of 3.726 Å. At room temperature {(μ-Cl)MnL2(PF6)} is ferromagnetic with observed μeff = 4.04 μB per Mn(II) ion. With cooling, μeff grows reaching 4.81 μB per Mn(II) ion at 8 K, and then undergoes ferromagnetic-to-antiferromagnetic phase transition.  相似文献   

17.
18.
Recently, D.J. Hall et al. reported that ethidium (E+) is formed as a major product of hydroethidine (HE) or dihydroethidium reaction with superoxide (O2) in intact animals with low tissue oxygen levels (J. Cereb. Blood Flow Metab. 32:23–32, 2012). The authors concluded that measurement of E+ is an indicator of O2 formation in intact brains of animals. This finding is in stark contrast to previous reports using in vitro systems showing that 2-hydroxyethidium, not ethidium, is formed from the reaction between O2 and HE. Published in vivo results support the in vitro findings. In this study, we performed additional experiments in which HE oxidation products were monitored under different fluxes of O2. Results from these experiments further reaffirm our earlier findings (H. Zhao et al., Free Radic. Biol. Med. 34:1359, 2003). We conclude that whether in vitro or in vivo, E+ measured by HPLC or by fluorescence lifetime imaging is not a diagnostic marker product for O2 reaction with HE.  相似文献   

19.
The three complexes [CoIIIL1Cl] (1), [CoIIIL2]+·ClO4 (2+·ClO4), and [CuIIH2L2]2+·2ClO4 (H232+·2ClO4) [where H2L1 = N,N′-dimethyl-N,N′-bis(2-hydroxy-3,5-di-tert-butylbenzyl)ethylenediamine, H2L2 = N,N′-bis(2-pyridylmethyl)-N,N′-bis(2-hydroxy-3,5-di-tert-butylbenzyl)ethylenediamine] have been prepared. The bis-phenolate and bis-phenol complexes, 2+ and H232+ respectively, have been characterized by X-ray diffraction, showing a metal ion within an elongated octahedral geometry. 1-2 exhibit in their cyclic voltammetry curves two anodic reversible waves attributed to the successive oxidation of the phenolates into phenoxyl radicals. The cobalt radical species (1)+, (2)2+, and (2)3+ have been characterized by combined UV-Vis and EPR spectroscopies. In the presence of one equivalent of base, one phenolic arm of H232+ is deprotonated and coordinates the metal. The resulting complex (H3+) exhibits a single reversible redox wave at ca. 0.3 V. The electrochemically generated oxidized species is EPR silent and exhibits the typical features of a radical compound, with absorption bands at 411 and 650 nm. The fully deprotonated complex 3 is obtained by addition of two equivalents of nBu4N+OH to H232+. It exhibits a new redox wave at a lower potential (−0.16 V), in addition to the wave at ca. 0.3 V. We assigned the former to the one-electron oxidation of the uncoordinated phenolate into an unstable phenoxyl radical.  相似文献   

20.
A series of new binuclear copper (II) and nickel (II) complexes of the macrocyclic ligands bis(1,4,7-triazacyclononan-1-yl)butane (Lbut) and bis(1,4,7-triazacyclononan-1-yl)-m-xylene (Lmx) have been synthesized: [Cu2LbutBr4] (1), [Cu2Lbut(imidazole)2Br2](ClO4)2 (2), [Cu2Lmx(μ-OH)(imidazole)2](ClO4)3 (3), [Cu2Lbut(imidazole)4](ClO4)4 · H2O (4), [Cu2Lmx(imidazole)4](ClO4)4 (5), [Ni2 Lbut(H2O)6](ClO4)4 · 2H2O (6), [Ni2Lbut(imidazole)6](ClO4)4 · 2H2O (7) and [Ni2Lmx (imidazole)4(H2O)2](ClO4)4 · 3H2O (8). Complexes 1, 2, 7 and 8 have been characterized by single crystal X-ray studies. In each of the complexes, the two tridentate 1,4,7-triazacyclononane rings of the ligand facially coordinate to separate metal centres. The distorted square-pyramidal coordination sphere of the copper (II) centres is completed by bromide anions in the case of 1 and/or monodentate imidazole ligands in complexes 2, 4 and 5. Complex 3 has been formulated as a monohydroxo-bridged complex featuring two terminal imidazole ligands. Complexes 6-8 feature distorted octahedral nickel (II) centres with water and/or monodentate imidazole ligands occupying the remaining coordination sites. Within the crystal structures, the ligands adopt trans conformations, with the two metal binding compartments widely separated, perhaps as a consequence of electrostatic repulsion between the cationic metal centres. The imidazole-bearing complexes may be viewed as simple models for the coordinative interaction of the binuclear complexes of bis (tacn) ligands with protein molecules bearing multiple surface-exposed histidine residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号