首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Herpes simplex virus types 1 and 2 (HSV1 and HSV2) are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the tat gene (HSV1-Tat). In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ), induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1 infection and dissemination.  相似文献   

3.
4.
Previously, we have identified the RUNX2 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from serous epithelial ovarian cancer (EOC) patients, when compared to primary cultures derived from matched primary (prior to CT) tumors. However, we found no differences in the RUNX2 methylation in primary EOC tumors and EOC omental metastases, suggesting that DNA methylation-based epigenetic mechanisms have no impact on RUNX2 expression in advanced (metastatic) stage of the disease. Moreover, RUNX2 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. Knockdown of the RUNX2 expression in EOC cells led to a sharp decrease of cell proliferation and significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as various genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX2 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced.Taken together, our data are indicative for a strong oncogenic potential of the RUNX2 gene in serous EOC progression and suggest that RUNX2 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX2 and other members of the RUNX gene family in ovarian tumorigenesis.  相似文献   

5.
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract. It is unknown whether β-1,3;1,6-glucan can induce immune suppressive effects. Here, we study intestinal anti-inflammatory activity of Lentinula edodes-derived β-1,3;1,6-glucan, which is known as lentinan. Dextran sulfate sodium (DSS)-induced colitis mice were used to elucidate effects of lentinan in vivo. In the cellular level assessment, lentinan was added into a co-culture model consisting of intestinal epithelial Caco-2 cells and LPS-stimulated macrophage RAW264.7 cells. Ligated intestinal loop assay was performed for assessing effects of lentinan on intestinal epithelial cells (IECs) in vivo. Oral administration of lentinan (100 µg/mouse) significantly ameliorated DSS-induced colitis in body weight loss, shortening of colon lengths, histological score, and inflammatory cytokine mRNA expression in inflamed tissues. Lentinan reduced interleukin (IL)-8 mRNA expression and nuclear factor (NF)-κB activation in Caco-2 cells without decreasing of tumor necrosis factor (TNF)-α production from RAW264.7 cells. Flow cytometric analysis revealed that surface levels of TNF receptor (TNFR) 1 were decreased by lentinan treatment. A clathrin-mediated endocytosis inhibitor, monodansylcadaverine, canceled lentinan inhibition of IL-8 mRNA expression. Moreover, lentinan inhibited TNFR1 expression in Caco-2 cells in both protein and mRNA level. Lentinan also inhibited TNFR1 mRNA expression in mouse IECs. These results suggest that lentinan exhibits intestinal anti-inflammatory activity through inhibition of IL-8 mRNA expression associated with the inhibition of NF-κB activation which is triggered by TNFR1 endocytosis and lowering of their expression in IECs. Lentinan may be effective for the treatment of gut inflammation including IBD.  相似文献   

6.
The CD200R1:CD200 axis is traditionally considered to limit tissue inflammation by down-regulating pro-inflammatory signaling in myeloid cells bearing the receptor. We generated CD200R1−/− mice and employed them to explore both the role of CD200R1 in regulating macrophage signaling via TLR2 as well as the host response to an in vivo, TLR2-dependent model, herpes simplex virus 1 (HSV-1) infection. CD200R1−/− peritoneal macrophages demonstrated a 70–75% decrease in the generation of IL-6 and CCL5 (Rantes) in response to the TLR2 agonist Pam2CSK4 and to HSV-1. CD200R1−/− macrophages could neither up-regulate the expression of TLR2, nor assemble a functional inflammasome in response to HSV-1. CD200R1−/− mice were protected from HSV-1 infection and exhibited dysfunctional TLR2 signaling. Finally, both CD200R1−/− mice and CD200R1−/− fibroblasts and macrophages showed a markedly reduced ability to support HSV-1 replication. In summary, our data demonstrate an unanticipated and novel requirement for CD200R1 in “licensing” pro-inflammatory functions of TLR2 and in limiting viral replication that are supported by ex vivo and in vivo evidence.  相似文献   

