首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.

Background

The aging gene p66Shc, is an important mediator of oxidative stress-induced vascular dysfunction and disease. In cultured human aortic endothelial cells (HAEC), p66Shc deletion increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability via protein kinase B. However, the putative role of the NO pathway on p66Shc activation remains unclear. This study was designed to elucidate the regulatory role of the eNOS/NO pathway on p66Shc activation.

Methods and Results

Incubation of HAEC with oxidized low density lipoprotein (oxLDL) led to phosphorylation of p66Shc at Ser-36, resulting in an enhanced production of superoxide anion (O2 -). In the absence of oxLDL, inhibition of eNOS by small interfering RNA or L-NAME, induced p66Shc phosphorylation, suggesting that basal NO production inhibits O2 - production. oxLDL-induced, p66Shc-mediated O2- was prevented by eNOS inhibition, suggesting that when cells are stimulated with oxLDL eNOS is a source of reactive oxygen species. Endogenous or exogenous NO donors, prevented p66Shc activation and reduced O2- production. Treatment with tetrahydrobiopterin, an eNOS cofactor, restored eNOS uncoupling, prevented p66Shc activation, and reduced O2- generation. However, late treatment with tetrahydropterin did not yield the same result suggesting that eNOS uncoupling is the primary source of reactive oxygen species.

Conclusions

The present study reports that in primary cultured HAEC treated with oxLDL, p66Shc-mediated oxidative stress is derived from eNOS uncoupling. This finding contributes novel information on the mechanisms of p66Shc activation and its dual interaction with eNOS underscoring the importance eNOS uncoupling as a putative antioxidant therapeutical target in endothelial dysfunction as observed in cardiovascular disease.  相似文献   

2.

Introduction

Hantavirus infections are characterized by both activation and dysfunction of the endothelial cells. The underlying mechanisms of the disease pathogenesis are not fully understood. Here we tested the hypothesis whether the polymorphisms of endothelial nitric oxide synthase, eNOS G894T, and inducible nitric oxide synthase, iNOS G2087A, are associated with the severity of acute Puumala hantavirus (PUUV) infection.

Patients and Methods

Hospitalized patients (n = 172) with serologically verified PUUV infection were examined. Clinical and laboratory variables reflecting disease severity were determined. The polymorphisms of eNOS G894T (Glu298Asp, rs1799983) and iNOS G2087A (Ser608Leu, rs2297518) were genotyped.

Results

The rare eNOS G894T genotype was associated with the severity of acute kidney injury (AKI). The non-carriers of G-allele (TT-homozygotes) had higher maximum level of serum creatinine than the carriers of G-allele (GT-heterozygotes and GG-homozygotes; median 326, range 102–1041 vs. median 175, range 51–1499 μmol/l; p = 0.018, respectively). The length of hospital stay was longer in the non-carriers of G-allele than in G-allele carriers (median 8, range 3–14 vs. median 6, range 2–15 days; p = 0.032). The rare A-allele carriers (i.e. AA-homozygotes and GA-heterozygotes) of iNOS G2087A had lower minimum systolic and diastolic blood pressure than the non-carriers of A-allele (median 110, range 74–170 vs.116, range 86–162 mmHg, p = 0.019, and median 68, range 40–90 vs. 72, range 48–100 mmHg; p = 0.003, respectively).

Conclusions

Patients with the TT-homozygous genotype of eNOS G894T had more severe PUUV-induced AKI than the other genotypes. The eNOS G894T polymorphism may play role in the endothelial dysfunction observed during acute PUUV infection.  相似文献   

3.

Background

Obesity is associated with increased risks for development of cardiovascular diseases. Epidemiological studies report an inverse association between dietary flavonoid consumption and mortality from cardiovascular diseases. We studied the potential beneficial effects of dietary supplementation of red wine polyphenol extract, Provinols™, on obesity-associated alterations with respect to metabolic disturbances and cardiovascular functions in Zucker fatty (ZF) rats.

