首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elimination or reduction of inbreeding depression by natural selection at the contributing loci (purging) has been hypothesized to effectively mitigate the negative effects of inbreeding in small isolated populations. This may, however, only be valid when the environmental conditions are relatively constant. We tested this assumption using Drosophila melanogaster as a model organism. By means of chromosome balancers, chromosomes were sampled from a wild population and their viability was estimated in both homozygous and heterozygous conditions in a favourable environment. Around 50% of the chromosomes were found to carry a lethal or sublethal mutation, which upon inbreeding would cause a considerable amount of inbreeding depression. These detrimentals were artificially purged by selecting only chromosomes that in homozygous condition had a viability comparable to that of the heterozygotes (quasi-normals), thereby removing most deleterious recessive alleles. Next, these quasi-normals were tested both for egg-to-adult viability and for total fitness under different environmental stress conditions: high-temperature stress, DDT stress, ethanol stress, and crowding. Under these altered stressful conditions, particularly for high temperature and DDT, novel recessive deleterious effects were expressed that were not apparent under control conditions. Some of these chromosomes were even found to carry lethal or near-lethal mutations under stress. Compared with heterozygotes, homozygotes showed on average 25% additional reduction in total fitness. Our results show that, except for mutations that affect fitness under all environmental conditions, inbreeding depression may be due to different loci in different environments. Hence purging of deleterious recessive alleles can be effective only for the particular environment in which the purging occurred, because additional load will become expressed under changing environmental conditions. These results not only indicate that inbreeding depression is environment dependent, but also that inbreeding depression may become more severe under changing stressful conditions. These observations have significant consequences for conservation biology.  相似文献   

2.
A multilocus stochastic model is developed to simulate the dynamics of mutational load in small populations of various sizes. Old mutations sampled from a large ancestral population at mutation-selection balance and new mutations arising each generation are considered jointly, using biologically plausible lethal and deleterious mutation parameters. The results show that inbreeding depression and the number of lethal equivalents due to partially recessive mutations can be partly purged from the population by inbreeding, and that this purging mainly involves lethals or detrimentals of large effect. However, fitness decreases continuously with inbreeding, due to increased fixation and homozygosity of mildly deleterious mutants, resulting in extinctions of very small populations with low reproductive rates. No optimum inbreeding rate or population size exists for purging with respect to fitness (viability) changes, but there is an optimum inbreeding rate at a given final level of inbreeding for reducing inbreeding depression or the number of lethal equivalents. The interaction between selection against partially recessive mutations and genetic drift in small populations also influences the rate of decay of neutral variation. Weak selection against mutants relative to genetic drift results in apparent overdominance and thus an increase in effective size (Ne) at neutral loci, and strong selection relative to drift leads to a decrease in Ne due to the increased variance in family size. The simulation results and their implications are discussed in the context of biological conservation and tests for purging.  相似文献   

3.
In a metapopulation, the process of recurrent local extinction and recolonization gives rise to an age structure among demes. Recently established demes will tend to differ from older demes in terms of the levels of genetic diversity found within them and the way this diversity is distributed among demes in the same and different ages. The effects of population turnover on average levels of genetic diversity among demes in a metapopulation have been the focus of much attention, both for neutral and nonneutral loci, but much less is known about the distribution of nonneutral genetic diversity among demes of different ages. In this paper, we used computer simulations to study the distribution of genetic load, inbreeding depression and heterosis in an age‐structured metapopulation. We found that, for mildly deleterious mutations, within‐deme inbreeding depression increased, whereas heterosis and genetic load decreased with deme age following severe colonization bottlenecks. In contrast, recessive lethal alleles tended to be purged during colonization, with older populations showing higher genetic load and higher within‐deme inbreeding depression. Heterosis caused by recessive lethal alleles and resulting from gene flow among different demes tended to be greatest for young demes, because the mutations responsible tended to be purged in the first few generations after colonization, but its effects increased again as populations grow older as a result of immigration. Our results point to a need for estimates of genetic diversity, genetic load, within‐deme inbreeding depression and heterosis in demes of different age classes separately.  相似文献   