7.
The epithelial cells of the gut form a physical barrier against the luminal contents. The collapse of this barrier causes inflammation, and its therapeutic restoration can protect the gut against inflammation. EGF enhances mucosal barrier function and increases colonocyte proliferation, thereby ameliorating inflammatory responses in the gut. Based on our previous finding that the insect peptide CopA3 promotes neuronal growth, we herein tested whether CopA3 could increase the cell proliferation of colonocytes, enhance mucosal barrier function, and ameliorate gut inflammation. Our results revealed that CopA3 significantly increased epithelial cell proliferation in mouse colonic crypts and also enhanced colonic epithelial barrier function. Moreover, CopA3 treatment ameliorated Clostridium difficile toxin As-induced inflammation responses in the mouse small intestine (acute enteritis) and completely blocked inflammatory responses and subsequent lethality in the dextran sulfate sodium-induced mouse model of chronic colitis. The marked CopA3-induced increase of colonocyte proliferation was found to require rapid protein degradation of p21Cip1/Waf1, and an in vitro ubiquitination assay revealed that CopA3 directly facilitated ubiquitin ligase activity against p21Cip1/Waf1. Taken together, our findings indicate that the insect peptide CopA3 prevents gut inflammation by increasing epithelial cell proliferation and mucosal barrier function.  相似文献   

8.
Elafin (E) and its precursor trappin-2 (Tr) are alarm antiproteases with antimicrobial and immunomodulatory activities. Tr and E (Tr/E) have been associated with HIV-1 resistance. We recently showed that Tr/E reduced IL-8 secretion and NF-κB activation in response to a mimic of viral dsRNA and contributed to anti-HIV activity of cervicovaginal lavage fluid (CVL) of HIV-resistant (HIV-R) commercial sex workers (CSWs). Additionally, Tr, and more so E, were found to inhibit attachment/entry and transcytosis of HIV-1 in human endometrial HEC-1A cells, acting through virus or cells. Given their immunomodulatory activity, we hypothesized that Tr/E could exert anti-HIV-1 activity at multiple levels. Here, using tagged and untagged Tr/E proteins, we comparatively evaluated their protease inhibitory, anti-HIV-1, and immunomodulatory activities, and cellular distribution. E appeared to function as an autocrine/paracrine factor in HEC-1A cells, and anti-HIV-1 activity of E depended on its unmodified N-terminus and altered cellular innate activation, but not its antiprotease activity. Specifically, exogenously added N-terminus-unmodified E was able to enter the nucleus and to reduce viral attachment/entry and transcytosis, preferentially affecting R5-HIV-1ADA, but not X4-HIV-1IIIB. Further, anti-HIV-1 activity of E was associated with significantly decreased HIV-1-triggered IL-8 release, attenuated NF-κB/p65 nuclear translocation, and significantly modulated mRNA expression of innate sensors TLR3 and RIG-I in HEC-1A cells. Most importantly, we found that elevated Tr/E in CVLs of HIV-R CSWs were associated with lower mRNA levels of TLRs 2, 3, 4 and RIG-I in the genital ECs from this cohort, suggesting a link between Tr/E, HIV-1 resistance and modulated innate viral recognition in the female genital mucosa. Collectively, our data indicate that unmodified N-terminus is critical for intranuclear localization and anti-HIV-1 activity of E. We also propose that E-mediated altered cellular innate activation most likely contributes to the HIV-R phenotype of these subjects.  相似文献   

9.
Artemisia lavandulaefolia, a traditional herbal medicine, has been utilized as anti-inflammatory and analgesia agent in clinic. Bioassay-guided fractionation resulted in a fraction (ALDF) with anti-inflammatory effect obtained from A. lavandulaefolia. Its main constituents were analyzed and identified by UPLC-ESI-Q-TOF-MS technology. ALDF showed the strong inhibitory activity on the nitrogen oxide (NO) production in LPS-induced RAW 264.7 macrophages with an IC50 value of 1.64±0.41 μg/mL. Further results displayed that ALDF also significantly suppressed the secretion of key pro-inflammatory mediators, including tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2) and interleukin-1β (IL-1β), and the increase of the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression induced by LPS stimulation. Mechanism study indicated that ALDF was able to block NF-κB signaling pathway through inhibiting IκB and p65 phosphorylation, as well as NF-κB p65 nuclear translocation. Furthermore, in vivo results in mice revealed that treatments with ALDF evoked significant inhibition on ear edema induced by xylene and on the writhing responses induced by acetic acid. These results suggest that ALDF holds great potential in the prevention and treatment of inflammatory disorders.  相似文献   

10.
11.

Background

Chikungunya virus (CHIKV) has reemerged as a life threatening pathogen and caused large epidemics in several countries. So far, no licensed vaccine or effective antivirals are available and the treatment remains symptomatic. In this context, development of effective and safe prophylactics and therapeutics assumes priority.