Methodology/Principal Findings

ZF rats or their lean littermates received normal diet or supplemented with Provinols™ for 8 weeks. Provinols™ improved glucose metabolism by reducing plasma glucose and fructosamine in ZF rats. Moreover, it reduced circulating triglycerides and total cholesterol as well as LDL-cholesterol in ZF rats. Echocardiography measurements demonstrated that Provinols™ improved cardiac performance as evidenced by an increase in left ventricular fractional shortening and cardiac output associated with decreased peripheral arterial resistances in ZF rats. Regarding vascular function, Provinols™ corrected endothelial dysfunction in aortas from ZF rats by improving endothelium-dependent relaxation in response to acetylcholine (Ach). Provinols™ enhanced NO bioavailability resulting from increased nitric oxide (NO) production through enhanced endothelial NO-synthase (eNOS) activity and reduced superoxide anion release via decreased expression of NADPH oxidase membrane sub-unit, Nox-1. In small mesenteric arteries, although Provinols™ did not affect the endothelium-dependent response to Ach; it enhanced the endothelial-derived hyperpolarizing factor component of the response.

Conclusions/Significance

Use of red wine polyphenols may be a potential mechanism for prevention of cardiovascular and metabolic alterations associated with obesity.  相似文献   

4.

Background

Wound healing of the endothelium occurs through cell enlargement and migration. However, the peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium in endothelial injury.

Aim

To investigate the recovery process of corneal endothelial cells (CECs) from corneal endothelial injury.

Methods

Three patients with unilateral chemical eye injuries, and 15 rabbit eyes with corneal endothelial chemical injuries were studied. Slit lamp examination, specular microscopy, and ultrasound pachymetry were performed immediately after chemical injury and 1, 3, 6, and 9 months later. The anterior chambers of eyes from New Zealand white rabbits were injected with 0.1 mL of 0.05 N NaOH for 10 min (NaOH group). Corneal edema was evaluated at day 1, 7, and 14. Vital staining was performed using alizarin red and trypan blue.

Results

Specular microscopy did not reveal any corneal endothelial cells immediately after injury. Corneal edema subsided from the periphery to the center, CEC density increased, and central corneal thickness decreased over time. In the animal study, corneal edema was greater in the NaOH group compared to the control at both day 1 and day 7. At day 1, no CECs were detected at the center and periphery of the corneas in the NaOH group. Two weeks after injury, small, hexagonal CECs were detected in peripheral cornea, while CECs in mid-periphery were large and non-hexagonal.

Conclusions

CECs migrated from the periphery to the center of the cornea after endothelial injury. The peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium.  相似文献   

5.

Objective

The aim of this study was to investigate the effects of chronic treatment with atrial natriuretic peptide (ANP) on renal function, nitric oxide (NO) system, oxidative stress, collagen content and apoptosis in kidneys of spontaneously hypertensive rats (SHR), as well as sex-related differences in the response to the treatment.

Methods

10 week-old male and female SHR were infused with ANP (100 ng/h/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). Systolic blood pressure (SBP) was recorded and diuresis and natriuresis were determined. After treatment, renal NO synthase (NOS) activity and eNOS expression were evaluated. Thiobarbituric acid-reactive substances (TBARS), glutathione concentration and glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in the kidney. Collagen was identified in renal slices by Sirius red staining and apoptosis by Tunel assay.

Results

Female SHR showed lower SBP, oxidative stress, collagen content and apoptosis in kidney, and higher renal NOS activity and eNOS protein content, than males. ANP lowered SBP, increased diuresis, natriuresis, renal NOS activity and eNOS expression in both sexes. Renal response to ANP was more marked in females than in males. In kidney, ANP reduced TBARS, renal collagen content and apoptosis, and increased glutathione concentration and activity of GPx and SOD enzymes in both sexes.