4.
Reproductive compensation, the replacement of dead embryos by potentially viable ones, is known to play a major role in the maintenance of deleterious mutations in mammalian populations. However, it has received little attention in plant evolution. Here we model the joint evolution of mating system and inbreeding depression with reproductive compensation. We used a dynamic model of inbreeding depression, allowing for partial purging of recessive lethal mutations by selfing. We showed that reproductive compensation tended to increase the mean number of lethals in a population, but favored self-fertilization by effectively decreasing early inbreeding depression. When compensation depended on the selfing rate, stable mixed mating systems can occur, with low to intermediate selfing rates. Experimental evidence of reproductive compensation is required to confirm its potential importance in the evolution of plant mating systems. We suggest experimental methods to detect reproductive compensation.  相似文献   

5.
Remington DL  O'Malley DM 《Genetics》2000,155(1):337-348
Inbreeding depression is important in the evolution of plant populations and mating systems. Previous studies have suggested that early-acting inbreeding depression in plants is primarily due to lethal alleles and possibly epistatic interactions. Recent advances in molecular markers now make genetic mapping a powerful tool to study the genetic architecture of inbreeding depression. We describe a genome-wide evaluation of embryonic viability loci in a selfed family of loblolly pine (Pinus taeda L.), using data from AFLP markers from an essentially complete genome map. Locus positions and effects were estimated from segregation ratios using a maximum-likelihood interval mapping procedure. We identified 19 loci showing moderately deleterious to lethal embryonic effects. These loci account for >13 lethal equivalents, greater than the average of 8.5 lethal equivalents reported for loblolly pine. Viability alleles show predominantly recessive action, although potential overdominance occurs at 3 loci. We found no evidence for epistasis in the distribution of pairwise marker correlations or in the regression of fitness on the number of markers linked to deleterious alleles. The predominant role of semilethal alleles in embryonic inbreeding depression has implications for the evolution of isolated populations and for genetic conservation and breeding programs in conifers.  相似文献   

6.
Inbreeding depression is thought to be a major factor affecting the evolution of mating systems and dispersal. While there is ample evidence for inbreeding depression in captivity, it has rarely been documented in natural populations. In this study, I examine data from a long-term demographic study of an insular population of song sparrows (Melospiza melodia) and present evidence for inbreeding depression. Forty-four percent of all matings on Mandarte Island, British Columbia, were among known relatives. Offspring of a full-sib mating (f = 0.25) experienced a reduction in annual survival rate of 17.5% on average. Over their lifetime, females with f = 0.25 produced 48% fewer young that reached independence from parental care. In contrast, male lifetime reproductive success was not affected by inbreeding. Reduced female lifetime reproductive success was mostly due to reduced hatching rates of the eggs of inbred females. Relatedness among the parents did not affect their reproductive success. Using data on survival from egg stage to breeding age, I estimated the average song sparrow egg on Mandarte Island to carry a minimum of 5.38 lethal equivalents (the number of deleterious genes whose cumulative effect is equivalent to one lethal); 2.88 of these lethal equivalents were expressed from egg stage to independence of parental care. This estimate is higher than most estimates reported for laboratory populations and lower than those reported for zoo populations. Hence, the costs of inbreeding in this population were substantial and slightly above those expected from laboratory studies. Variability in estimates of lethal equivalents among years showed that costs of inbreeding were not constant across years.  相似文献   