Methods

We evaluated the efficacy of the siRNAs against ns1 and E2 genes of CHIKV both in vitro and in vivo. Four siRNAs each, targeting the E2 (Chik-1 to Chik-4) and ns1 (Chik-5 to Chik-8) genes were designed and evaluated for efficiency in inhibiting CHIKV growth in vitro and in vivo. Chik-1 and Chik-5 siRNAs were effective in controlling CHIKV replication in vitro as assessed by real time PCR, IFA and plaque assay.

Conclusions

CHIKV replication was completely inhibited in the virus-infected mice when administered 72 hours post infection. The combination of Chik-1 and Chik-5 siRNAs exhibited additive effect leading to early and complete inhibition of virus replication. These findings suggest that RNAi capable of inhibiting CHIKV growth might constitute a new therapeutic strategy for controlling CHIKV infection and transmission.  相似文献   

12.

Objective

To estimate the cost-effectiveness of daily oral tenofovir-based PrEP, with a protective effect against HSV-2 as well as HIV-1, among HIV-1 serodiscordant couples in South Africa.

Methods

We incorporated HSV-2 acquisition, transmission, and interaction with HIV-1 into a microsimulation model of heterosexual HIV-1 serodiscordant couples in South Africa, with use of PrEP for the HIV-1 uninfected partner prior to ART initiation for the HIV-1 1infected partner, and for one year thereafter.

Results

We estimate the cost per disability-adjusted life-year (DALY) averted for two scenarios, one in which PrEP has no effect on reducing HSV-2 acquisition, and one in which there is a 33% reduction. After a twenty-year intervention, the cost per DALY averted is estimated to be $10,383 and $9,757, respectively – a 6% reduction, given the additional benefit of reduced HSV-2 acquisition. If all couples are discordant for both HIV-1 and HSV-2, the cost per DALY averted falls to $1,445, which shows that the impact is limited by HSV-2 concordance in couples.

Conclusion

After a 20-year PrEP intervention, the cost per DALY averted with a reduction in HSV-2 is estimated to be modestly lower than without any effect, providing an increase of health benefits in addition to HIV-1 prevention at no extra cost. The small degree of the effect is in part due to a high prevalence of HSV-2 infection in HIV-1 serodiscordant couples in South Africa.  相似文献   

13.
14.
BST-2/CD317/HM1.24/tetherin is a B-cell antigen overexpressed on the surface of myeloma cell lines and on neoplastic plasma cells of patients with multiple myeloma. Antibodies to BST-2 are in clinical trial for the treatment of multiple myeloma and are considered for the treatment of solid tumors with high BST-2 antigen levels. Functionally, BST-2 restricts the secretion of retroviruses, including human immunodeficiency virus type 1, as well as members of the herpesvirus, filovirus, and arenavirus families, presumably by tethering nascent virions to the cell surface. Here we report that BST-2 antibody treatment facilitates virus release from BST-2(+) cells by interfering with the tethering activity of BST-2. BST-2 antibodies were unable to release already tethered virions and were most effective when added early during virus production. BST-2 antibody treatment did not affect BST-2 dimerization and did not reduce the cell surface expression of BST-2. Interestingly, BST-2 antibody treatment reduced the nonspecific shedding of BST-2 and limited the encapsidation of BST-2 into virions. Finally, flotation analyses indicate that BST-2 antibodies affect the distribution of BST-2 within membrane rafts. Our data suggest that BST-2 antibody treatment may enhance virus release by inducing a redistribution of BST-2 at the cell surface, thus preventing it from accumulating at the sites of virus budding.  相似文献   

15.
Four new xanthone glucosides, 3-hydroxy-2-methoxyxanthone-4-O-β-D-glucopyranoside ( 1 ), 4,8-dihydroxy-2-methoxyxanthone-3-O-β-D-glucopyranoside ( 2 ), 2-methoxyxanthone-5-O-β-D-glucopyranoside ( 3 ), 4-hydroxy-2-methoxyxanthone-3-O-β-D-glucopyranoside ( 4 ), a new phenolic acid, 4,4-dihydroxy-3,3-imino-di-benzoic acid monomethyl ester ( 5 ), and a new isoquinoline, methyl 6-hydroxy-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylate ( 6 ) were isolated from the fruit of Hypericum patulum. The structural elucidation of the isolated compounds was primarily based on HR-ESI-MS, UV, IR, 1D and 2D NMR. All compounds were evaluated for their inhibitory effect against LPS-induced NO production in RAW 264.7 cells. Compound 2 , 3 exhibited moderate inhibitory activity against NO production.  相似文献   