Conclusions

Female SHR exhibited less organ damage than males. Chronic ANP treatment would ameliorate hypertension and end-organ damage in the kidney by reducing oxidative stress, increasing NO-system activity, and diminishing collagen content and apoptosis, in both sexes.  相似文献   

6.

Introduction

Metabolic syndrome causes insulin resistance and is associated with risk factor clustering, thereby increasing the risk of atherosclerosis. Recently, endothelial nitric oxide synthase deficient (eNOS-/-) mice have been reported to show metabolic disorders. Interestingly, eNOS has also been reported to be expressed in non-endothelial cells including adipocytes, but the functions of eNOS in adipocytes remain unclear.

Methods and Results

The eNOS expression was induced with adipocyte differentiation and inhibition of eNOS/NO enhanced lipolysis in vitro and in vivo. Furthermore, the administration of a high fat diet (HFD) was able to induce non-alcoholic steatohepatitis (NASH) in eNOS-/- mice but not in wild type mice. A PPARγ antagonist increased eNOS expression in adipocytes and suppressed HFD-induced fatty liver changes.

Conclusions

eNOS-/- mice induce NASH development, and these findings provide new insights into the therapeutic approach for fatty liver disease and related disorders.  相似文献   

7.

Rationale

There is evidence that impairments in nitric oxide (NO) signaling contribute to chronic hypoxia-induced pulmonary hypertension. The L-arginine-NO precursor, L-citrulline, has been shown to ameliorate pulmonary hypertension. Sodium-coupled neutral amino acid transporters (SNATs) are involved in the transport of L-citrulline into pulmonary arterial endothelial cells (PAECs). The functional link between the SNATs, L-citrulline, and NO signaling has not yet been explored.

Objective

We tested the hypothesis that changes in SNAT1 expression and transport function regulate NO production by modulating eNOS coupling in newborn piglet PAECs.

Methods and Results

A silencing RNA (siRNA) technique was used to assess the contribution of SNAT1 to NO production and eNOS coupling (eNOS dimer-to-monomer ratios) in PAECs from newborn piglets cultured under normoxic and hypoxic conditions in the presence and absence of L-citrulline. SNAT1 siRNA reduced basal NO production in normoxic PAECs and prevented L-citrulline-induced elevations in NO production in both normoxic and hypoxic PAECs. SNAT1 siRNA reduced basal eNOS dimer-to-monomer ratios in normoxic PAECs and prevented L-citrulline-induced increases in eNOS dimer-to-monomer ratios in hypoxic PAECs.

Conclusions

SNAT1 mediated L-citrulline transport modulates eNOS coupling and thus regulates NO production in hypoxic PAECs from newborn piglets. Strategies that increase SNAT1-mediated transport and supply of L-citrulline may serve as novel therapeutic approaches to enhance NO production in patients with pulmonary vascular disease.  相似文献   

8.

Background

Diabetes is the leading cause of CKD in the developed world. C-terminal fragment of agrin (CAF) is a novel kidney function and injury biomarker. We investigated whether serum CAF predicts progression of kidney disease in type 2 diabetics.

Methods

Serum CAF levels were measured in 71 elderly patients with diabetic nephropathy using a newly developed commercial ELISA kit (Neurotune®). Estimated glomerular filtration rate (eGFR) and proteinuria in spot urine were assessed at baseline and after 12 months follow up. The presence of end stage renal disease (ESRD) was evaluated after 24 months follow-up. Correlation and logistic regression analyses were carried out to explore the associations of serum CAF levels with GFR, proteinuria, GFR loss and incident ESRD. Renal handling of CAF was tested in neurotrypsin-deficient mice injected with recombinant CAF.

Results

We found a strong association of serum CAF levels with eGFR and a direct association with proteinuria both at baseline (r = 0.698, p<0.001 and r = 0. 287, p = 0.02) as well as after 12 months follow-up (r = 0.677, p<0.001 and r = 0.449, p<0.001), respectively. Furthermore, in multivariate analysis, serum CAF levels predicted eGFR decline at 12 months follow-up after adjusting for known risk factors (eGFR, baseline proteinuria) [OR (95%CI) = 4.2 (1.2–14.5), p = 0.024]. In mice, injected CAF was detected in endocytic vesicles of the proximal tubule.