7.
We study the effects of a population bottleneck on the inbreeding depression and genetic load caused by deleterious mutations in an outcrossing population. The calculations assume that loci have multiplicative fitness effects and that linkage disequilibrium is negligible. Inbreeding depression decreases immediately after a sudden reduction of population size, but the drop is at most only several percentage points, even for severe bottlenecks. Highly recessive mutations experience a purging process that causes inbreeding depression to decline for a number of additional generations. On the basis of available parameter estimates, the absolute fall in inbreeding depression may often be only a few percentage points for bottlenecks of 10 or more individuals. With a very high lethal mutation rate and a very slow population growth, however, the decline may be on the order of 25%. We examine when purging might favor a switch from outbreeding to selfing and find it occurs only under very limited conditions unless population growth is very slow. In contrast to inbreeding depression, a bottleneck causes an immediate increase in the genetic load. Purging causes the load to decline and then overshoot its equilibrium value. The changes are typically modest: the absolute increase in the total genetic load will be at most a few percentage points for bottlenecks of size 10 or more unless the lethal mutation rate is very high and the population growth rate very slow.  相似文献   

8.
Stochastic simulations were run to compare the effects of nine breeding schemes, using full-sib mating, on the rate of purging of inbreeding depression due to mutations with equal deleterious effect on viability at unlinked loci in an outbred population. A number of full-sib mating lines were initiated from a large outbred population and maintained for 20 generations (if not extinct). Selection against deleterious mutations was allowed to occur within lines only, between lines or equal within and between lines, and surviving lines were either not crossed or crossed following every one or three generations of full-sib mating. The effectiveness of purging was indicated by the decreased number of lethal equivalents and the increased fitness of the purged population formed from crossing surviving lines after 20 generations under a given breeding scheme. The results show that the effectiveness of purging, the survival of the inbred lines and the inbreeding level attained are generally highest with between-line selection and lowest with within-line selection. Compared with no crossing, line crossing could lower the risk of extinction and the inbreeding coefficient of the purged population substantially with little loss of the effectiveness of purging. Compromising between the effectiveness of purging, and the risk of extinction and inbreeding coefficient, the breeding scheme with equal within- and between-line selection and crossing alternatively with full-sib mating is generally the most desirable scheme for purging deleterious mutations. Unless most deleterious mutations have relatively large effects on fitness in species with reproductive ability high enough to cope with the depressed fitness and thus increased risk of extinction with inbreeding, it is not justified to apply a breeding programme aimed at purging inbreeding depression by inbreeding and selection to a population of conservation concern.  相似文献   

9.
Inbreeding depression is most pronounced for traits closely associated with fitness. The traditional explanation is that natural selection eliminates deleterious mutations with additive or dominant effects more effectively than recessive mutations, leading to directional dominance for traits subject to strong directional selection. Here we report the unexpected finding that, in the butterfly Bicyclus anynana, male sterility contributes disproportionately to inbreeding depression for fitness (complete sterility in about half the sons from brother-sister matings), while female fertility is insensitive to inbreeding. The contrast between the sexes for functionally equivalent traits is inconsistent with standard selection arguments, and suggests that trait-specific developmental properties and cryptic selection play crucial roles in shaping genetic architecture. There is evidence that spermatogenesis is less developmentally stable than oogenesis, though the unusually high male fertility load in B. anynana additionally suggests the operation of complex selection maintaining male sterility recessives. Analysis of the precise causes of inbreeding depression will be needed to generate a model that reliably explains variation in directional dominance and reconciles the gap between observed and expected genetic loads carried by populations. This challenging evolutionary puzzle should stimulate work on the occurrence and causes of sex differences in fertility load.  相似文献   

10.
A comprehensive understanding of plant mating system evolution requires detailed genetic models for both the mating system and inbreeding depression, which are often intractable. A simple approximation assuming that the mating system evolves by small infrequent mutational steps has been proposed. We examine its accuracy by comparing the evolutionarily stable selfing rates it predicts to those obtained from an explicit genetic model of the selfing rate, when inbreeding depression is caused by partly recessive deleterious mutations at many loci. Both models also include pollen limitation and pollen discounting. The approximation produces reasonably accurate predictions with a low or moderate genomic mutation rate to deleterious alleles, on the order of U = 0.02–0.2. However, for high mutation rates, the predictions of the full genetic model differ substantially from those of the approximation, especially with nearly recessive lethal alleles. This occurs because when a modifier allele affecting the selfing rate is rare, homozygous modifiers are produced mainly by selfing, which enhances the opportunity for purging nearly recessive lethals and increases the marginal fitness of the allele modifying the selfing rate. Our results confirm that explicit genetic models of selfing rate and inbreeding depression are required to understand mating system evolution.  相似文献   