16.
Abstract

Fully thioated antisense molecules are often cytotoxic and non-specitic in action. GPI2A is thioated at 7 base positions. GPI2A posses sequence-specific activity against HIV-1 gene expression and viral replication without sigdcant cytotoxicity. Partial thioation did not compromise its uptake, cellular distribution and nuclease resistance.  相似文献   

17.
An undescribed xanthone dimer, 1,3,5,8-tetrahydroxy-7-(1′,5′,8′-trihydroxy-3′-methoxy-2′-xanthonyl)xanthone ( 1 ) was separated together with eleven known compounds ( 2 – 12 ) from the dried whole herb of Swertia pseudochinensis. It was the first time that the compounds 8 – 12 were isolated from the Swertia genus. The structure of compound 1 was illuminated based on chemical evidence and spectral data analysis (UV, 1D and 2D-NMR, HR-ESI-MS). Moreover, the inhibitory effects of all compounds on NO production in LPS-induced RAW 264.7 cells were tested, compounds 8 , 9 , 10 , 11 and 12 showing significant inhibition. The IC50 value of compound 12 was 3.05±1.10 μM. Using target screening and molecular docking, we hypothesized that compound 12 may bind neutrophil elastase to exert its anti-inflammatory effects.  相似文献   

18.
In order to clarify the transmission process of human immunodeficiency virus type 1 (HIV-1) through the epithelial cell barrier, HeLa cells susceptible and non-susceptible to HIV-1 were cloned and designated as P6 HeLa and N7 HeLa cells, respectively. P6 HeLa cells could be infected with the LAI strain of HIV-1 and mediated HIV-1 transcytosis. In contrast, N7 HeLa cells exhibited neither HIV-1 infection nor transcytosis. CD4 and galactosylceramide as the receptors for HIV-1 were not detected on P6 HeLa cells, although an anti-CD4 monoclonal antibody (mAb) blocked HIV-1 infection. Since HIV-1-infected P6 HeLa cells exhibited no fusion and survived, we speculated that the P6 HeLa cells expressed molecules other than CD4 which facilitated HIV-1 infection. Two mAbs (A-14 ITK and C57 a9-9) which inhibited the HIV-1 infection of P6 HeLa cells were generated. Each mAb recognized distinct molecule(s) as shown by Western blotting. Transcytosis by the P6 HeLa cells was inhibited by C57 a9-9 but not by A-14 ITK or anti-CD4 mAb. Both infection and transcytosis may be responsible for HIV-1 transmission through epithelial cells in a complex manner. Although infection and transcytosis occurred via different mechanisms, the molecule(s) recognized by C57 a9-9 mAb may be associated with both processes.  相似文献   