Conclusion

Serum CAF levels reflect renal function and are highly associated with eGFR and proteinuria at several time points. Serum CAF was able to predict subsequent loss of renal function irrespective of baseline proteinuria in diabetic nephropathy. CAF is likely removed from circulation by glomerular filtration and subsequent endocytosis in the proximal tubule. These findings may open new possibilities for clinical trial design, since serum CAF levels may be used as a selection tool to monitor kidney function in high-risk patients with diabetic nephropathy.  相似文献   

9.

Background

A greater reduction in cardiovascular risk and vascular protection associated with diet rich in polyphenols are generally accepted; however, the molecular targets for polyphenols effects remain unknown. Meanwhile evidences in the literature have enlightened, not only structural similarities between estrogens and polyphenols known as phytoestrogens, but also in their vascular effects. We hypothesized that alpha isoform of estrogen receptor (ERα) could be involved in the transduction of the vascular benefits of polyphenols.

Methodology/Principal Findings

Here, we used ERα deficient mice to show that endothelium-dependent vasorelaxation induced either by red wine polyphenol extract, Provinols™, or delphinidin, an anthocyanin that possesses similar pharmacological profile, is mediated by ERα. Indeed, Provinols™, delphinidin and ERα agonists, 17-beta-estradiol and PPT, are able to induce endothelial vasodilatation in aorta from ERα Wild-Type but not from Knock-Out mice, by activation of nitric oxide (NO) pathway in endothelial cells. Besides, silencing the effects of ERα completely prevented the effects of Provinols™ and delphinidin to activate NO pathway (Src, ERK 1/2, eNOS, caveolin-1) leading to NO production. Furthermore, direct interaction between delphinidin and ERα activator site is demonstrated using both binding assay and docking. Most interestingly, the ability of short term oral administration of Provinols™ to decrease response to serotonin and to enhance sensitivity of the endothelium-dependent relaxation to acetylcholine, associated with concomitant increased NO production and decreased superoxide anions, was completely blunted in ERα deficient mice.

Conclusions/Significance

This study provides evidence that red wine polyphenols, especially delphinidin, exert their endothelial benefits via ERα activation. It is a major breakthrough bringing new insights of the potential therapeutic of polyphenols against cardiovascular pathologies.  相似文献   

10.
11.
12.

Background

Aortic stenosis (AS) is the most common valvular disease. Endothelial progenitor cells (EPCs) have a role in the repair of endothelial surfaces after injury. Reduced numbers of EPCs are associated with endothelial dysfunction and adverse clinical events, suggesting that endothelial injury in the absence of sufficient repair by circulating EPCs promotes the progression of vascular and possibly valvular disorders. The aim of this study was to assess EPC number in patients with AS and to study the predictive value of their circulating levels on prognosis.

Methods

The number of EPCs was determined by flow cytometry in 241 patients with AS and a control group of 73 pts. Thirty-eight, 52 and 151 patients had mild, moderate and severe AS, respectively. We evaluated the association between baseline levels of EPCs and death from cardiovascular causes during follow up.

Results

EPC level was significantly higher in patients with AS compared to the control group (p = 0.017). Two hundred and three patients with moderate and severe AS were followed for a median of 20 months. One hundred and twenty patients underwent an intervention. Thirty four patients died during follow up, 20 patients died due to cardiac causes. Advanced age, the presence of coronary artery disease, AS severity index (combination of high NYHA class, smaller aortic valve area and elevated pulmonary artery pressure) and a low EPC number were predictors of cardiac death in the univariate analysis. Multivariate logistic regression model identified low EPCs number and AS severity index as associated with cardiac death during follow up (p = 0.026 and p = 0.037, respectively).