11.
The effect of inbreeding on haplo‐diploid organisms has been regarded as very low, because deleterious recessive genes on hemizygous (haploid) males were immediately purged generation by generation. However, we determined such recessive genes to decrease female fecundity in a population of Schizotetranychus miscanthi Saito which is known in the Acari as a subsocial species with haplo‐diploidy. In mother–son inbreeding experiments, there was no depression in egg hatchability nor in the larval survival of progeny over four generations. There was, on the other hand, significant inbreeding depression in the fecundity with increasing f‐value. Crosses between two lineages, one having deleterious effects on the fecundity and the other having no such effects, established during the inbreeding, revealed heterosis, and backcrosses showed that the depression was caused by deleterious recessive(s). These results strongly suggest the existence of some deleterious genes governing only the traits of adult females in wild populations of haplo‐diploid organisms.  相似文献   

12.
Overall AD  Ahmad M  Nichols RA 《Heredity》2002,88(6):474-479
We investigate the effects of consanguinity and population substructure on genetic health using the UK Asian population as an example. We review and expand upon previous treatments dealing with the deleterious effects of consanguinity on recessive disorders and consider how other factors, such as population substructure, may be of equal importance. For illustration, we quantify the relative risks of recessive lethal disorders by presenting some simple calculations that demonstrate the effect 'reproductive compensation' has on the maintenance of recessive alleles. The results show how reproductive compensation can effectively counteract the purging of deleterious alleles within consanguineous populations. Whereas inbreeding does not elevate the equilibrium frequency of affected individuals, reproductive compensation does. We suggest this effect must be built into interpretations of the incidence of genetic disease within populations such as the UK Asians. Information of this nature will benefit health care workers who inform such communities.  相似文献   

13.
The negative fitness consequences of close inbreeding are widely recognized, but predicting the long-term effects of inbreeding and genetic drift due to limited population size is not straightforward. As the frequency and homozygosity of recessive deleterious alleles increase, selection can remove (purge) them from a population, reducing the genetic load. At the same time, small population size relaxes selection against mildly harmful mutations, which may lead to accumulation of genetic load. The efficiency of purging and the accumulation of mutations both depend on the rate of inbreeding (i.e., population size) and on the nature of mutations. We studied how increasing levels of inbreeding affect offspring production and extinction in experimental Drosophila littoralis populations replicated in two sizes, N = 10 and N = 40. Offspring production and extinction were measured over 25 generations concurrently with a large control population. In the N = 10 populations, offspring production decreased strongly at low levels of inbreeding, then recovered only to show a consistent subsequent decline, suggesting early expression and purging of recessive highly deleterious alleles and subsequent accumulation of mildly harmful mutations. In the N = 40 populations, offspring production declined only after inbreeding reached higher levels, suggesting that inbreeding and genetic drift pose a smaller threat to population fitness when inbreeding is slow. Our results suggest that highly deleterious alleles can be purged in small populations already at low levels of inbreeding, but that purging does not protect the small populations from eventual genetic deterioration and extinction.  相似文献   

14.
The effects of reproductive compensation on the population genetics of sex-linked recessive lethal mutations are investigated. Simple equations are presented which describe these effects, and so complement existing population genetic theory. More importantly, this type of mutation is responsible for several severe human genetic diseases such as Duchenne muscular dystrophy. It is argued that the applications of three modern reproductive technologies--effective family planning, in utero diagnosis with termination, and embryo sexing--will lead to reproductive compensation. The adoption of any of these technologies may rapidly elevate the frequencies of those mutations which are lethal in childhood. This increase is large, in the order of 33% upwards, and occurs rapidly over two to five generations. It also depends on the source of mutations, the effect being larger if most mutations are paternal. In utero diagnosis and/or embryo sexing increase the frequency of the mutation, but simultaneously decrease disease incidence by preventing the birth of affected offspring. In contrast, effective family planning may rapidly increase both mutation frequency and disease incidence.  相似文献   