19.
Net1 is a nuclear Rho guanine nucleotide exchange factor that is specific for the RhoA subfamily of small G proteins. Truncated forms of Net1 are transforming in NIH3T3 cells, and this activity requires cytoplasmic localization of Net1 as well as the presence of a COOH-terminal PDZ binding site. We have previously shown that Net1 interacts with PDZ domain-containing proteins within the Discs Large (Dlg) family and relocalizes them to the nucleus. In the present work, we demonstrate that Net1 binds directly to the first two PDZ domains of Dlg1 and that both PDZ domains are required for maximal interaction in cells. Furthermore, we show that Net1 is an unstable protein in MCF7 breast epithelial cells and that interaction with Dlg1 significantly enhances Net1 stability. Stabilization by Dlg1 significantly increases the ability of Net1 to stimulate RhoA activation in cells. The stability of endogenous Net1 is strongly enhanced by cell-cell contact, and this correlates with a dramatic increase in the interaction between Net1 and Dlg1. Importantly, disruption of E-cadherin-mediated cell contacts, either by depletion of external calcium or by treatment with transforming growth factor β, leads to a rapid loss of the interaction between Net1 and Dlg1 and a subsequent increase in the ubiquitylation of Net1. These results indicate that Net1 requires interaction with PDZ domain proteins, such as Dlg1, to protect it from proteasome-mediated degradation and to maximally stimulate RhoA and that this interaction is regulated by cell-cell contact.Rho family small G proteins control many aspects of cell physiology, including cytoskeletal organization, cell motility, and cell cycle progression (1, 2). They do so by acting as molecular switches, cycling between their active, GTP-bound and inactive, GDP-bound states. Once activated, Rho proteins stimulate signaling in multiple pathways by binding to downstream effector proteins and modulating their activities. Currently, 21 mammalian Rho family GTPases have been identified, with the Rac1, Cdc42, and RhoA proteins being the most thoroughly characterized (3).Rho protein activation is controlled by a family of enzymes known as Rho guanine nucleotide exchange factors (Rho GEFs)2 (4). Net1 (neuroepithelioma transforming gene 1) is a Rho GEF that was cloned as a transforming gene in a screen for novel oncogenes in NIH3T3 cells (5). Two isoforms of Net1 exist in cells, Net1 and Net1A, which are identical except for alternative NH2-terminal regulatory domains. Both isoforms of Net1 are nuclear proteins that display marked specificities for RhoA as compared with Rac1 or Cdc42 (6, 7). Correspondingly, overexpression of either Net1 isoform in cells profoundly stimulates actin stress fiber formation, which is a hallmark of RhoA activation (8). The mechanism by which Net1 stimulates cell proliferation and transformation is complex. We and others have shown that Net1 must be enzymatically active and localized to the cytoplasm to cause cell transformation (6, 8). In addition, we have observed that Net1-dependent cell transformation requires the presence of a COOH-terminal PDZ domain binding site (8). PDZ domains are protein interaction domains that mediate contact with PDZ domain binding sites typically located at carboxyl termini of target proteins (9). Importantly, the PDZ domain binding site of Net1 is not required for catalytic activity toward RhoA, indicating that interaction with one or more PDZ domain-containing proteins is required only for cell transformation (8).Using a peptide corresponding to the COOH-terminal PDZ binding site of Net1, Garcia-Mata et al. recently identified proteins within the Dlg family as Net1-interacting proteins (10). Dlg1, also known as SAP97, is a member of the membrane-associated guanylate kinase family of scaffolding proteins. It contains three tandem PDZ domains as well as L27, Src homology 3, and guanylate kinase protein interaction domains. In neurons, Dlg1/SAP97 is best known for controlling ion channel clustering within postsynaptic densities. In epithelial cells, Dlg1 controls adherens junction formation and may also function as a tumor suppressor (1113). Interaction of Dlg1 with Net1 has been shown to redirect Dlg1 to PML nuclear bodies, and in NIH3T3 cells, overexpression of Dlg1 suppresses transformation by an oncogenic form of Net1 (10).In the present work, we examined whether Net1 interacted directly with Dlg1 and tested the effects of this interaction on Net1 function. We observed that Net1 bound to Dlg1 through the first and second PDZ domains of Dlg1 in vitro and in cells. Importantly, we also observed that Net1 is a very unstable protein in cells and that interaction with Dlg1 protected Net1 from ubiquitin-mediated degradation. Interaction of Net1 with Dlg1 also significantly enhanced the ability of Net1 to stimulate endogenous RhoA activation. In MCF7 breast cancer cells, the interaction of endogenous Net1 with Dlg1 was dependent on the formation of E-cadherin-mediated cell contacts, and disruption of these contacts, either by removal of extracellular calcium or by treatment with TGFβ, caused the dissociation of Net1 from Dlg1 and ubiquitylation of Net1. These data demonstrate that interaction with Dlg1 is a key mechanism for regulating the intracellular stability of Net1 and ultimately its ability to stimulate RhoA activation.  相似文献   

20.
Activation of oncogenes or inhibition of WEE1 kinase deregulates cyclin-dependent kinase (CDK) activity and leads to replication stress; however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibition of WEE1 kinase rapidly increases initiation of replication. This leads to nucleotide shortage and reduces replication fork speed, which is followed by SLX4/MUS81-mediated DNA double-strand breakage. Fork speed is normalized and DNA double-strand break (DSB) formation is suppressed when CDT1, a key factor for replication initiation, is depleted. Furthermore, addition of nucleosides counteracts the effects of unscheduled CDK activity on fork speed and DNA DSB formation. Finally, we show that WEE1 regulates the ionizing radiation (IR)-induced S-phase checkpoint, consistent with its role in control of replication initiation. In conclusion, these results suggest that deregulated CDK activity, such as that occurring following inhibition of WEE1 kinase or activation of oncogenes, induces replication stress and loss of genomic integrity through increased firing of replication origins and subsequent nucleotide shortage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号