Conclusions

EPC number is increased in patients with AS. However, in patients with moderate or severe AS a relatively low number of EPCs is associated with cardiac death at follow up. These results may help to identify AS patients at increased cardiovascular risk.  相似文献   

13.

Background

PABA/NO is a diazeniumdiolate that acts as a direct nitrogen monoxide (NO) donor and is in development as an anticancer drug. Its mechanism of action and effect on cells is not yet fully understood.

Methodology/Principal Findings

We used HPLC and mass spectrometry to identify a primary nitroaromatic glutathione metabolite of PABA/NO and used fluorescent assays to characterize drug effects on calcium and NO homeostasis, relating these to endothelial nitric oxide synthase (eNOS) activity. Unexpectedly, the glutathione conjugate was found to be a competitive inhibitor of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) presumably at the same site as thapsigargin, increasing intracellular Ca2+ release and causing auto-regulation of eNOS through S-glutathionylation.

Conclusions/Significance

The initial direct release of NO after PABA/NO was followed by an eNOS-mediated generation of NO as a consequence of drug-induced increase in Ca2+ flux and calmodulin (CaM) activation. PABA/NO has a unique dual mechanism of action with direct intracellular NO generation combined with metabolite driven regulation of eNOS activation.  相似文献   

14.

Background

Levosimendan protects rat liver against peroxidative injuries through mechanisms related to nitric oxide (NO) production and mitochondrial ATP-dependent K (mitoKATP) channels opening. However, whether levosimendan could modulate the cross-talk between apoptosis and autophagy in the liver is still a matter of debate. Thus, the aim of this study was to examine the role of levosimendan as a modulator of the apoptosis/autophagy interplay in liver cells subjected to peroxidation and the related involvement of NO and mitoKATP.

Methods and Findings

In primary rat hepatocytes that have been subjected to oxidative stress, Western blot was performed to examine endothelial and inducible NO synthase isoforms (eNOS, iNOS) activation, apoptosis/autophagy and survival signalling detection in response to levosimendan. In addition, NO release, cell viability, mitochondrial membrane potential and mitochondrial permeability transition pore opening (MPTP) were examined through specific dyes. Some of those evaluations were also performed in human hepatic stellate cells (HSC). Pre-treatment of hepatocytes with levosimendan dose-dependently counteracted the injuries caused by oxidative stress and reduced NO release by modulating eNOS/iNOS activation. In hepatocytes, while the autophagic inhibition reduced the effects of levosimendan, after the pan-caspases inhibition, cell survival and autophagy in response to levosimendan were increased. Finally, all protective effects were prevented by both mitoKATP channels inhibition and NOS blocking. In HSC, levosimendan was able to modulate the oxidative balance and inhibit autophagy without improving cell viability and apoptosis.

Conclusions

Levosimendan protects hepatocytes against oxidative injuries by autophagic-dependent inhibition of apoptosis and the activation of survival signalling. Such effects would involve mitoKATP channels opening and the modulation of NO release by the different NOS isoforms. In HSC, levosimendan would also play a role in cell activation and possible evolution toward fibrosis. These findings highlight the potential of levosimendan as a therapeutic agent for the treatment or prevention of liver ischemia/reperfusion injuries.  相似文献   

15.

Background and Objective

Endothelial dysfunction is predictive for cardiovascular events and may be caused by decreased bioavailability of nitric oxide (NO). NO is scavenged by cell-free hemoglobin with reduction of bioavailable NO up to 70% subsequently deteriorating vascular function. While patients with mitral regurgitation (MR) suffer from an impaired prognosis, mechanisms relating to coexistent vascular dysfunctions have not been described yet. Therapy of MR using a percutaneous mitral valve repair (PMVR) approach has been shown to lead to significant clinical benefits. We here sought to investigate the role of endothelial function in MR and the potential impact of PMVR.