15.
Lascoux M  Lee JK 《Genetica》1998,104(2):161-170
The total number of lethal equivalents as defined by Morton, Crow and Muller (1956) is a function of three parameters: M, the number of loci at which deleterious mutations can occur, q, the frequency of the deleterious alleles at each locus, and s, their selective value. A new approach based on multi‐generation inbreeding data is outlined and used to infer these three parameters as well as the dominance coefficient, h, in a self‐incompatible species, Brassica rapa L. Germination and flowering data from thirty bud‐selfed lines of fast‐cycling B.rapa were assessed over three generations. Germination and flowering were significantly postponed by inbreeding but germination and flowering success were not so strongly decreased. Estimates of the average s values were obtained but it was not possible to get separate estimates of M and q. For both characters, the average dominance coefficient was particularly low. The number of lethal equivalents at the zygotic level was around two for germination and three for flowering, which, owing to the self‐incompatibility of B.rapa, is an unexpectedly low value. These results may be explained by past biparental inbreeding which in turn may have increased self‐compatibility thus allowing the purging of more deleterious alleles than under strict self‐incompatibility. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Willis JH 《Genetics》1999,153(4):1885-1898
The goal of this study is to provide information on the genetics of inbreeding depression in a primarily outcrossing population of Mimulus guttatus. Previous studies of this population indicate that there is tremendous inbreeding depression for nearly every fitness component and that almost all of this inbreeding depression is due to mildly deleterious alleles rather than recessive lethals or steriles. In this article I assayed the homozygous and heterozygous fitnesses of 184 highly inbred lines extracted from a natural population. Natural selection during the five generations of selfing involved in line formation essentially eliminated major deleterious alleles but was ineffective in purging alleles with minor fitness effects and did not appreciably diminish overall levels of inbreeding depression. Estimates of the average degree of dominance of these mildly deleterious alleles, obtained from the regression of heterozygous fitness on the sum of parental homozygous fitness, indicate that the detrimental alleles are partially recessive for most fitness traits, with h approximately 0.15 for cumulative measures of fitness. The inbreeding load, B, for total fitness is approximately 1.0 in this experiment. These results are consistent with the hypothesis that spontaneous mildly deleterious mutations occur at a rate >0.1 mutation per genome per generation.  相似文献   

17.
Understanding the consequences of inbreeding in combination with stress is important for the persistence of small endangered populations in a changing environment. Inbreeding and stress can influence the population at all stages of the life cycle, and in the last two decades a number of studies have demonstrated inbreeding depression for most life‐cycle components, both in laboratory populations and in the wild. Although male fertility is known to be sensitive to temperature extremes, few studies have focused on this life‐cycle component. We studied the effects of inbreeding on male sterility in benign and stressful environments using Drosophila melanogaster as a model organism. Male sterility was compared in 21 inbred lines and five non‐inbred control lines at 25.0 and 29.0 °C. The effect of inbreeding on sterility was significant only at 29.0 °C. This stress‐induced increase in sterility indicates an interaction between the effects of inbreeding and high‐temperature stress on male sterility. In addition, the stress‐induced temporary and permanent sterility showed significant positive correlation, as did stress‐induced sterility and the decrease in egg‐to‐adult viability. This suggests that the observed stress‐induced decline in fitness could result from conditionally expressed, recessive deleterious alleles affecting both sterility and viability simultaneously. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 432–442.  相似文献   