Methods and Results

Twenty-seven patients with moderate-to-severe MR treated with the MitraClip® device were enrolled in an open-label single-center observational study. Patients underwent clinical assessment, conventional echocardiography, and determination of endothelial function by measuring flow-mediated dilation (FMD) of the brachial artery using high-resolution ultrasound at baseline and at 3-month follow-up. Patients with MR demonstrated decompartmentalized hemoglobin and reduced endothelial function (cell-free plasma hemoglobin in heme 28.9±3.8 μM, FMD 3.9±0.9%). Three months post-procedure, PMVR improved ejection fraction (from 41±3% to 46±3%, p = 0.03) and NYHA functional class (from 3.0±0.1 to 1.9±1.7, p<0.001). PMVR was associated with a decrease in cell free plasma hemoglobin (22.3±2.4 μM, p = 0.02) and improved endothelial functions (FMD 4.8±1.0%, p<0.0001).

Conclusion

We demonstrate here that plasma from patients with MR contains significant amounts of cell-free hemoglobin, which is accompanied by endothelial dysfunction. PMVR therapy is associated with an improved hemoglobin decompartmentalization and vascular function.  相似文献   

16.

Aim

The purpose of this study was to evaluate the influence of polymorphisms of the eNOS gene on the clinical status of patients with normal and high tension glaucoma.

Methods

266 Polish Caucasian patients with primary open angle glaucoma were studied. Of the 266, 156 had normal tension glaucoma (NTG) and 110 high tension glaucoma (HTG). DNA material was isolated from peripheral venous blood using commercial kits. Real-time PCR reaction was used to amplify the promoter site of the endothelial nitric oxide synthase (eNOS) gene, including the single nucleotide polymorphism (SNP) site T-786C and part of the 7th exon of eNOS, including G894T SNP. Genotypes were determined with TaqMan SNP Genotyping Assays.

Results

There were no significant differences in frequencies of the allelic variants of both polymorphisms. In G894T SNP, however, the wild GG form was more common in the HTG group. The SNP of the eNOS gene did not significantly influence the progression rate in either of the groups studied. There were no differences in variants of the eNOS gene regarding the necessity for and success of surgery and the progression of the disease. In the NTG group, no statistical correlation was observed between G894T, T786C polymorphism variants, and risk factors such as optic disc haemorrhages, optic disc notches, and peripapillary atrophy. Mean diastolic and systolic pressure during the day and night were lowest in NTG patients with the CC variant of the T786C polymorphism. No statistical correlation was observed between the G894T and T786C polymorphisms and capillaroscopic examination results.

Conclusions

Genotype frequencies are similar for both the eNOS G894T and T-786C polymorphisms in NTG and HTG patients. These polymorphisms do not correlate with risk factors and do not influence the state of the capillary system in NTG patients. Systolic blood pressure is lower in NTG patients with mutated alleles of both polymorphisms.  相似文献   

17.

Background

Although, ischemia/reperfusion induced vascular dysfunction has been widely described, no comparative study of in vivo- and in vitro-models exist. In this study, we provide a direct comparison between models (A) ischemic storage and in-vitro reoxygenation (B) ischemic storage and in vitro reperfusion (C) ischemic storage and in-vivo reperfusion.

Methods and Results

Aortic arches from rats were stored for 2 hours in saline. Arches were then (A) in vitro reoxygenated (B) in vitro incubated in hypochlorite for 30 minutes (C) in vivo reperfused after heterotransplantation (2, 24 hours and 7 days reperfusion). Endothelium-dependent and independent vasorelaxations were assessed in organ bath. DNA strand breaks were assessed by TUNEL-method, mRNA expressions (caspase-3, bax, bcl-2, eNOS) by quantitative real-time PCR, proteins by Western blot analysis and the expression of CD-31 by immunochemistry. Endothelium-dependent maximal relaxation was drastically reduced in the in-vivo models compared to ischemic storage and in-vitro reperfusion group, and no difference showed between ischemic storage and control group. CD31-staining showed significantly lower endothelium surface ratio in-vivo, which correlated with TUNEL-positive ratio. Increased mRNA and protein levels of pro- and anti-apoptotic gens indicated a significantly higher damage in the in-vivo models.

Conclusion

Even short-period of ischemia induces severe endothelial damage (in-vivo reperfusion model). In-vitro models of ischemia-reperfusion injury can be limitedly suited for reliable investigations. Time course of endothelial stunning is also described.  相似文献   

18.

Background

Elevated levels of advanced glycation end products (AGEs) within tissues may contribute to endothelial dysfunction, an early indicator of atherosclerosis. We aimed to investigate whether levels of skin AGEs could be a useful marker to predict endothelial dysfunction in uremic subjects on hemodialysis.

Methods and Results

One hundred and nineteen uremic patients on hemodialysis and 57 control subjects with moderate-to-high cardiovascular risk factors and without chronic kidney disease (CKD) were enrolled. We used ultrasound to measure flow-mediated vasodilation (FMD). An AGE reader measured skin autoflurorescence (AF). We then compared differences in FMD and skin AF values between the two groups. The uremic subjects had significantly higher levels of skin AF (3.47±0.76 AU vs. 2.21±0.45 arbitrary units; P<0.01) and significantly lower levels of FMD (4.79%±1.88% vs. 7.19%±2.17%; P<0.01) than the non-CKD subjects. After adjusting for all potential covariates, we found that skin AF level independently predicted FMD in both the hemodialysis and the non-CKD groups. In the hemodialysis group, skin AF ≥ 3.05 arbitrary units predicted abnormal FMD at a sensitivity of 87.9% and a specificity of 78.6% (P<0.01).

Conclusions

Skin AF could be a useful marker to predict endothelial dysfunction in uremic subjects on hemodialysis.  相似文献   

19.

Background

Bone marrow-derived endothelial progenitor cells (EPCs), especially late EPCs, play a critical role in endothelial maintenance and repair, and postnatal vasculogenesis. Although the actin cytoskeleton has been considered as a modulator that controls the function and modulation of stem cells, its role in the function of EPCs, and in particular late EPCs, remains poorly understood.

Methodology/Principal Finding

Bone marrow-derived late EPCs were treated with jasplakinolide, a compound that stabilizes actin filaments. Cell apoptosis, proliferation, adhesion, migration, tube formation, nitric oxide (NO) production and endothelial NO synthase (eNOS) phosphorylation were subsequently assayed in vitro. Moreover, EPCs were locally infused into freshly balloon-injured carotid arteries, and the reendothelialization capacity was evaluated after 14 days. Jasplakinolide affected the actin distribution of late EPCs in a concentration and time dependent manner, and a moderate concentration of (100 nmol/l) jasplakinolide directly stabilized the actin filament of late EPCs. Actin stabilization by jasplakinolide enhanced the late EPC apoptosis induced by VEGF deprivation, and significantly impaired late EPC proliferation, adhesion, migration and tube formation. Furthermore, jasplakinolide attenuated the reendothelialization capacity of transplanted EPCs in the injured arterial segment in vivo. However, eNOS phosphorylation and NO production were increased in late EPCs treated with jasplakinolide. NO donor sodium nitroprusside (SNP) rescued the functional activities of jasplakinolide-stressed late EPCs while the endothelial NO synthase inhibitor L-NAME led to a further dysfunction induced by jasplakinolide in late EPCs.

Conclusions/Significance

A moderate concentration of jasplakinolide results in an accumulation of actin filaments, enhancing the apoptosis induced by cytokine deprivation, and impairing the proliferation and function of late EPCs both in vitro and in vivo. NO donor reverses these impairments, suggesting the role of NO-related mechanisms in jasplakinolide-induced EPC downregulation. Actin cytoskeleton may thus play a pivotal role in regulating late EPC function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号