18.
J. B. S. Haldane (Amer. Nat. 71, 337–349, 1937) argued that, in equilibrium populations, the effect of deleterious mutation on average fitness depends primarily on the mutation rate and is independent of the severity of the mutations. Specifically, the equilibrium population fitness is e−μH, where μH is the haploid genomic mutation rate. Here we extend Haldane's result to a variety of reproductive systems. Using an analysis based on the frequency of classes of individuals with a specified number of mutations, we show that Haldane's principle holds exactly for haploid sex, haploid apomixis, and facultative haploid sex. In the cases of diploid automixis with terminal fusion, diploid automixis with central fusion, and diploid selfing, Haldane's principle holds exactly for recessive mutations and approximately for mutations with some heterozygous effect. In the cases of K-ploid apomixis, diploid endomitosis, and haplodiploidy, we show that Haldane's principle holds exactly for recessive lethal mutations. In addition we extend Haldane's result to various mixtures of the above-mentioned reproductive systems. In the case of diploid out-crossing sexuals, we do not obtain an exact analytic result, but present arguments and computer simulations which show that Haldane's result extends to this case as well in the limit as the number of loci becomes large. Although diverse reproductive systems are equally fit at equilibrium, different reproductive systems harbor vastly different numbers of recessive genes at equilibrium and we provide estimates of these numbers. These different numbers of mutations may create transient selective pressures on individuals with reproductive systems different from that of the equilibrium population.  相似文献   

19.
The process of population extinction due to inbreeding depression with constant demographic disturbances every generation is analysed using a population genetic and demographic model. The demographic disturbances introduced into the model represent loss of population size that is induced by any kind of human activities, e.g. through hunting and destruction of habitats. The genetic heterozygosity among recessive deleterious genes and the population size are assumed to be in equilibrium before the demographic disturbances start. The effects of deleterious mutations are represented by decreases in the growth rate and carrying capacity of a population. Numerical simulations indicate rapid extinction due to synergistic interaction between inbreeding depression and declining population size for realistic ranges of per-locus mutation rate, equilibrium population size, intrinsic rate of population growth, and strength of demographic disturbances. Large populations at equilibrium are more liable to extinction when disturbed due to inbreeding depression than small populations. This is a consequence of the fact that large populations maintain more recessive deleterious mutations than small populations. The rapid extinction predicted in the present study indicates the importance of the demographic history of a population in relation to extinction due to inbreeding depression.  相似文献   

20.
Inbreeding depression is a major selective force favoring outcrossing in flowering plants. However, some self-fertilization should weaken the harmful effects of inbreeding by exposing deleterious alleles to selection. This study examines the maintenance of inbreeding depression in the predominantly outcrossing species Pinus sylvestris L. (Scots pine). Open-pollinated and self-fertilized progeny of 23 maternal trees, originating from a natural stand in southern Finland, were grown at two sites. We observed significant inbreeding depression in two of the four life stages measured. Inbreeding depression was largest for seed maturation (δ = 0.74), where seedset in open-pollinated strobili (70.9%) was about four times higher than in selfed strobili (18.3%). Inbreeding depression in postgermination survival (upto an age of 23 years) was also high (δ = 0.62–0.75). No significant differences in height (δ = 0.05) or flowering (δ = 0.14) of the trees after 23 years were observed. Cumulative inbreeding depression was high (δ = 0.90–0.94) and differed significantly among maternal families (range 0.45–1.00). The magnitude of inbreeding depression among the 23 maternal parents was not significantly correlated between early (seed maturation) and later (postgermination survival) life stages, suggesting that its genetic basis varies across the life cycle. Size differences among the progeny types diminished in time due to nonrandom size-specific mortality, causing a decrease in the inbreeding depression estimates for height over time. Our results indicate that Scots pine exhibits high levels of inbreeding depression during both early and later stages of the life cycle. It is argued that self-fertilization in Scots pine is inefficient in purging the genetic load caused by highly deleterious mutations because of the nearly complete loss of selfed individuals over time. This results in an effectively random mating outcrossing population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号